5 Strategies and Plan of Action

Iowa's 2010 plan for dam mitigation is a compilation of strategies and action items integrating a series of new approaches as decisions are made about increasingly decrepit infrastructure. These goals address multiple needs mitigation projects will need to meet.

Goal One: Address local and statewide needs by addressing failing dams before they fail

- · Avoid potential loss of life from flood or harmful rapid releases of sediment downstream after dam breaches
- · Listen carefully to stakeholder concerns and clearly identify problems early in the process
- · Coordinate with Iowa DNR dam safety program to identify structural problems
- Focus on solving community problems with cost-effective river restoration techniques using local, federal, state, private, and non-governmental assistance
- Thoroughly vet project designs to mitigate infrastructure, sediment, or ecological problems

Goal Two: Mitigate threats to recreational public and liabilities to dam owners

- Reduce public liability at state-owned low-head dams via warning signage, appropriate launch / landing / portage trail development outlined in Chapter 6 of the 2010 water trails development manual
- Use structural mitigations such as removal or conversion to rapids to further reduce public liability at stateowned low-head dams
- Reduce frequency of lowa deaths at human-made dams on lowa's navigable streams through education, warnings, and structural dam mitigation
- Enhance river navigation and diverse recreation including angling, innertubing, or whitewater recreation

Goal Three: Enhance fish and mussel integrity and reduce biological harm

- Enhance effects for river connectivity for overall river species abundance.
- Consider targeted species recovery / recolonization in specific project areas
- Counter spread of aquatic invasive species such as Asian carps and zebra mussels

Goal Four: Maximize public funds by uniting fish passage, safety, and recreational navigation goals and resources in dam mitigation projects

- Require communication and structured listening approaches from first phase forward to ensure project is as
 responsive as possible to local needs
- Aid public understanding via examples that have solved multiple problems using diverse revenue sources

Table 5-a: Relative factors to determine mitigation function; 1' to 15' high structures*

Mitigation approach	"Drowning machine" reduction	Potential for upstream flood damage reduction	Social / economic function of dam and impoundment retained or stabilized	Aquatic connectivity / fish passage achieved	Sediment transport normalized / pool habitat improved	Economic development enhanced	Avoids potential project site constr. access and control problems	Relative typical design cost	Relative typical constr. costs	Relative 30-year maint.
Removal with stream restoration	•••••	••••		••••	•••••	•••••	••	\$\$\$	\$-\$\$	none
Simple or staged removal	•••••	••••		•••••	•••••	•••••	••••	\$\$	\$	\$
Rock arch rapids	•••••	•	••••	••••	•	•••••	••••	\$\$	\$\$	none
Grouted rock arch rapids	•••••	•	••••	•••••	•	•••••	••••	\$\$	\$\$	\$\$
Crest reduction with rock arch rapids	•••••	••••	•••	•••••	••••	•••••	•••••	\$	\$	none
Whitewater course	•••••	••••	••••	••••	•	•••••	••••	\$\$	\$\$\$	\$\$\$
Safety-only structures	•••••		••••				•••••	\$\$\$	\$\$\$	\$\$
Side-channel passage (boat or fish)	•	••	•••••	••••		••	••	\$\$\$	\$\$\$	\$ - \$\$
Partial channel passage (boat or fish)	•	•	••••	••••	••••	••••	••••	\$\$\$	\$\$\$	\$-\$\$

* Factors for taller structures are more individualized and cost factos may change significantly by site. Site issues and relative importance of each factor will change from project to project.

Figure 5-b: Planning and design phases for mitigating publicly owned dams

A. I	Project application	ect application D. Early review E. Field survey		Field survey	G	. Evaluate alternatives	н.	. Preliminary design
 1. 2. 3. 4. 5. 	Dam owner files letter of intent with lowa DNR Acknowledgement Review project versus priorities Project queued or or denied. Develop project	 Request dam safety inspection reports (DNR Dam Safety) Infrastructure functions review (Local / state engineers) Environmental review (DNR Sovereign Lands) Early public listening 	1. 2. 3. 4.	Morphological / engi- neering survey Photograph Engage dam owner or local volunteer to record stage at submergence flow level Note condition of dam	1.	 All projects mitigate for safety hazards, avoid harmful sediment releas- es, and improve or have little effect on upstream flood conditions Most projects require fish passage and im- proved angling opportu- 	1. 2. 3.	Preliminary design and cost estimate developed by qualified stream restoration professional and/or engineer Approved by dam owner and project partners; funding sought Preliminary design
	agreement	via project open house, web survey, or other	5. 6.	Mussel reconnaissance Depth of refusal probing	3.	nities at the project site . All projects balance the		shared on project Web site
1	LIS Fish and Wildlife	techniques.		in impoundment and ID		following needs:	1.1	Permit submission
	Service fish passage program	 Cultural review (SHPO) Eloodplains / FEMA 	7.	bed materials Identify potential down-		 respect of local needs stability cost 	1.	Submit preliminary design to regulators
2.	DNR Fisheries Management Unit Biologist	flood area review (DNR Floodplains) 7. Identify and collect po-	8.	stream erosion areas Potentially needed: fish assemblage full aguatic community		 flood reduction infrastructure function invasive species 	2.	Always includes joint application to DNR Floodplains, Sovereign
3.	DNR Dam Safety	tentially affected infra-		full mussel survey		 prevention rare species protection 		Lands and USACE for Section 404
4. 5.	DNR Engineering survey project request Potential partners	structure data (upstream well logs, bridge pier/ abutment plans, etc.)		 archaeological review HEC RAS model federal EA or EIS 		 recreation navigation habitat improvements 	3.	May be subject to Sec- tion 106 environmental / cultural review
	Data collection	of stone available	L.	Assessment		 stream restoration tourism / economic 	4.	Local floodplain permit may be required
1.	Existing upstream /	PHASE 1:	1.	Quantify potential		development	J.	Implementation
2.	downstream fishery data Develop aerial base map of project area	Exploratory Report Constraints and opportuni- ties are identified that will quide goal setting, field		sediment release at crest elevations and compare to annual sediment load estimate for stream		Phase 2: Project Determination Report with template application or early con-	1.	Adjust toward final construction design throughout permit process.
э.	charge recurrence data at nearest gauging station (s)	work, and design param- eters.	2.	Identify additional needs for stream restoration Process data for stage		ceptual drawing(s) and rough costs are reviewed and publicly discussed.	2. 3.	Assemble final funds Structure bid process
4.	Geological papers	approved by dam owner	5.	analysis and shear stress,		Reactions are considered.	4.	Construct project
	related to river or its region	before signing and moving to phase 2.	L	maximum particle size mobilized, and other parameters		agree on direction before moving to phase 3.	N S b	Ionitoring Report urvey and report on sta- bility after bankfull flood.

2. Project Determination

1. Exploratory

3. Design and Implementation

Dams with strong potential in combined mitigation benefits

Dams with overlap safety / navigational and biological connectivity benefits

Tier 2 Overlap:

Dams meeting 50th percentile or greater for safety and biological categories (See Table 5-3, next page).

Filtering factors

hydroelectric dams, asian carp barrier dams, large impoundment dams, over 15' tall, over 200' wide, already being mitigated, social / practical issues

Tier 1

ID Dam Name But-4 Shell Rock Mill Dam Jackson Avenue Dam Cer-18 Fourth Street Dam Cer-5 Fast Park Slide Dam Cer-7

Tier 2

- ID Dam Name Bla-3 Park Avenue Dam Bla-4 Sixth St. Dam Pioneer Park Structure/Water Line Bla-7 Frederika Dam Bre-1 Waverly Dam Bre-2
- Rock Glen Dam Cer-8 Pennsylvania Avenue Dam Cer-9 Manchester Dam Del-3 Dub-2 Cascade Falls Dam Charles City Beauty Dam Flo-2
 - Flo-4 Fra-2 Jac-2 Jon-3 Lin-4
 - Buc-2 Littleton Mill Dam Buc-3 Independence Low Dam Cer-11 12th Street Dam Cer-13 Illinois Street Dam Buckley Rock Dam Ford Chi-1 Del-2 Quaker Mill Dam
- **Rockford Dam** Harriman Park Dam Prairie Creek Ford Mon-Mag Dam Palisades-Kepler Dam
 - Ham-3 Webster City Dam Hum-5 Corn Belt Power Dam Oxford Mills Dam Jon-2 Troy Mills Dam Lin-5 Lin-7
 - **Buffalo Creek Park Dam**
 - **Rock Rapids Dam** Lyo-1

Not a priority. Dams that may otherwise have met first tier analysis were filtered out. The Lakehurst Dam is both a power-generating dam, and likely protects the Maquoketa River from Asian carp infestation. Therefore, it was filtered out of the listings.

- Lyo-2 City Park East Channel Dam Lyo-6 City Park Big Ford Web-4 Clare Gaging Dam Web-5 Lizard Creek Mill Dam Web-6 Trestle Weir
- Win-2 Upper Dam Win-3 Weist Mill Dam Woo-3 4th Street Dam

Sto-6	East River Valley Park / 13th St. Dam
Neb-1	Ft. Dodge Hydro Dam
Neb-2	Little Dam
Noo-5	Dace Avenue Dam
Nor-2	Northwood Dam

Limitations of GIS-based process

These listings apply broad, statewide datasets for use by agency staff to assist in technical assistance and funding priorities. See Appendix B and Appendix C for details on the process used. A listing indicates of agency support for potential projects, and areas where outreach may be effective for local projects. In no way are the owners of the above dams required to take any immediate actions. More specific information can be incorportated that could reduce priorities for the listed dams, or could help other dams become a higher priority.

Table 5-b: 75th percentile and greater for both safety / navigational and biological categories

ID	Dam_Name	Cer-7	East Park Slide Dam	Dub-2	Cascade Falls Dam	Jon-3	Mon-Maq Dam	Web-4	Clare Gaging Dam	Win-2	Upper Dam
But-4	Shell Rock Mill Dam	Cer-8	Rock Glen Dam	Flo-2	Charles City Beauty	Lin-4	Palisades-Kepler Dam	Web-5	Lizard Creek Mill Dam		
Cer-18	Jackson Avenue Dam	Cer-9	Pennsylvania Avenue		Dam	Lyo-2	City Park East Channel	Web-6	Trestle Weir		
Cer-5	Fourth Street Dam		Dam	Flo-4	Rockford Dam		Dam	Win-1	Lower Dam		
		Del-3	Manchester Dam	Jac-1	Lakehurst Dam	Lyo-6	City Park Big Ford				

Filtering, and other priorities

Structures filtered out in the process may still offer benefits if a project is pursued. However, factors will need to be examined on a case-by-case basis as projects come forward from communities. Evidence of changed conditions—such as decommissioning of a hydroelectric facility, Asian carp moving up a barrier dam—will be taken into account as

projects are presented.

While this plan emphasises combined priorities, there will also be project areas where combined priorities are not sensible. On small, non-navigable streams there are needs for fish passage at small dams and culverts, which will be pursued with appropriate assistance and funding. Conversely, where fish passage is to be discouraged due to invasive species issues, safety-only priorities may be considered. At large dams where river-wide solutions would be impractical, partial channel solutions may be considered. Revenues appropriate to each aspect of the mitigation should be commensurate to the in the solution. For example, in the case of highly recreational projects, local funding or economic development revenues should comprise part of the project.

Table 5-c: 50th Percentile and greater for both safety / navigational and biological categories

ID	Dam_Name	But-3	Heery Woods Park Dam	Del-5	Lake Delhi Dam	Jas-1	Wagaman Mill Dam	Lyo-2	City Park East Channel		13th St. Dam
Bla-1	Cedar Falls Dam/Center	But-4	Shell Rock Mill Dam	Dub-2	Cascade Falls Dam	Joh-1	Iowa River Power Com-		Dam	Wap-1	Market Street Dam
	St. Dam	Cer-11	12th Street Dam	Flo-1	Main Street Dam		pany Dam	Lyo-3	Klondike Mill Dam	Web-1	Ft. Dodge Hydro Dam
Bla-2	Clay Hole	Cer-13	Illinois Street Dam	Flo-2	Charles City Beauty	Joh-2	Burlington Street Dam	Lyo-б	City Park Big Ford	Web-2	Little Dam
Bla-3	Park Avenue Dam	Cer-18	Jackson Avenue Dam		Dam	Joh-3	Rapid Creek Gaging	Mit-1	Stacyville Dam	Web-4	Clare Gaging Dam
Bla-4	Sixth St. Dam	Cer-5	Fourth Street Dam	Flo-3	Nora Springs Dam		Dam	Mit-2	Otranto Mill Dam	Web-5	Lizard Creek Mill Dam
Bla-7	Pioneer Park Structure/	Cer-6	Lagoon Diversion Dam	Flo-4	Rockford Dam	Joh-7	Coralville Dam	Mit-3	St. Ansgar Mill Dam	Web-6	Trestle Weir
	Water Line	Cer-7	East Park Slide Dam	Flo-5	Marble Rock Dam	Jon-1	Anamosa Dam	Mit-4	Mitchell Mill Dam	Win-1	Lower Dam
Bre-1	Frederika Dam	Cor-8	Bock Glen Dam	Ham-3	Webster City Dam	Jon-2	Oxford Mills Dam	Mit-5	Interstate Power Dam/	Win-2	Linner Dam
Bre-2	Waverly Dam	Cor 0	Poppsylvania Avenue	Har-1	Alden Dam	Jon-3	Mon-Maq Dam		Old power Dam	Wee 5	
Buc-2	Littleton Mill Dam	Cel-9	Dam	Har-2	Iowa Falls Dam	Lin-2	C Street Roller Dam	Mit-7	Rock Creek Village Ford	Wor 1	Date Avenue Dam
Buc-3	Independence Low	Chi-1	Bucklev Rock Dam Ford	Har-3	Steamboat Rock Dam	Lin-3	5-in-1 Bridge & Dam	Mit-8	Rock Creek Village Dam	vvor-1	Fertile Mill Dam
	Dam	Chi-2	Cedar Lake Dam	Hen-1	Oakland Mills Dam	Lin-4	Palisades-Kepler Dam	Mon-2	Bed Grade Control	Wor-2	Northwood Dam
Buc-4	Independence Mill	Del-2	Quaker Mill Dam	Hum-5	Corn Belt Power Dam	Lin-5	Troy Mills Dam		Structure	Wri-1	Goldfield Dam
	Dam		Manchostor Dam	low 1	Amana Millraco Divor	Lin-6	Pinicon Ridge Park Dam	Mon-3	Bed Grade Control		
Buc-5	Quasqueton Dam	Del-3		1000-1	sion Dam	Lin-7	Buffalo Creek Park Dam		Structure		
But-1	Greene Dam	Dei-4	PITI OAK PARK DAITI	Jac-1	Lakehurst Dam	Lyo-1	Rock Rapids Dam	Sto-6	East River Valley Park /		
						-					

Action Items for Dam Mitigation

This plan addressed goals by achieving the following outcomes:

- Responded to legislation by developing goals, strategies, and template approaches to mitigate public hazard and other problems with dams on major rivers statewide.
- Developed an updated inventory of dams on major rivers in Iowa.
- Formed sensible dam mitigation strategies based on listening closely stakeholders.
- Focused on on developing solutions to problems for both dam owners and the broader public.
- Developed conceptual templates that collectively address numerous situations encountered at small dam sites.

Many goals were met and tasks accomplished in the two-year effort to develop this plan. Important tasks remain, however. The following list prioritizes this work:

Tasks for the Short-Term (by 2014):

- Findings of this plan should be incorporated into mitigation efforts of the DNR and communicated among bureaus (specifically, floodplains, fisheries, wildlife, law enforcement, and parks bureaus) and to other state and federal agencies.
- Priorities and approaches will be adopted in funding guidelines and applicable administrative rules for the low-head public hazard program and communicated with other state and federal funders.
- As existing projects are completed, communicate findings of plan and potential for collaboration with potential priority dam owners.
- Collaborate with DNR floodplains / dam safety and fisheries to require sediment stabilization protocols in case of dam failure at appropriate dams.
- Develop phased planning, technical assistance, and funding assistance approaches from individual projects; develop reports that will help policy makers assess project-by-project benefits and costs in funding decisions.

Long-Term Tasks (3 to 10 years):

- Document and monitor project areas for stability and biological response, and compare effectiveness of techniques over a long term.
- New structures will continue to be needed to address needs such as grade stabilization or stream crossings. Reach out to and provide education for engineers to incorporate stable projects that enhance biological connectivity and the latest ecologically friendly techniques wherever sensible.
- Study Asian carp success to better understand which streams they are likely to severely impact, and potentially weigh against advantages to connectivity to the Missouri and Mississippi rivers for those less likely to have severe impacts.
- Solidify requirements and approaches for fish passage and navigational improvements at larger dams and at barriers on smaller streams.

Conclusions

Solving Dam Problems: The 2010 Plan for Dam Mitigation carves new directions regarding mitigation of common problems dams can cause on lowa major waterways. It integrates and visually communicates the ideas and needs of many lowans, while balancing those with ecological needs. It demonstrates viable alternatives to infrastructure that in many cases is literally falling apart. This plan forms flexible early strategies for mitigation projects resulting in public benefits of statewide importance, using techniques likely to find local acceptance at a range of costs. Taken along with warning signage, education, and portage trail guidelines identified in "Developing Water Trails in Iowa", a comprehensive set of strategies for fatality reduction, ecological connectivity, and other problem mitigation at major river dams now exists.

Major rivers are challenging places to work. A successful dam mitigation effort will develop through the efforts of many volunteers, as well as local, state and federal agency staff.

Dams often represent strong emotional attachments and sometimes are a major source of community identity. Each mitigation effort needs to respect that by listening carefully to local concerns and needs without pre-supposing exact outcomes.

In all cases related to dams, professional guidance at the project level is advised. Complex projects relating to dam modification or removal, often require both social and hydrologic inquiry and attention. The right experts may be skilled planners or facilitators, stream restoration professionals, and / or engineers. As multiple steps, ongoing project management, and permtis are required, an experienced planner or coordinator can be essential for pulling a vision together into a completed project.

Bibliography

Aadland, Luther. (personal communication, 2010)

Aadland, Luther. (2009). Minnesota DNR. Reconnecting Rivers: Natural Channel Design in Dam Removals and Fish Passage.

Annals of Iowa 47, #1. (1983). The Role of Technology in the Fresh-Water Pearl Button Industry of Muscatine, Iowa, 1891-1910

Arbuckle, K.E.; J.A. Downing; and D. Bonneau (2000). Statewide assessment of freshwater mussels (Bivalvia: Unionidae) in Iowa streams. Iowa State University. Final Report to Iowa Department of Natural Resources. (data collected from 1998-99)

Barnhart, M. C. (2008). Unio Gallery: http://unionid.missouristate. edu. Accessed 12/15/2010.

Bruenderman, Sue, et al. (undated). Missouri's Freshwater Mussels.

Budwig, Ralph, et al. (2009). Physical Modeling of Wave Generation for the Boise River Recreation Park in the Center for Ecohydraulics Stream Laboratory; paper for the 7th ISE and 8th HIC conference; Chile.

Chamani, M.R. and Rajaratnam, N. (1994). "Jet Flow on Stepped Spillways," Journal of Hydraulic Engineering, UASCE, Vol. 120, No. 2, pp 245-259.

Christodoulou, G. C. (1993). "Energy Dissapation on Stepped Spillways," Journal of Hydraulic Engineering, UASCE, Vol. 119, No. 5, pp 644-650.

Iowa DNR (2009). "The Drowning Machine." Brochure.

Iowa DNR (2010). Dam-related Deaths Records.

Leutheusser, H. J. and Birk, W.M (1991). "Downproofing of Low Overflow Structures," Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 2, pp 205-213.

Forester, J.W. and Raymond A. Skrinde. (1949). "Control of the Hydraulic Jump by Sills". Transactions of the American Society of Civil Engineers. Vol. 115, pp. 973-1022.

Freeman, J.W. and Garcia, M.H. (1996). Hydraulic Model Study for the Drown Proofing of Yorkville Dam, Illinois, Hydraulic Engineering Series No. 50. University of Illinois, Civil Engineering Studies.

Frest, T.J. (1987). Mussel survey of selected interior lowa streams. University of Northern lowa. Final Report to lowa Department of Natural Resources and U.S. Fish and Wildlife Service. Hauser. G. E., Shane, R. M and Brock, W.G. (1991). Innovative Re-regulation Weirs for Dam Releases, Proceedings of the 1991 National Conference on Hydraulic Engineering, ASCE, Jul. 29-Aug 2, pp 178-183.

Galat, David L. (2005). Spatiotemporal Patterns and Changes in Missouri River Fishes; U.S. Geological Survey, Cooperative Research Units, University of Missouri, Columbia

Gelwicks, Greg (2008). Iowa DNR, Powerpoint presentation, radiotelemetry study of 1999-2003 tagged fish

Heidebrink, Laurie (2002). Freshwater Mussels of Iowa, Cedar Valley RC&D, Iowa DNR, and USEPA. Retrieved December 13, 2010 at www.molluskconservation.org.

Hoyer, Bernie; McGhee, Mike (2009-2010). personal communication.

- Hoctkiss, R. and Comstock, M. (1992). Discussion of "Downproofing of Low Overflow Structures," Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 11, pp 1586-1588.
- Leutheusser, Hans J. and Jerry J. Fan. (2001). "Backward Flow Velocities of Submerged Hydraulic Jumps". Journal of Hydraulic Engineering. ASCE. Vol. 129, pp. 514-517.

Katopodis, C., and Aadland, L.P. (2006). Effective dam removal and river channel restoration approaches; Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba; and Minnesota DNR, Fergus Falls, MN

Kurth, Jennifer. (2009) Iowa DNR, personal communication. Fish hosts for Iowa mussels spreadsheet.

Machtinger, Erika(January 2007). Native Freshwater Mussels, Fish and Wildlife Habitat Management Leaflet, Natural Resources Conservation Service and Wildlife Habitat Council.

Mayhew, J. (1987). Iowa Fish and Fishing. Iowa Department of Natural Resources, Des Moines, Iowa, pp. 323

Morris, Gregory, and Jiahua, Fan (1997). Reservoir sedimentation handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use. 17.2.2-4.

- Petersen, William J. (1941). Iowa: The Rivers of Her Valleys. Iowa Historical Society.
- Poole, K. Elizabeth and Downing, John A. (2004). Relationship of declining mussel biodiversity to stream-reach and watershed characteristics in an agricultural landscape. Journal of the American Benthological Society.
- Rajaratnam, Nallamuthu. (1965). "Submerged Hydraulic Jump". Journal of Hydraulics. USASCE Vol. 91, pp. 71-96.

Rajaratnam, Nallamuthu. (1990). "Skimming Flow in Stepped Spillways," Journal of Hydraulic Engineering, ASCE, Vol. 116, No. 4, pp 587-591.

St. Pierre, R. & Runstrom, A. (2004) U.S. Fish & Wildlife Service. Acipenser fulvescens. In: IUCN 2004. IUCN Red List of Threatened Species.

Swisher, Jacob A. (1940). Iowa: Land of Many Mills

- Thomas, J.T. (2009) Hungry Canyons Alliance: Streambed Stabilization in Western Iowa. World Environmental and Water Resources Congress 2009: Great Rivers. Conference Proceeding Paper.
- U.S. Army Corps of Engineers. (1992). Hydraulic Design of Spillways, Engineer Manual, 1110-2-1603. 7-7.

Vallé, Brett, and Pasternacka, Gregory (2006). Submerged and unsubmerged natural hydraulic jumps in a bedrock step-pool mountain channel, Department of Land, Air, and Water Resources, University of California, Davis.

Wisconsin DNR, (retrieved September 5, 2010). http://dnr.wi.gov/org/ water/wm/dsfm/dams/removal.html

- Wright, Kenneth, et al. (undated). Public Safety At Low-Head Dams, white paper, Wright Water Engineers, Inc.
- Wright, Kenneth, et al. (1995). Low-Head Dam Hydraulic Turbulence Hazards. In ASDSO Western Regional Conference, May 1995, Red Lodge, Montana.
- Yasuda, Youichi; Ohtsu, Iwao (2003). Energy Dissipation Structures. Article in Encyclopedia of Water Science. August 4

Appendix A: Raw Responses to Dam Owner's Survey

Question	Response option	Total Responses
	Very Acceptable	49
	Somewhat Acceptable	51
How Acceptable is the	Somewhat Unacceptable	28
Condition of the Dam?	Very Unacceptable	20
	Not Sure	22
	Other	7
	Provides a Barrier to Fish Movement	Yes - 93 No - 53
Do You Believe your	Provides a Barrier to Navigation & Recreational Use	Yes - 82 No - 66
Dam…	Reduces Biological Diversity in the Stream	Yes - 39 No - 96
	Affects the Nearby Water Table Elevation	Yes - 48 No - 88
	Very Open	55
	Somewhat Open	31
How Open Are You to	Probably Not Open	14
Considering a	Definitely Not Open	18
Modification?	I Need More Info	32
	Don't Know	11
	Other	2

* of 163 surveys completed

		Total
Question	Response option	Responses*
	Agricultural Purposes	16
	Fishing	115
	Boating	68
	Swimming	42
Current Stream use	Hunting	37
	Other Land-based Recreation	82
	Don't Know	5
	None	23
	Other	30
	River Crossing	15
	Utility/Pipeline Protection	12
	Stream Channel Stabilization	37
	Water Supply	18
	Flood Control	19
	Enhanced Water Quality	45
	Aeration	25
	Wildlife Habitat	48
Benefits Dam Provides	Fish & Aquatic Habitat	73
of Area of Stream	Historic Value	45
at Area of Stream	Visual Interest	59
	Fishing	91
	Hunting	18
	Agricultural Purposes	7
	Upstream Impoundment	59
	Hydropower Generation	9
	None	7
	Don't Know	7
	Other	17
	Stream Bed Stabilization	31
	Hydropower Generation	33
	Fishing and Recreation Purposes	27
	Hunting Recreation	6
Why Was the Dam	Habitat	15
Originally Constructed -	Agricultural Use	3
What Was Its Purpose?	Mill or Business Function	39
	Flood Control	13
	Create Impoundment Upstream	34
	Don't Know	17
	Other	34
	Upstream Siltation	74
What Problems May	Debris Collection at High Water	66
Possibly Exist With Your	Stream and/or Channel Erosion	45
FUSSIBLY EXIST WITH YOUR	None	21
Dam?	Don't Know	18
	Other	22

* of 163 surveys completed

Appendix B: Dams ranking high in relative risk analsyis

75th	percentile
and	greater
ID	Dam_Name
Bla-3	Park Avenue Dam
Pol-1	Center Street Dam (Des Moines)
Joh-2	Burlington Street Dam
Joh-1	Iowa River Power Company Dam
Lin-4	Palisades-Kepler Dam
Lin-2	C Street Roller Dam
Bla-1	Cedar Falls Dam/Center St. Dam
Jon-3	Mon-Maq Dam
low-1	Amana Millrace Diversion Dam
Jon-1	Anamosa Dam
Buc-5	Quasqueton Dam
Lin-5	Troy Mills Dam
Boo-2	Boone Waterworks Dam
Del-4	Pin Oak Park Dam
Bla-4	Sixth St. Dam
Dal-3	Adel Island Park Dam
Bre-2	Waverly Dam
Wap-1	Market Street Dam
Har-1	Alden Dam
Web-2	Little Dam
Hum-5	Corn Belt Power Dam
Bla-2	Clay Hole
Pol-2	Scott Street Dam
Flo-1	Main Street Dam

Mit-3	St. Ansgar Mill Dam
Mit-2	Otranto Mill Dam
Flo-2	Charles City Beauty Dam
Har-2	Iowa Falls Dam
Web-1	Ft. Dodge Hydro Dam
Buc-4	Independence Mill Dam
Har-3	Steamboat Rock Dam
Flo-3	Nora Springs Dam
Boo-1	Fraser Dam
But-4	Shell Rock Mill Dam
Buc-3	Independence Low Dam
Lin-3	5-in-1 Bridge & Dam
Lin-6	Pinicon Ridge Park Dam
Pol-5	Fleur Drive Dam
Mit-4	Mitchell Mill Dam
Chi-2	Cedar Lake Dam
Buc-2	Littleton Mill Dam
Dal-1	Redfield Dam
Sto-6	East River Valley Park / 13th S Dam
Del-5	Lake Delhi Dam
Jac-1	Lakehurst Dam
Lyo-3	Klondike Mill Dam
Flo-5	Marble Rock Dam
But-1	Greene Dam
Flo-4	Rockford Dam
But-3	Heery Woods Park Dam
Wor-2	Northwood Dam
Web-6	Trestle Weir
How-3	Lidtke Mill Dam
Woo-5	Dace Avenue Dam

50th	n to 74th
perc	centile
ID	Dam_Name
Woo-2	6th Street Dam
Woo-4	11th Street Dam
Woo-6	Dam at the Mouth
Sto-7	Veenker Golf Course Ford
Woo-3	4th Street Dam
Sto-5	Lincolnway Gaging Dam
Dal-2	Adel North Dam
Cer-11	12th Street Dam
Cer-13	Illinois Street Dam
Del-2	Quaker Mill Dam
Del-3	Manchester Dam
Joh-7	Coralville Dam
Fay-2	Maynard Dam
Emm-3	South Riverside Park Dam
Win-3	Weist Mill Dam
Sto-3	Sleepy Hollow/Hannum's Mill
Hen-1	Oakland Mills Dam
Mit-5	Interstate Power Dam/Old power Dam
Wor-1	Fertile Mill Dam
Bla-7	Pioneer Park Structure/Water Line
Del-1	Backbone Lake Dams
Jon-2	Oxford Mills Dam
All-1	Mississippi Lock and Dam 9
Win-2	Upper Dam
Win-1	Lower Dam

Hum-2	Reasoner	Dam
-------	----------	-----

Hum-1	Rutland Dam
Fay-9	Wacouma Mill Dam
Bue-1	Linn Grove Dam
Jas-1	Wagaman Mill Dam
Lyo-1	Rock Rapids Dam
How-1	Vernon Springs Dam
Mit-1	Stacyville Dam
Chi-1	Buckley Rock Dam Ford
Cer-8	Rock Glen Dam
Osc-1	Ashton Dam
Bre-1	Frederika Dam
Mon-2	Bed Grade Control Structure
Mon-3	Bed Grade Control Structure
Gut-1	Lenon Mill Dam
Fav-4	Clermont Dam

.yo-2	City Park East Channel Dam
Nri-1	Goldfield Dam
Dbr-1	Sheldon Waterworks Dam
Cer-7	East Park Slide Dam
Cer-9	Pennsylvania Avenue Dam
lam-3	Webster City Dam
Cly-2	Elkader Little Dam
Neb-4	Clare Gaging Dam
Cer-6	Lagoon Diversion Dam
Cer-5	Fourth Street Dam
уо-б	City Park Big Ford
in-7	Buffalo Creek Park Dam
oh-3	Rapid Creek Gaging Dam

Risk factors were developed after analyzing 1998 to present fatalities at dams and examining other available data. Factors weighted and analyzed using GIS modeling, including relative usage statistics from the 2009 lowa Rivers and River Corrdiors Recreation survey conducted by Iowa State University's Center for Agriculture and Rural Development. Dams in the Iow-head, breached, Iow-head, Iarge impoundment, and ford categories were analyzed (211 total stuctures). The following factors were used:

- Proximity to population centers, (>100,000, 2 pts; >35,000, 1 pt)
- Known fatalities (>5, 3 pts; >3, 2 pts; 1 to 3, 1 pt)
- Height (2' to 15', 2 pts; >15', 1)
- Type (Low-head, 3pts; Breached low-head, 2 pts; Large Impoundment or seasonal low-head, 1)
- Near university / college (50-mile radius, 2 pts; 10-mile radius, 1 pt)
- On designated or in-progress water trail (1 pt)
- River usage survey, total # visits (>1,000 1 pt; >350 .5pt)

River usage survey, in-water visits including fish/boat/canoe/swim (>700 3 pts; >349, 2pts)

Note that this type of broad-brush statistical analysis does not account for individual site factors, such as hydraulic retention, site design, education, and other factors that may play a role in actual risk. Also, known fatality data may be limited for many dams.

Appendix C: Dams with biological priority potential, unfiltered list

75tł	n percentile	Flo-5
and	arostor	How-3
anu	greater	Del-2
ID	Dam_Name	Bla-7
Jon-3	Mon-Maq Dam	
Del-5	Lake Delhi Dam	Win-1
Mit-4	Mitchell Mill Dam	Lyo-1
Cer-13	Illinois Street Dam	Cer-8
Wri-1	Goldfield Dam	Cer-7
Cer-9	Pennsylvania Avenue Dam	Cer-6
Web-5	Lizard Creek Mill Dam	Cer-5
Dub-2	Cascade Falls Dam	Lyo-б
Cer-18	Jackson Avenue Dam	Joh-3
Del-4	Pin Oak Park Dam	Jas-1
Mit-3	St. Ansgar Mill Dam	Cer-19
Lin-6	Pinicon Ridge Park Dam	Lin-4
Del-3	Manchester Dam	Lin-2
Cer-11	12th Street Dam	Wap-1
Mit-5	Interstate Power Dam/Old	Flo-1
10-2	City Park Fast Channel Dam	Flo-2
LyO-2	Webster City Dam	Flo-3
	Clara Caping Dam	But-4
web-4		Har-3
Lin-/	Buffalo Creek Park Dam	Chi-2
Cer-4	East Park Dam	But-3
Joh-2	Burlington Street Dam*	Wor-2
Mit-2	Otranto Mill Dam	Hen-1
Jac-1	Lakehurst Dam*	Win-2
But-1	Greene Dam	Mit-1
Flo-4	Rockford Dam	

Web-6 Trestle Weir

Marble Rock Dam Lidtke Mill Dam Ouaker Mill Dam Pioneer Park Structure/Water Line Lower Dam* **Rock Rapids Dam** Rock Glen Dam East Park Slide Dam Lagoon Diversion Dam

Fourth Street Dam City Park Big Ford Rapid Creek Gaging Dam Wagaman Mill Dam Pierce Avenue Dam Palisades-Kepler Dam C Street Roller Dam Market Street Dam Main Street Dam Charles City Beauty Dam Nora Springs Dam Shell Rock Mill Dam Steamboat Rock Dam Cedar Lake Dam

- Heery Woods Park Dam
- Northwood Dam
- Oakland Mills Dam * Upper Dam
- Stacyville Dam

- 50th to 74th percentile ID Dam_Name Chi-1 Buckley Rock Dam Ford Frederika Dam Bre-1 Cer-10 Linn Grove Park Dam* How-6 Saratoga Dam Bre-5 Sweet Marsh Dam Heritage Farm Crossing Bla-5 Bla-3 Park Avenue Dam Iowa River Power Company Joh-1 Dam Amana Millrace Diversion low-1 Dam Quasqueton Dam Buc-5
- **Troy Mills Dam** Lin-5
- Sixth St. Dam Bla-4 Anamosa Dam*
- Jon-1 Waverly Dam Bre-2
- Web-2 Little Dam
- Alden Dam Har-1
- Hum-5 Corn Belt Power Dam
- Har-2 Iowa Falls Dam
- Web-1 Ft. Dodge Hydro Dam
- Independence Mill Dam Buc-4
- Lin-3 5-in-1 Bridge & Dam
- Independence Low Dam Buc-3 Littleton Mill Dam Buc-2
- Klondike Mill Dam Lyo-3
- Coralville Dam Joh-7
- Jon-2
 - Oxford Mills Dam

Wor-1	Fertile Mill Dam	
Fay-7	Lake Oelwein D	am
Buc-1	Fairbank Dam	
How-2	Lylah's Marsh Da	am
Chi-4	North Washingt	on Mill Dam
Chi-3	Chickasaw Mill I	Dam
Fra-2	Harriman Park D	Dam
Mit-8	Rock Creek Villa	ge Dam
Fra-3	Robinson Park D	Dam
Flo-6	Rock Creek Ford	I
Mit-7	Rock Creek Villa	ge Ford
Mit-10	Jersey Avenue V	Veir
Buc-6	Fontana Lake Da	am
She-2	North Panama	Dam
Pag-1	Clarinda	
	Dam	Factors we
But-7	Big Marsh	impoundn
	Dam	total stuct
Web-8	Williams	• BIOIO
	Drive Dam	• Dowr
Kos-11	Buffalo	• Fish s
	Creek Dam	in # p
She-6	Bruch Weir	· Seam
She-4	Panama High Tress	pt)
	Weir	• Catfis
She-5	F-32 Weir	• Use n
Fra-1	Beed's Lake	Because th
	Dam	fish and m
Wor-3	Elk Creek	monitoring priorities.
	Dam 1	dams on t

Fay-8 Low Flow

Bridge

- Bla-1 Cedar Falls Dam/Center St. Dam
- Bla-2 Clay Hole
- East River Valley Park / 13th St. Sto-6 Dam
- Woo-5 Dace Avenue Dam

*Asian carp barrier dams to be filtered out during later step.

Factors were weighted and analyzed using GIS mode ing. Dams in the low-head, breached, low-head, large		
tot	al stuctures). The following factors were used:	
•	Biological impairment, 303 listed segment, (2 pts)	
•	Within 15 miles of sampled SGGN mussel(s) (2 pts)	
•	Downstream of zebra mussel investation (2 pts)	
•	Fish species presence-absence analysis, difference in # present upstream (>15, 3 pts; 10-14, 2 pts; 5-9; 1 pt)	
•	Segment downstream of dam has >29 species (1 pt)	
•	Catfish recovery potential (1 pt)	
•	Use none or unknown (2 pts)	
Bed ily f fish mo prio dar	Because this method depends on exisiting data, it heav- ily favors dams in segments of rivers where significant fish and mussel samping has occurred. Additional monitoring could result in other dams becoming higher priorities. In addition, some deteriorated or breached dams on this listing with closer inspection may alread	
be	regularly passing fish, elminating their priority status.	