Iowa Department of Natural Resources
Title V Operating Permit

Name of Permitted Facility: Praxis Mid America
Facility Location: 2908 N. Court, Ottumwa, IA 52501
Air Quality Operating Permit Number: 00-TV-038R1
Expiration Date: May 3, 2012
Permit Renewal Application Deadline: November 3, 2011

EIQ Number: 92-5186
Facility File Number: 90-01-023

Responsible Official
Name: Tony Rickets
Title: Certified Financial Officer
Mailing Address: 435 Industrial Road, Savannah, TN 38372
Phone #: (731) 925-7656

Permit Contact Person for the Facility
Name: Paul Warrington
Title: Safety & Environmental
Mailing Address: 435 Industrial Road, Savannah, TN 38372
Phone #: (731) 926-8820

This permit is issued in accordance with 567 Iowa Administrative Code Chapter 22, and is issued subject to the terms and conditions contained in this permit.

For the Director of the Department of Natural Resources

Douglas A. Campbell, Supervisor of Air Operating Permits Section Date
Table of Contents

I. Facility Description and Equipment List ...4

II. Plant - Wide Conditions ..5

III. Emission Point Specific Conditions ..8

IV. General Conditions ...25
 G1. Duty to Comply
 G2. Permit Expiration
 G3. Certification Requirement for Title V Related Documents
 G4. Annual Compliance Certification
 G5. Semi-Annual Monitoring Report
 G6. Annual Fee
 G7. Inspection of Premises, Records, Equipment, Methods and Discharges
 G8. Duty to Provide Information
 G9. General Maintenance and Repair Duties
 G10. Recordkeeping Requirements for Compliance Monitoring
 G11. Evidence used in establishing that a violation has or is occurring.
 G13. Hazardous Release
 G14. Excess Emissions and Excess Emissions Reporting Requirements
 G15. Permit Deviation Reporting Requirements
 G16. Notification Requirements for Sources That Become Subject to NSPS and NESHAP Regulations
 G17. Requirements for Making Changes to Emission Sources That Do Not Require Title V Permit Modification
 G18. Duty to Modify a Title V Permit
 G19. Duty to Obtain Construction Permits
 G20. Asbestos
 G21. Open Burning
 G22. Acid Rain (Title IV) Emissions Allowances
 G23. Stratospheric Ozone and Climate Protection (Title VI) Requirements
 G24. Permit Reopenings
 G25. Permit Shield
 G26. Severability
 G27. Property Rights
 G28. Transferability
 G29. Disclaimer
 G30. Notification and Reporting Requirements for Stack Tests or Monitor Certification
 G31. Prevention of Air Pollution Emergency Episodes
 G32. Contacts List

V. Appendix A: 40 CFR 63 Subpart WWWW ..38
Abbreviations

acfm............................actual cubic feet per minute
CFR............................Code of Federal Regulation
°F................................degrees Fahrenheit
EIQ...............................emissions inventory questionnaire
gr./dscfgrains per dry standard cubic foot
gr./100 cf........................grains per one hundred cubic feet
IAC...............................Iowa Administrative Code
IDNR..............................Iowa Department of Natural Resources
MVAC............................motor vehicle air conditioner
NSPS.............................new source performance standard
ppmvparts per million by volume
lb./hr............................pounds per hour
lb./MMBtupounds per million British thermal units
scfm............................standard cubic feet per minute
TPY..............................Tons per year
USEPA.......................United States Environmental Protection Agency

Pollutants

PM..............................particulate matter (equivalent to TSP, total suspended particulate)
PM_{10}..........................Particulate matter ten microns and less in diameter
SO_{2}............................sulfur dioxide
NO_{x}............................nitrogen oxides
VOC.............................volatile organic compound
CO...............................carbon monoxide
HAP.............................hazardous air pollutant
I. Facility Description and Equipment List

Facility Name: Praxis Mid America
Permit Number: 00-TV-038R1

Facility Description: Plastic Plumbing Fixtures Manufacturing (SIC 3088)

<table>
<thead>
<tr>
<th>Emission Point Number</th>
<th>Emission Unit Number</th>
<th>Emission Unit Description</th>
<th>IDNR Construction Permit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 01</td>
<td>EU 01</td>
<td>Gel Booth 1</td>
<td>78-A-068-S1</td>
</tr>
<tr>
<td>EP 02</td>
<td>EU 02</td>
<td>Gel Booth 2</td>
<td>78-A-067-S1</td>
</tr>
<tr>
<td>EP 03</td>
<td>EU 03</td>
<td>Glass Booth 1</td>
<td>78-A-063-S1</td>
</tr>
<tr>
<td>EP 04</td>
<td>EU 04</td>
<td>Glass Booth 2</td>
<td>78-A-064-S1</td>
</tr>
<tr>
<td>EP 05</td>
<td>EU 05</td>
<td>Glass Booth 3</td>
<td>78-A-065-S1</td>
</tr>
<tr>
<td>EP 06</td>
<td>EU 06</td>
<td>Glass Booth 4</td>
<td>78-A-066-S1</td>
</tr>
<tr>
<td>EP 07</td>
<td>EU 07</td>
<td>Grind Shack</td>
<td>78-A-070-S1</td>
</tr>
<tr>
<td>EP 09</td>
<td>EU 09</td>
<td>Mix Room</td>
<td>99-A-042</td>
</tr>
<tr>
<td>EP 11</td>
<td>EU 11</td>
<td>Mold Repair</td>
<td>78-A-069-S1</td>
</tr>
</tbody>
</table>

Insignificant Activities Equipment List

<table>
<thead>
<tr>
<th>Insignificant Emission Unit Number</th>
<th>Insignificant Emission Unit Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 8</td>
<td>Maintenance Welding</td>
</tr>
<tr>
<td>EU 12</td>
<td>Parts Washer</td>
</tr>
</tbody>
</table>
II. Plant-Wide Conditions

Facility Name: Praxis Mid America
Permit Number: 00-TV-038

Permit conditions are established in accord with 567 Iowa Administrative Code rule 22.108

Permit Duration

The term of this permit is: five (5) years from date of issuance
Commencing on: May 4, 2007
Ending on: May 3, 2012

Amendments, modifications and reopenings of the permit shall be obtained in accordance with 567 Iowa Administrative Code rules 22.110 - 22.114. Permits may be suspended, terminated, or revoked as specified in 567 Iowa Administrative Code Rules 22.115.

Emission Limits

Unless specified otherwise in the Source Specific Conditions, the following limitations and supporting regulations apply to all emission points at this plant:

Opacity (visible emissions): 40% opacity
Authority for Requirement: 567 IAC 23.3(2)"d"

Sulfur Dioxide (SO₂): 500 parts per million by volume
Authority for Requirement: 567 IAC 23.3(3)"e"

Particulate Matter (state enforceable only):¹
No person shall cause or allow the emission of particulate matter from any source in excess of the emission standards specified in this chapter, except as provided in 567 – Chapter 24. For sources constructed, modified or reconstructed after July 21, 1999, the emission of particulate matter from any process shall not exceed an emission standard of 0.1 grain per dry standard cubic foot of exhaust gas, except as provided in 567 – 21.2(455B), 23.1(455B), 23.4(455B) and 567 – Chapter 24.
For sources constructed, modified or reconstructed prior to July 21, 1999, the emission of particulate matter from any process shall not exceed the amount determined from Table I, or amount specified in a permit if based on an emission standard of 0.1 grain per standard cubic foot of exhaust gas or established from standards provided in 23.1(455B) and 23.4(455B).
Authority for Requirement: 567 IAC 23.3(2)"a" (as revised 7/21/1999)

¹ Pending approval into Iowa's State Implementation Plan (SIP), paragraph 567 IAC 23.3(2)"a" (as revised 7/21/1999) is considered state enforceable only.
Particulate Matter:
The emission of particulate matter from any process shall not exceed the amount determined from Table I, except as provided in 567 — 21.2(455B), 23.1(455B), 23.4(455B) and 567 — Chapter 24. If the director determines that a process complying with the emission rates specified in Table I is causing or will cause air pollution in a specific area of the state, an emission standard of 0.1 grain per standard cubic foot of exhaust gas may be imposed.
Authority for Requirement: 567 IAC 23.3(2)"a" (prior to 7/21/1999)

Fugitive Dust: Attainment and Unclassified Areas - No person shall allow, cause or permit any materials to be handled, transported or stored; or a building, its appurtenances or a construction haul road to be used, constructed, altered repaired or demolished, with the exception of farming operations or dust generated by ordinary travel on unpaved public roads, without taking reasonable precautions to prevent particulate matter in quantities sufficient to create a nuisance, as defined in Iowa Code section 657.1, from becoming airborne. All persons, with the above exceptions, shall take reasonable precautions to prevent the discharge of visible emissions of fugitive dusts beyond the lot line of the property on which the emissions originate. The highway authority shall be responsible for taking corrective action in those cases where said authority has received complaints of or has actual knowledge of dust conditions which require abatement pursuant to this subrule. Reasonable precautions may include, but not limited to, the following procedures.
1. Use, where practical, of water or chemicals for control of dusts in the demolition of existing buildings or structures, construction operations, the grading of roads or the clearing of land.
2. Application of suitable materials, such as but not limited to asphalt, oil, water or chemicals on unpaved roads, material stockpiles, race tracks and other surfaces which can give rise to airborne dusts.
3. Installation and use of containment or control equipment, to enclose or otherwise limit the emissions resulting from the handling and transfer of dusty materials, such as but not limited to grain, fertilizers or limestone.
4. Covering at all times when in motion, open-bodied vehicles transporting materials likely to give rise to airborne dusts.
5. Prompt removal of earth or other material from paved streets or to which earth or other material has been transported by trucking or earth-moving equipment, erosion by water or other means.
Authority for Requirement: 567 IAC 23.3(2)"e"

Compliance Plan
The owner/operator shall comply with the applicable requirements listed below. The compliance status is based on information provided by the applicant.

Unless otherwise noted in Section III of this permit, Praxis Companies, LLC. is in compliance with all applicable requirements and shall continue to comply with all such requirements. For those applicable requirements which become effective during the permit term, Praxis Companies, LLC. shall comply with such requirements in a timely manner.

2 Paragraph 567 IAC 23.3(2)"a" (prior to 7/21/1999) is the general particulate matter emission standard currently in the Iowa SIP.
NESHAP

The permittee has several units that are affected sources under Subparts A (General Provisions, 40 CFR §63.1 – 40 CFR §63.15) and WWWW [National Emission Standards for Hazardous Air Pollutants for Reinforced Plastic Composites Production, 40 CFR §63.5780 – 40 CFR §63.5935] of the National Emission Standard for Hazardous Air Pollutants (NESHAP). Per the applicability criteria in Sec. 63.5795, these are existing sources subject to 40 CFR Subpart WWWW. Attached as Appendix A to this permit, and hereby incorporated by reference is 40 CFR 63 Subpart WWWW.

The permittee shall comply with all applicable requirements of Subpart WWWW. The Department received this facility's "Notification of Compliance Status" on May 19, 2006.

Authority for Requirement: 40 CFR Part 63 Subpart WWWW
567 IAC 23.1(4)"cw"
III. Emission Point-Specific Conditions

Facility Name: Praxis Mid America
Permit Number: 00-TV-038R1

Emission Point ID Number: EP 01

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 01</td>
<td>Gel Booth 1</td>
<td>CE 01: Mat Filter</td>
<td>Gel Coat</td>
<td>129.63 lb/hr.</td>
<td>78-A-068-S1</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)

The emissions from this emission point shall not exceed the levels specified below.

Pollutant: Opacity
Emission Limit(s): 40 %
Authority for Requirement: 567 IAC 23.3(2)"d"

Pollutant: Particulate Matter
Emission Limit(s): 0.01 gr/dscf
Authority for Requirement: Iowa DNR Construction Permit 78-A-068-S1
567 IAC 23.4(13)

Operational Limits & Requirements

The owner/operator of this equipment shall comply with the operational limits and requirements listed below.

NESHAP:
This emission unit is located at a reinforced plastic composites production facility, which is subject to the requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR, Part 63, Subpart WWWW, Reinforced Plastic Composites Production. Please refer to the Plant-Wide Conditions of this permit for more information.
Authority for Requirement: 40 CFR Part 63 Subpart WWWW
567 IAC 23.1(4)"cw"
Monitoring Requirements
The owner/operator of this equipment shall comply with the monitoring requirements listed below.

Agency Approved Operation & Maintenance Plan Required? Yes [x] No []

Facility Maintained Operation & Maintenance Plan Required? Yes [x] No []

Compliance Assurance Monitoring (CAM) Plan Required? Yes [x] No []

Authority for Requirement: 567 IAC 22.108(3)
CAM Plan for EU-01
Praxis Mid America

I. Background

A. Emissions Unit
 Description: Gel Booth 1
 Identification: EU – 01
 Facility: Praxis Mid America
 Ottumwa IA. 52501

B. Applicable Regulation, Emission Limit, and Monitoring Requirements
 Regulation No.: Permit 00-TV-038R1
 Particulate emission limit: .1 gr Dry Standard
 Opacity emission limit: .01 gr/dcft
 Current monitoring requirements: Stack Testing, Daily opacity readings.

C. Control Technology
 Fabric Filter

II. Monitoring Approach

A. Indicator
 Daily manometer checks will be used as an indicator.

B. Measurement Approach
 Manometer reading will be below .10

C. Indicator Range
 Manometer reading of .00 to .10 are normal operating range.

D. QIP (Quality Improvement Plan) Threshold
 Filters are changed every day in the booth and once a week in vent chamber.

E. Performance Criteria
 Data representativeness: The manometer reading is checked every day and recorded.
 Verification of operational status: The manometer reading is checked every day and recorded and turned into Safety Director and filed for 4 years.
 Monitoring frequency and data collection procedure: Reading is done every day a recorded.

III. Justification

A. Background
 This facility manufactures fiberglass tub and shower stalls

B. Rationale for Selection of Performance Indicator
 The manometer is checked daily to assure we are in the operating range.

C. Rationale for Selection of Indicator Level
 If the reading indicates we are not in the range .00-.10 we change the filters.
 We also use a vanometer to check airflow in booths.
Emission Point ID Number: EP 02

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 02</td>
<td>Gel Booth 2</td>
<td>CE 02: Mat Filter</td>
<td>Gel Coat</td>
<td>129.63 lb/hr.</td>
<td>78-A-067-S1</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)
The emissions from this emission point shall not exceed the levels specified below.

Pollutant: Opacity
Emission Limit(s): 40 %
Authority for Requirement: 567 IAC 23.3(2)"d"

Pollutant: Particulate Matter
Emission Limit(s): 0.01 gr/dscf
Authority for Requirement: Iowa DNR Construction Permit 78-A-06S1
567 IAC 23.4(13)

Operational Limits & Requirements
The owner/operator of this equipment shall comply with the operational limits and requirements listed below.

NESHAP:
This emission unit is located at a reinforced plastic composites production facility, which is subject to the requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR, Part 63, Subpart WWWW, Reinforced Plastic Composites Production. Please refer to the Plant-Wide Conditions of this permit for more information.
Authority for Requirement: 40 CFR Part 63 Subpart WWWW
567 IAC 23.1(4)"cw"

Monitoring Requirements
The owner/operator of this equipment shall comply with the monitoring requirements listed below.

Agency Approved Operation & Maintenance Plan Required? Yes □ No ☑
Facility Maintained Operation & Maintenance Plan Required? Yes □ No ☑
Compliance Assurance Monitoring (CAM) Plan Required? Yes ☑ No □
Authority for Requirement: 567 IAC 22.108(3)
CAM Plan for EU-02
Praxis Mid America

I. Background

A. Emissions Unit
 Description: Gel Booth 2
 Identification: EU – 02
 Facility: Praxis Mid America
 Ottumwa IA. 52501

B. Applicable Regulation, Emission Limit, and Monitoring Requirements
 Regulation No.: Permit 00-TV-038R1
 Particulate emission limit: .1gr Dry Standard
 Opacity emission limit: .01 gr/dscf
 Current monitoring requirements: Stack Testing, Dailey opacity readings.

C. Control Technology
 Fabric Filter

II. Monitoring Approach

A. Indicator
 Daily manometer checks will be used as an indicator.

B. Measurement Approach
 Manometer reading will be below .10

C. Indicator Range
 Manometer reading of .00 to .10 are normal operating range.

D. QIP (Quality Improvement Plan) Threshold
 Filters are changed every day in the booth and once a week in vent chamber.

E. Performance Criteria
 Data representativeness: The manometer reading is checked every day and recorded.
 Verification of operational status: The manometer reading is checked every day and recorded and turned into Safety Director and filed for 4 years.
 Monitoring frequency and data Collection procedure: Reading is done every day a recorded.

III. Justification

A. Background
 This facility manufactures fiberglass tub and shower stalls

B. Rationale for Selection of Performance Indicator
 The manometer is checked daily to assure we are in the operating range.

C. Rationale for Selection of Indicator Level
 If the reading indicates we are not in the range .00-.10 we change the filters.
 We also use a van o meter to check airflow in booths.
Emission Point ID Number: EP 03

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 03</td>
<td>Glass Booth 1</td>
<td>CE 03: Mat Filter</td>
<td>Resin</td>
<td>109.3 lb/hr.</td>
<td>78-A-063-S1</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)
The emissions from this emission point shall not exceed the levels specified below.

- **Pollutant:** Opacity
 - Emission Limit(s): 40 %
 - Authority for Requirement: 567 IAC 23.3(2)"d"

- **Pollutant:** Particulate Matter
 - Emission Limit(s): 0.01 gr/dscf
 - Authority for Requirement: Iowa DNR Construction Permit 78-A-063-S1
 - 567 IAC 23.4(13)

Operational Limits & Requirements
The owner/operator of this equipment shall comply with the operational limits and requirements listed below.

NESHAP:
This emission unit is located at a reinforced plastic composites production facility, which is subject to the requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR, Part 63, Subpart WWWW, Reinforced Plastic Composites Production. Please refer to the Plant-Wide Conditions of this permit for more information.
- Authority for Requirement: 40 CFR Part 63 Subpart WWWW
 - 567 IAC 23.1(4)"cw"

Monitoring Requirements
The owner/operator of this equipment shall comply with the monitoring requirements listed below.

- **Agency Approved Operation & Maintenance Plan Required?** Yes ☐ No ☑
- **Facility Maintained Operation & Maintenance Plan Required?** Yes ☐ No ☑
- **Compliance Assurance Monitoring (CAM) Plan Required?** Yes ☑ No ☐

Authority for Requirement: 567 IAC 22.108(3)
CAM Plan for EU-03
Praxis Mid America

I. Background

A. Emissions Unit
 Description: Glass Booth 1
 Identification: EU – 03
 Facility: Praxis Mid America
 Ottumwa IA. 52501

B. Applicable Regulation, Emission Limit, and Monitoring Requirements
 Regulation No.: Permit 00-TV-038R1
 Particulate emission limit: .1gr Dry Standard
 Opacity emission limit: .01 gr/dscf
 Current monitoring requirements: Stack Testing, Dailey opacity readings.

C. Control Technology
 Fabric Filter

II. Monitoring Approach

A. Indicator
 Daily manometer checks will be used as an indicator.

B. Measurement Approach
 Manometer reading will be below .10

C. Indicator Range
 Manometer reading of .00 to .10 are normal operating range.

D. QIP (Quality Improvement Plan) Threshold
 Filters are changed every 1500 units.

E. Performance Criteria
 Data representativeness: The manometer reading is checked every day and recorded.
 Verification of operational status: The manometer reading is checked every day and recorded and turned into Safety Director and filed for 4 years.
 Monitoring frequency and data Collection procedure: Reading is done every day a recorded.

III. Justification

A. Background
 This facility manufactures fiberglass tub and shower stalls

B. Rationale for Selection of Performance Indicator
 The manometer is checked daily to assure we are in the operating range.

C. Rationale for Selection of Indicator Level
 If the reading indicates we are not in the range .00-.10 we change the filters.
 We also use a van o meter to check airflow in booths.
Emission Point ID Number: EP 04

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 04</td>
<td>Glass Booth 2</td>
<td>CE 04: Mat Filter</td>
<td>Resin</td>
<td>237.9 lb/hr.</td>
<td>78-A-064-S1</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)
The emissions from this emission point shall not exceed the levels specified below.

Pollutant: Opacity
Emission Limit(s): 40 %
Authority for Requirement: 567 IAC 23.3(2)d"

Pollutant: Particulate Matter
Emission Limit(s): 0.01 gr/dscf
Authority for Requirement: Iowa DNR Construction Permit 78-A-064-S1
567 IAC 23.4(13)

Operational Limits & Requirements
The owner/operator of this equipment shall comply with the operational limits and requirements listed below.

NESHAP:
This emission unit is located at a reinforced plastic composites production facility, which is subject to the requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR, Part 63, Subpart WWWW, Reinforced Plastic Composites Production. Please refer to the Plant-Wide Conditions of this permit for more information.
Authority for Requirement: 40 CFR Part 63 Subpart WWWW
567 IAC 23.1(4)cw"

Monitoring Requirements
The owner/operator of this equipment shall comply with the monitoring requirements listed below.

Agency Approved Operation & Maintenance Plan Required? Yes ☐ No ☒
Facility Maintained Operation & Maintenance Plan Required? Yes ☐ No ☒
Compliance Assurance Monitoring (CAM) Plan Required? Yes ☒ No ☐

Authority for Requirement: 567 IAC 22.108(3)
I. Background

A. Emissions Unit
 Description: Glass Booth 2
 Identification: EU – 04
 Facility: Praxis Mid America
 Ottumwa IA. 52501

B. Applicable Regulation, Emission Limit, and Monitoring Requirements
 Regulation No.: Permit 00-TV-038R1
 Particulate emission limit: .1gr Dry Standard
 Opacity emission limit: .01 gr/dscf
 Current monitoring requirements: Stack Testing, Dailey opacity readings.

C. Control Technology
 Fabric Filter

II. Monitoring Approach

A. Indicator
 Daily manometer checks will be used as an indicator.

B. Measurement Approach
 Manometer reading will be below .10

C. Indicator Range
 Manometer reading of .00 to .10 are normal operating range.

D. QIP (Quality Improvement Plan) Threshold
 Filters are changed every 1500 units.

E. Performance Criteria
 Data representativeness: The manometer reading is checked every day and recorded.
 Verification of operational status: The manometer reading is checked every day and recorded and turned into Safety Director and filed for 4 years.
 Monitoring frequency and data Collection procedure: Reading is done every day a recorded.

III. Justification

A. Background
 This facility manufactures fiberglass tub and shower stalls

B. Rationale for Selection of Performance Indicator
 The manometer is checked daily to assure we are in the operating range.

C. Rationale for Selection of Indicator Level
 If the reading indicates we are not in the range .00-.10 we change the filters.
 We also use a van o meter to check airflow in booths.
Emission Point ID Number: EP 05

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 05</td>
<td>Glass Booth 3</td>
<td>CE 05: Mat Filter</td>
<td>Resin</td>
<td>223.6 lb/hr.</td>
<td>78-A-065-S1</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)
The emissions from this emission point shall not exceed the levels specified below.

Pollutant: Opacity
Emission Limit(s): 40 %
Authority for Requirement: 567 IAC 23.3(2)"d"

Pollutant: Particulate Matter
Emission Limit(s): 0.01 gr/dscf
Authority for Requirement: Iowa DNR Construction Permit 78-A-065-S1
567 IAC 23.4(13)

Operational Limits & Requirements
The owner/operator of this equipment shall comply with the operational limits and requirements listed below.

NESHAP:
This emission unit is located at a reinforced plastic composites production facility, which is subject to the requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR, Part 63, Subpart WWWW, Reinforced Plastic Composites Production. Please refer to the Plant-Wide Conditions of this permit for more information.
Authority for Requirement: 40 CFR Part 63 Subpart WWWW
567 IAC 23.1(4)"cw"

Monitoring Requirements
The owner/operator of this equipment shall comply with the monitoring requirements listed below.

Agency Approved Operation & Maintenance Plan Required? Yes ☐ No ☒

Facility Maintained Operation & Maintenance Plan Required? Yes ☐ No ☒

Compliance Assurance Monitoring (CAM) Plan Required? Yes ☒ No ☐

Authority for Requirement: 567 IAC 22.108(3)
CAM Plan for EU-05
Praxis Mid America

I. Background

A. Emissions Unit
 Description: Glass Booth 3
 Identification: EU – 05
 Facility: Praxis Mid America
 Ottumwa IA. 52501

B. Applicable Regulation, Emission Limit, and Monitoring Requirements
 Regulation No.: Permit 00-TV-038R1
 Particulate emission limit: .1gr Dry Standard
 Opacity emission limit: .01 gr/dscf
 Current monitoring requirements: Stack Testing, Dailey opacity readings.

C. Control Technology
 Fabric Filter

II. Monitoring Approach

A. Indicator
 Daily manometer checks will be used as an indicator.

B. Measurement Approach
 Manometer reading will be below .10

C. Indicator Range
 Manometer reading of .00 to .10 are normal operating range.

D. QIP (Quality Improvement Plan) Threshold
 Filters are changed every 1500 units.

E. Performance Criteria
 Data representativeness: The manometer reading is checked every day and recorded.
 Verification of operational status: The manometer reading is checked every day and recorded and turned into Safety Director and filed for 4 years.
 Monitoring frequency and data Collection procedure: Reading is done every day a recorded.

III. Justification

A. Background
 This facility manufactures fiberglass tub and shower stalls

B. Rationale for Selection of Performance Indicator
 The manometer is checked daily to assure we are in the operating range.

C. Rationale for Selection of Indicator Level
 If the reading indicates we are not in the range .00-.10 we change the filters.
 We also use a van o meter to check airflow in booths.
Emission Point ID Number: EP 06

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 06</td>
<td>Glass Booth 4</td>
<td>CE 06: Mat Filter</td>
<td>Resin</td>
<td>266.42 lb/hr.</td>
<td>78-A-066-S1</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)

The emissions from this emission point shall not exceed the levels specified below.

Pollutant: Opacity
Emission Limit(s): 40 %
Authority for Requirement: 567 IAC 23.3(2)"d"

Pollutant: Particulate Matter
Emission Limit(s): 0.01 gr/dscf
Authority for Requirement: Iowa DNR Construction Permit 78-A-066-S1 567 IAC 23.4(13)

Operational Limits & Requirements

The owner/operator of this equipment shall comply with the operational limits and requirements listed below.

NESHAP:
This emission unit is located at a reinforced plastic composites production facility, which is subject to the requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR, Part 63, Subpart WWWW, Reinforced Plastic Composites Production. Please refer to the Plant-Wide Conditions of this permit for more information.
Authority for Requirement: 40 CFR Part 63 Subpart WWWW 567 IAC 23.1(4)"cw"

Monitoring Requirements

The owner/operator of this equipment shall comply with the monitoring requirements listed below.

Agency Approved Operation & Maintenance Plan Required? Yes ☐ No ☒

Facility Maintained Operation & Maintenance Plan Required? Yes ☐ No ☒

Compliance Assurance Monitoring (CAM) Plan Required? Yes ☒ No ☐

Authority for Requirement: 567 IAC 22.108(3)
CAM Plan for EU-06
Praxis Mid America

I. Background

A. Emissions Unit
 Description: Glass Booth 4
 Identification: EU – 06
 Facility: Praxis Mid America
 Ottumwa IA. 52501

B. Applicable Regulation, Emission Limit, and Monitoring Requirements
 Regulation No.: Permit 00-TV-038R1
 Particulate emission limit: .1gr Dry Standard
 Opacity emission limit: .01 gr/dscf
 Current monitoring requirements: Stack Testing, Dailey opacity readings.

C. Control Technology
 Fabric Filter

II. Monitoring Approach

A. Indicator
 Daily manometer checks will be used as an indicator.

B. Measurement Approach
 Manometer reading will be below .10

C. Indicator Range
 Manometer reading of .00 to .10 are normal operating range.

D. QIP (Quality Improvement Plan) Threshold
 Filters are changed every 1500 units.

E. Performance Criteria
 Data representativeness: The manometer reading is checked every day and recorded.
 Verification of operational status: The manometer reading is checked every day and recorded and turned into Safety Director and filed for 4 years.
 Monitoring frequency and data collection procedure: Reading is done every day a recorded.

III. Justification

A. Background
 This facility manufactures fiberglass tub and shower stalls

B. Rationale for Selection of Performance Indicator
 The manometer is checked daily to assure we are in the operating range.

C. Rationale for Selection of Indicator Level
 If the reading indicates we are not in the range .00-.10 we change the filters. We also use a van o meter to check airflow in booths.
Emission Point ID Number: EP 07

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 07</td>
<td>Grind Shack</td>
<td>CE 07: DAO Filter Pad</td>
<td>Molder Units</td>
<td>104 units/hr.</td>
<td>78-A-070-S1</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)
The emissions from this emission point shall not exceed the levels specified below.

Pollutant: Opacity
Emission Limit(s): 40 %
Authority for Requirement: 567 IAC 23.3(2)"d"

Pollutant: Particulate Matter
Emission Limit(s): 0.1 gr/dscf
Authority for Requirement: Iowa DNR Construction Permit 78-A-070-S1
567 IAC 23.3(2)"a"

Monitoring Requirements
The owner/operator of this equipment shall comply with the monitoring requirements listed below.

Agency Approved Operation & Maintenance Plan Required? Yes ☒ No ☐

Relevant requirements of O & M plan for this equipment:
1. **Weekly**
 - Inspect the spray booth system for conditions that reduce the operating efficiency of the collection system. This will include a visual inspection of the condition of the filter material.
 - Maintain a written record of the observation and any action resulting from the inspection.
2. **Record Keeping and Reporting**
 - Maintenance and inspection records will be kept for five years and available upon request.
3. **Quality Control**
 - The filter equipment will be operated and maintained according to the manufacturer’s recommendations.

Facility Maintained Operation & Maintenance Plan Required? Yes ☐ No ☒

Compliance Assurance Monitoring (CAM) Plan Required? Yes ☐ No ☒

Authority for Requirement: 567 IAC 22.108(3)

Emission Point ID Number: EP 09

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 09</td>
<td>Mix Room</td>
<td>CE 09: Mat Filter</td>
<td>Resin</td>
<td>918.23 lb/hr.</td>
<td>99-A-042</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)

The emissions from this emission point shall not exceed the levels specified below.

Not applicable at this time

Operational Limits & Requirements

The owner/operator of this equipment shall comply with the operational limits and requirements listed below.

NESHAP:

This emission unit is located at a reinforced plastic composites production facility, which is subject to the requirements of the National Emission Standards for Hazardous Air Pollutants, 40 CFR, Part 63, Subpart WWWW, Reinforced Plastic Composites Production. Please refer to the Plant-Wide Conditions of this permit for more information.

Authority for Requirement: 40 CFR Part 63 Subpart WWWW

567 IAC 23.1(4)"cw"

Source Emission Characteristics

The source shall be connected to the stack designated below.

Stack Height (feet): 17
Stack Diameter (inches): 36
Stack Exhaust Flow Rate (acfm): 22,000
Stack Temperature (°F): 70

Vertical, Unobstructed Discharge Required: Yes ☑ No ☐

Authority for Requirement: Iowa DNR Construction Permit 99-A-042
Emission Point Characteristics

The emission point shall conform to the specifications listed below.

Stack Height, (ft, from the ground): 17
Stack Opening, (inches, dia.): 36
Exhaust Flow Rate (scfm): 22,000
Exhaust Temperature (°F): 70
Discharge Style: Vertical Unobstructed
Authority for Requirement: Iowa DNR Construction Permit 99-A-042

The temperature and flow rate are intended to be representative and characteristic of the design of the permitted emission point. The Department recognizes that the temperature and flow rate may vary with changes in the process and ambient conditions. If it is determined that any of the emission point design characteristics are different than the values stated above, the owner/operator must notify the Department and obtain a permit amendment, if required.

Monitoring Requirements

The owner/operator of this equipment shall comply with the monitoring requirements listed below.

Agency Approved Operation & Maintenance Plan Required? Yes ☒ No ☐
Relevant requirements of O & M plan for this equipment:
1. **Weekly**
 - Inspect the spray booth system for conditions that reduce the operating efficiency of the collection system. This will include a visual inspection of the condition of the filter material.
 - Maintain a written record of the observation and any action resulting from the inspection.
2. **Record Keeping and Reporting**
 - Maintenance and inspection records will be kept for five years and available upon request.
3. **Quality Control**
 - The filter equipment will be operated and maintained according to the manufacturer’s recommendations.

Facility Maintained Operation & Maintenance Plan Required? Yes ☐ No ☒
Compliance Assurance Monitoring (CAM) Plan Required? Yes ☒ No ☐

Authority for Requirement: 567 IAC 22.108(3)
Emission Point ID Number: EP 11

Associated Equipment

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Emission Unit Description</th>
<th>Control Equipment</th>
<th>Raw Material</th>
<th>Rated Capacity</th>
<th>Construction Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU 11</td>
<td>Mold Repair</td>
<td>NA</td>
<td>Naptha, Styrene</td>
<td>944.37 lb/hr.</td>
<td>78-A-069-S1</td>
</tr>
</tbody>
</table>

Applicable Requirements

Emission Limits (lb./hr, gr./dscf, lb./MMBtu, % opacity, etc.)

The emissions from this emission point shall not exceed the levels specified below.

Pollutant: Opacity
Emission Limit(s): 40%
Authority for Requirement: 567 IAC 23.3(2)"d"

Pollutant: Particulate Matter
Emission Limit(s): 0.01 gr/dscf
Authority for Requirement: Iowa DNR Construction Permit 78-A-069-S1
567 IAC 23.4(13)

Monitoring Requirements

The owner/operator of this equipment shall comply with the monitoring requirements listed below.

Agency Approved Operation & Maintenance Plan Required? Yes ☐ No ☒
Facility Maintained Operation & Maintenance Plan Required? Yes ☐ No ☒
Compliance Assurance Monitoring (CAM) Plan Required? Yes ☐ No ☒

Authority for Requirement: 567 IAC 22.108(3)
IV. General Conditions

This permit is issued under the authority of the Iowa Code subsection 455B.133(8) and in accordance with 567 Iowa Administrative Code chapter 22.

G1. Duty to Comply

1. The permittee must comply with all conditions of the Title V permit. Any permit noncompliance constitutes a violation of the Act and is grounds for enforcement action; for a permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application. 567 IAC 22.108(9)"a"

2. Any compliance schedule shall be supplemental to, and shall not sanction noncompliance with, the applicable requirements on which it is based. 567 IAC 22.105 (2)"h"(3)

3. Where an applicable requirement of the Act is more stringent than an applicable requirement of regulations promulgated under Title IV of the Act, both provisions shall be enforceable by the administrator and are incorporated into this permit. 567 IAC 22.108 (1)"b"

4. Unless specified as either "state enforceable only" or "local program enforceable only", all terms and conditions in the permit, including provisions to limit a source's potential to emit, are enforceable by the administrator and citizens under the Act. 567 IAC 22.108 (14)

5. It shall not be a defense for a permittee, in an enforcement action, that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of the permit. 567 IAC 22.108 (9)"b"

G2. Permit Expiration

1. Except as provided in 567 IAC 22.104, the expiration of this permit terminates the permittee's right to operate unless a timely and complete application has been submitted for renewal. Any testing required for renewal shall be completed before the application is submitted. 567 IAC 22.116(2)

2. To be considered timely, the owner, operator, or designated representative (where applicable) of each source required to obtain a Title V permit shall present or mail the Air Quality Bureau, Iowa Department of Natural Resources, Air Quality Bureau, 7900 Hickman Rd, Suite #1, Urbandale, Iowa 50322, two copies (three if your facility is located in Linn or Polk county) of a complete permit application, at least 6 months but not more than 18 months prior to the date of permit expiration. An additional copy must also be sent to EPA Region VII, Attention: Chief of Air Permits, 901 N. 5th St., Kansas City, KS 66101. The application must include all emission points, emission units, air pollution control equipment, and monitoring devices at the facility. All emissions generating activities, including fugitive emissions, must be included. The definition of a complete application is as indicated in 567 IAC 22.105(2). 567 IAC 22.105

G3. Certification Requirement for Title V Related Documents

Any application, report, compliance certification or other document submitted pursuant to this permit shall contain certification by a responsible official of truth, accuracy, and completeness. All certifications shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. 567 IAC 22.107 (4)

G4. Annual Compliance Certification

By March 31 of each year, the permittee shall submit compliance certifications for the previous calendar year. The certifications shall include descriptions of means to monitor the compliance status of all emissions sources including emissions limitations, standards, and work practices in accordance with applicable requirements. The certification for a source shall include the identification of each term or condition of the permit that is the basis of the certification; the compliance status; whether compliance was continuous or intermittent; the method(s) used for determining the compliance status of the source, currently and over the reporting period
consistent with all applicable department rules. For sources determined not to be in compliance at the time of compliance certification, a compliance schedule shall be submitted which provides for periodic progress reports, dates for achieving activities, milestones, and an explanation of why any dates were missed and preventive or corrective measures. The compliance certification shall be submitted to the administrator, director, and the appropriate DNR Field office. 567 IAC 22.108 (15)"e"

G5. Semi-Annual Monitoring Report
By March 31 and September 30 of each year, the permittee shall submit a report of any monitoring required under this permit for the 6 month periods of July 1 to December 31 and January 1 to June 30, respectively. All instances of deviations from permit requirements must be clearly identified in these reports, and the report must be signed by a responsible official, consistent with 567 IAC 22.107(4). The semi-annual monitoring report shall be submitted to the director and the appropriate DNR Field office. 567 IAC 22.108 (5)

G6. Annual Fee
1. The permittee is required under subrule 567 IAC 22.106 to pay an annual fee based on the total tons of actual emissions of each regulated air pollutant. Beginning July 1, 1996, Title V operating permit fees will be paid on July 1 of each year. The fee shall be based on emissions for the previous calendar year.
2. The fee amount shall be calculated based on the first 4,000 tons of each regulated air pollutant emitted each year. The fee to be charged per ton of pollutant will be available from the department by June 1 of each year. The Responsible Official will be advised of any change in the annual fee per ton of pollutant.
3. The following forms shall be submitted annually by March 31 documenting actual emissions for the previous calendar year.
 a. Form 1.0 "Facility Identification";
 b. Form 4.0 "Emissions unit-actual operations and emissions" for each emission unit;
 c. Form 5.0 "Title V annual emissions summary/fee"; and
 d. Part 3 "Application certification."
4. The fee shall be submitted annually by July 1. The fee shall be submitted with the following forms:
 a. Form 1.0 "Facility Identification";
 b. Form 5.0 "Title V annual emissions summary/fee";
 c. Part 3 "Application certification."
5. If there are any changes to the emission calculation form, the department shall make revised forms available to the public by January 1. If revised forms are not available by January 1, forms from the previous year may be used and the year of emissions documented changed. The department shall calculate the total statewide Title V emissions for the prior calendar year and make this information available to the public no later than April 30 of each year.
6. Phase I acid rain affected units under section 404 of the Act shall not be required to pay a fee for emissions which occur during the years 1993 through 1999 inclusive.
7. The fee for a portable emissions unit or stationary source which operates both in Iowa and out of state shall be calculated only for emissions from the source while operating in Iowa.
8. Failure to pay the appropriate Title V fee represents cause for revocation of the Title V permit as indicated in 567 IAC 22.115(1)"d".
G7. Inspection of Premises, Records, Equipment, Methods and Discharges
Upon presentation of proper credentials and any other documents as may be required by law, the permittee shall allow the director or the director's authorized representative to:
1. Enter upon the permittee's premises where a Title V source is located or emissions-related activity is conducted, or where records must be kept under the conditions of the permit;
2. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the permit;
3. Inspect, at reasonable times, any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under the permit; and
4. Sample or monitor, at reasonable times, substances or parameters for the purpose of ensuring compliance with the permit or other applicable requirements. 567 IAC 22.108 (15)"b"

G8. Duty to Provide Information
The permittee shall furnish to the director, within a reasonable time, any information that the director may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the permittee also shall furnish to the director copies of records required to be kept by the permit, or for information claimed to be confidential, the permittee shall furnish such records directly to the administrator of EPA along with a claim of confidentiality. 567 IAC 22.108 (9)"e"

G9. General Maintenance and Repair Duties
The owner or operator of any air emission source or control equipment shall:
1. Maintain and operate the equipment or control equipment at all times in a manner consistent with good practice for minimizing emissions.
2. Remedy any cause of excess emissions in an expeditious manner.
3. Minimize the amount and duration of any excess emission to the maximum extent possible during periods of such emissions. These measures may include but not be limited to the use of clean fuels, production cutbacks, or the use of alternate process units or, in the case of utilities, purchase of electrical power until repairs are completed.
4. Schedule, at a minimum, routine maintenance of equipment or control equipment during periods of process shutdowns to the maximum extent possible. 567 IAC 24.2(1)

G10. Recordkeeping Requirements for Compliance Monitoring
1. In addition to any source specific recordkeeping requirements contained in this permit, the permittee shall maintain the following compliance monitoring records, where applicable:
 a. The date, place and time of sampling or measurements
 b. The date the analyses were performed.
 c. The company or entity that performed the analyses.
 d. The analytical techniques or methods used.
 e. The results of such analyses; and
 f. The operating conditions as existing at the time of sampling or measurement.
 g. The records of quality assurance for continuous compliance monitoring systems (including but not limited to quality control activities, audits and calibration drifts.)
2. The permittee shall retain records of all required compliance monitoring data and support information for a period of at least 5 years from the date of compliance monitoring sample, measurement report or application. Support information includes all calibration and maintenance records and all original strip chart recordings for continuous compliance monitoring, and copies of all reports required by the permit.
3. For any source which in its application identified reasonably anticipated alternative operating scenarios, the permittee shall:
 a. Comply with all terms and conditions of this permit specific to each alternative scenario.
b. Maintain a log at the permitted facility of the scenario under which it is operating.
c. Consider the permit shield, if provided in this permit, to extend to all terms and conditions under each operating scenario. 567 IAC 22.108(4), 567 IAC 22.108(12)

G11. Evidence used in establishing that a violation has or is occurring.
Notwithstanding any other provisions of these rules, any credible evidence may be used for the purpose of establishing whether a person has violated or is in violation of any provisions herein.
1. Information from the use of the following methods is presumptively credible evidence of whether a violation has occurred at a source:
 a. A monitoring method approved for the source and incorporated in an operating permit pursuant to 567 Chapter 22;
 b. Compliance test methods specified in 567 Chapter 25; or
 c. Testing or monitoring methods approved for the source in a construction permit issued pursuant to 567 Chapter 22.
2. The following testing, monitoring or information gathering methods are presumptively credible testing, monitoring, or information gathering methods:
 a. Any monitoring or testing methods provided in these rules; or
 b. Other testing, monitoring, or information gathering methods that produce information comparable to that produced by any method in subrule 21.5(1) or this subrule. 567 IAC 21.5(1)-567 IAC 21.5(2)

If the permittee is required to develop and register a risk management plan pursuant to section 112(r) of the Act, the permittee shall notify the department of this requirement. The plan shall be filed with all appropriate authorities by the deadline specified by EPA. A certification that this risk management plan is being properly implemented shall be included in the annual compliance certification of this permit. 567 IAC 22.108(6)

G13. Hazardous Release
The permittee must report any situation involving the actual, imminent, or probable release of a hazardous substance into the atmosphere which, because of the quantity, strength and toxicity of the substance, creates an immediate or potential danger to the public health, safety or to the environment. A verbal report shall be made to the department at (515) 281-8694 and to the local police department or the office of the sheriff of the affected county as soon as possible but not later than six hours after the discovery or onset of the condition. This verbal report must be followed up with a written report as indicated in 567 IAC 131.2(2). 567 IAC Chapter 131-State Only

G14. Excess Emissions and Excess Emissions Reporting Requirements
1. Excess Emissions. Excess emission during a period of startup, shutdown, or cleaning of control equipment is not a violation of the emission standard if the startup, shutdown or cleaning is accomplished expeditiously and in a manner consistent with good practice for minimizing emissions. Cleaning of control equipment which does not require the shutdown of the process equipment shall be limited to one six-minute period per one-hour period. An incident of excess emission (other than an incident during startup, shutdown or cleaning of control equipment) is a violation. If the owner or operator of a source maintains that the incident of excess emission was due to a malfunction, the owner or operator must show that the conditions which caused the incident of excess emission were not preventable by reasonable maintenance and control measures. Determination of any subsequent enforcement action will be made following review of this report. If excess emissions are occurring, either the control equipment causing the excess emission shall be repaired in an expeditious manner or the process generating the emissions shall be shutdown within a reasonable period of time. An expeditious manner is the time necessary to
29

A reasonable period of time is eight hours plus the period of time required to shut down the process without damaging the process equipment or control equipment. In the case of an electric utility, a reasonable period of time is eight hours plus the period of time until comparable generating capacity is available to meet consumer demand with the affected unit out of service, unless, the director shall, upon investigation, reasonably determine that continued operation constitutes an unjustifiable environmental hazard and issue an order that such operation is not in the public interest and require a process shutdown to commence immediately.

2. Excess Emissions Reporting

a. Oral Reporting of Excess Emissions. An incident of excess emission (other than an incident of excess emission during a period of startup, shutdown, or cleaning) shall be reported to the appropriate field office of the department within eight hours of, or at the start of the first working day following the onset of the incident. The reporting exemption for an incident of excess emission during startup, shutdown or cleaning does not relieve the owner or operator of a source with continuous monitoring equipment of the obligation of submitting reports required in 567-subrule 25.1(6). An oral report of excess emission is not required for a source with operational continuous monitoring equipment (as specified in 567-subrule 25.1(1)) if the incident of excess emission continues for less than 30 minutes and does not exceed the applicable emission standard by more than 10 percent or the applicable visible emission standard by more than 10 percent opacity. The oral report may be made in person or by telephone and shall include as a minimum the following:

i. The identity of the equipment or source operation from which the excess emission originated and the associated stack or emission point.
ii. The estimated quantity of the excess emission.
iii. The time and expected duration of the excess emission.
iv. The cause of the excess emission.
v. The steps being taken to remedy the excess emission.
vi. The steps being taken to limit the excess emission in the interim period.

b. Written Reporting of Excess Emissions. A written report of an incident of excess emission shall be submitted as a follow-up to all required oral reports to the department within seven days of the onset of the upset condition, and shall include as a minimum the following:

i. The identity of the equipment or source operation point from which the excess emission originated and the associated stack or emission point.
ii. The estimated quantity of the excess emission.
iii. The time and duration of the excess emission.
iv. The cause of the excess emission.
v. The steps that were taken to remedy and to prevent the recurrence of the incident of excess emission.
vi. The steps that were taken to limit the excess emission.
vii. If the owner claims that the excess emission was due to malfunction, documentation to support this claim. 567 IAC 24.1(1)-567 IAC 24.1(4)

3. Emergency Defense for Excess Emissions. For the purposes of this permit, an “emergency” means any situation arising from sudden and reasonably unforeseeable events beyond the control of the source, including acts of God, which requires immediate corrective action to restore normal operation, and that causes the source to exceed a technology-based emission limitation under the permit due to unavoidable increases in emissions attributable to the emergency. An emergency shall not include non-compliance, to the extent caused by improperly designed
equipment, lack of preventive maintenance, careless or improper operation or operator error. An emergency constitutes an affirmative defense to an action brought for non-compliance with technology based limitations if it can be demonstrated through properly signed contemporaneous operating logs or other relevant evidence that:

a. An emergency occurred and that the permittee can identify the cause(s) of the emergency;
b. The facility at the time was being properly operated;
c. During the period of the emergency, the permittee took all reasonable steps to minimize levels of emissions that exceeded the emissions standards or other requirements of the permit; and
d. The permittee submitted notice of the emergency to the director by certified mail within two working days of the time when the emissions limitations were exceeded due to the emergency. This notice must contain a description of the emergency, any steps taken to mitigate emissions, and corrective actions taken. 567 IAC 22.108(16)

G15. Permit Deviation Reporting Requirements
A deviation is any failure to meet a term, condition or applicable requirement in the permit. Reporting requirements for deviations that result in a hazardous release or excess emissions have been indicated above (see G13 and G14). Unless more frequent deviation reporting is specified in the permit, any other deviation shall be documented in the semi-annual monitoring report and the annual compliance certification (see G4 and G5). 567 IAC 22.108(5)"b"

G16. Notification Requirements for Sources That Become Subject to NSPS and NESHAP Regulations
During the term of this permit, the permittee must notify the department of any source that becomes subject to a standard or other requirement under 567-subrule 23.1(2) (standards of performance of new stationary sources) or section 111 of the Act; or 567-subrule 23.1(3) (emissions standards for hazardous air pollutants), 567-subrule 23.1(4) (emission standards for hazardous air pollutants for source categories) or section 112 of the Act. This notification shall be submitted in writing to the department pursuant to the notification requirements in 40 CFR Section 60.7, 40 CFR Section 61.07, and/or 40 CFR Section 63.9. 567 IAC 23.1(2), 567 IAC 23.1(3), 567 IAC 23.1(4)

G17. Requirements for Making Changes to Emission Sources That Do Not Require Title V Permit Modification
1. Off Permit Changes to a Source. Pursuant to section 502(b)(10) of the CAAA, the permittee may make changes to this installation/facility without revising this permit if:
 a. The changes are not major modifications under any provision of any program required by section 110 of the Act, modifications under section 111 of the act, modifications under section 112 of the act, or major modifications as defined in 567 IAC Chapter 22.
 b. The changes do not exceed the emissions allowable under the permit (whether expressed therein as a rate of emissions or in terms of total emissions);
 c. The changes are not modifications under any provisions of Title I of the Act and the changes do not exceed the emissions allowable under the permit (whether expressed therein as a rate of emissions or as total emissions);
 d. The changes are not subject to any requirement under Title IV of the Act.
 e. The changes comply with all applicable requirements.
 f. For such a change, the permitted source provides to the department and the administrator by certified mail, at least 30 days in advance of the proposed change, a written notification, including the following, which must be attached to the permit by the source, the department and the administrator:

 30 00-TV-038R1: 5/04/2007
i. A brief description of the change within the permitted facility,
ii. The date on which the change will occur,
iii. Any change in emission as a result of that change,
iv. The pollutants emitted subject to the emissions trade
v. If the emissions trading provisions of the state implementation plan are invoked, then Title V permit requirements with which the source shall comply; a description of how the emissions increases and decreases will comply with the terms and conditions of the Title V permit.
vi. A description of the trading of emissions increases and decreases for the purpose of complying with a federally enforceable emissions cap as specified in and in compliance with the Title V permit; and
vii. Any permit term or condition no longer applicable as a result of the change.

567 IAC 22.110(1)

2. Such changes do not include changes that would violate applicable requirements or contravene federally enforceable permit terms and conditions that are monitoring (including test methods), record keeping, reporting, or compliance certification requirements. 567 IAC 22.110(2)

3. Notwithstanding any other part of this rule, the director may, upon review of a notice, require a stationary source to apply for a Title V permit if the change does not meet the requirements of subrule 22.110(1). 567 IAC 22.110(3)

4. The permit shield provided in subrule 22.108(18) shall not apply to any change made pursuant to this rule. Compliance with the permit requirements that the source will meet using the emissions trade shall be determined according to requirements of the state implementation plan authorizing the emissions trade. 567 IAC 22.110(4)

5. No permit revision shall be required, under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes, for changes that are provided for in this permit. 567 IAC 22.108(11)

G18. Duty to Modify a Title V Permit
1. Administrative Amendment.
 a. An administrative permit amendment is a permit revision that is required to do any of the following:
 i. Correct typographical errors
 ii. Identify a change in the name, address, or telephone number of any person identified in the permit, or provides a similar minor administrative change at the source;
 iii. Require more frequent monitoring or reporting by the permittee; or
 iv. Allow for a change in ownership or operational control of a source where the director determines that no other change in the permit is necessary, provided that a written agreement containing a specific date for transfer of permit responsibility, coverage and liability between the current and new permittee has been submitted to the director.
 b. The permittee may implement the changes addressed in the request for an administrative amendment immediately upon submittal of the request. The request shall be submitted to the director.
 c. Administrative amendments to portions of permits containing provisions pursuant to Title IV of the Act shall be governed by regulations promulgated by the administrator under Title IV of the Act.
2. Minor Permit Modification.
 a. Minor permit modification procedures may be used only for those permit modifications that do any of the following:
 i. Do not violate any applicable requirements
 ii. Do not involve significant changes to existing monitoring, reporting or recordkeeping requirements in the Title V permit.
 iii. Do not require or change a case by case determination of an emission limitation or other standard, or increment analysis.
 iv. Do not seek to establish or change a permit term or condition for which there is no corresponding underlying applicable requirement and that the source has assumed in order to avoid an applicable requirement to which the source would otherwise be subject. Such terms and conditions include any federally enforceable emissions caps which the source would assume to avoid classification as a modification under any provision under Title I of the Act; and an alternative emissions limit approved pursuant to regulations promulgated under section 112(ii)(5) of the Act.
 v. Are not modifications under any provision of Title I of the Act; and
 vi. Are not required to be processed as significant modification.
 b. An application for minor permit revision shall be on the minor Title V modification application form and shall include at least the following:
 i. A description of the change, the emissions resulting from the change, and any new applicable requirements that will apply if the change occurs.
 ii. The permittee's suggested draft permit
 iii. Certification by a responsible official, pursuant to 567 IAC 22.107(4), that the proposed modification meets the criteria for use of a minor permit modification procedures and a request that such procedures be used; and
 iv. Completed forms to enable the department to notify the administrator and the affected states as required by 567 IAC 22.107(7).
 c. The permittee may make the change proposed in its minor permit modification application immediately after it files the application. After the permittee makes this change and until the director takes any of the actions specified in 567 IAC 22.112(4) "a" to "c", the permittee must comply with both the applicable requirements governing the change and the proposed permit terms and conditions. During this time, the permittee need not comply with the existing permit terms and conditions it seeks to modify. However, if the permittee fails to comply with its proposed permit terms and conditions during this time period, existing permit term terms and conditions it seeks to modify may subject the facility to enforcement action.

3. Significant Permit Modification. Significant Title V modification procedures shall be used for applications requesting Title V permit modifications that do not qualify as minor Title V modifications or as administrative amendments. These include but are not limited to all significant changes in monitoring permit terms, every relaxation of reporting or recordkeeping permit terms, and any change in the method of measuring compliance with existing requirements. Significant Title V modifications shall meet all requirements of 567 IAC Chapter 22, including those for applications, public participation, review by affected states, and review by the administrator, and those requirements that apply to Title V issuance and renewal. 567 IAC 22.111-567 IAC 22.113 The permittee shall submit an application for a significant permit modification not later than three months after commencing operation of the changed source unless the existing Title V permit would prohibit such construction or change in operation, in
which event the operation of the changed source may not commence until the department revises
the permit. 567 IAC 22.105(1)“a”(4)

G19. Duty to Obtain Construction Permits
Unless exempted under 567 IAC 22.1(2), the permittee must not construct, install, reconstruct, or
alter any equipment, control equipment or anaerobic lagoon without first obtaining a
construction permit, conditional permit, or permit pursuant to 567 IAC 22.8, or permits required
pursuant to 567 IAC 22.4 and 567 IAC 22.5. Such permits shall be obtained prior to the initiation
of construction, installation or alteration of any portion of the stationary source. 567 IAC 22.1(1)

G20. Asbestos
The permittee shall comply with 567 IAC 23.1(3)”a”, and 567 IAC 23.2(3)”g” when activities
involve asbestos mills, surfacing of roadways, manufacturing operations, fabricating, insulating,
waste disposal, spraying applications, demolition and renovation operations, training fires and
controlled burning of a demolished building. 567 IAC 23.1(3)”a”, and 567 IAC 23.2

G21. Open Burning
The permittee is prohibited from conducting open burning, except as may be allowed by 567
IAC 23.2. 567 IAC 23.2 except 23.2(3)”h”; 567 IAC 23.2(3)”h” - State Only

G22. Acid Rain (Title IV) Emissions Allowances
The permittee shall not exceed any allowances that it holds under Title IV of the Act or the
regulations promulgated there under. Annual emissions of sulfur dioxide in excess of the number
of allowances to emit sulfur dioxide held by the owners and operators of the unit or the
designated representative of the owners and operators is prohibited. Exceedences of applicable
emission rates are prohibited. “Held” in this context refers to both those allowances assigned to
the owners and operators by USEPA, and those allowances supplementally acquired by the
owners and operators. The use of any allowance prior to the year for which it was allocated is
prohibited. Contravention of any other provision of the permit is prohibited. 567 IAC 22.108(7)

G23. Stratospheric Ozone and Climate Protection (Title VI) Requirements
1. The permittee shall comply with the standards for labeling of products using ozone-depleting
substances pursuant to 40 CFR Part 82, Subpart E:
 a. All containers in which a class I or class II substance is stored or transported, all
 products containing a class I substance, and all products directly manufactured with a
 class I substance must bear the required warning statement if it is being introduced into
 interstate commerce pursuant to § 82.106.
 b. The placement of the required warning statement must comply with the requirements
 pursuant to § 82.108.
 c. The form of the label bearing the required warning statement must comply with the
 requirements pursuant to § 82.110.
 d. No person may modify, remove, or interfere with the required warning statement
 except as described in § 82.112.

2. The permittee shall comply with the standards for recycling and emissions reduction pursuant
to 40 CFR Part 82, Subpart F, except as provided for MVACs in Subpart B:
 a. Persons opening appliances for maintenance, service, repair, or disposal must comply
 with the required practices pursuant to § 82.156.
 b. Equipment used during the maintenance, service, repair, or disposal of appliances must
 comply with the standards for recycling and recovery equipment pursuant to § 82.158.
 c. Persons performing maintenance, service, repair, or disposal of appliances must be
 certified by an approved technician certification program pursuant to § 82.161.
 d. Persons disposing of small appliances, MVACs, and MVAC-like appliances must
 comply with reporting and recordkeeping requirements pursuant to § 82.166. ("MVAC-
 like appliance" as defined at § 82.152)
e. Persons owning commercial or industrial process refrigeration equipment must comply with the leak repair requirements pursuant to § 82.156.

f. Owners/operators of appliances normally containing 50 or more pounds of refrigerant must keep records of refrigerant purchased and added to such appliances pursuant to § 82.166.

3. If the permittee manufactures, transforms, imports, or exports a class I or class II substance, the permittee is subject to all the requirements as specified in 40 CFR part 82, Subpart A, Production and Consumption Controls.

4. If the permittee performs a service on motor (fleet) vehicles when this service involves ozone-depleting substance refrigerant (or regulated substitute substance) in the motor vehicle air conditioner (MVAC), the permittee is subject to all the applicable requirements as specified in 40 CFR part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed. The term "MVAC" as used in Subpart B does not include the air-tight sealed refrigeration system used as refrigerated cargo, or system used on passenger buses using HCFC-22 refrigerant.

5. The permittee shall be allowed to switch from any ozone-depleting substance to any alternative that is listed in the Significant New Alternatives Program (SNAP) promulgated pursuant to 40 CFR part 82, Subpart G, Significant New Alternatives Policy Program. 40 CFR part 82

G24. Permit Reopenings

1. This permit may be modified, revoked, reopened, and reissued, or terminated for cause. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition. 567 IAC 22.108(9)"c"

2. Additional applicable requirements under the Act become applicable to a major part 70 source with a remaining permit term of 3 or more years. Revisions shall be made as expeditiously as practicable, but not later than 18 months after the promulgation of such standards and regulations.
 a. Reopening and revision on this ground is not required if the permit has a remaining term of less than three years;
 b. Reopening and revision on this ground is not required if the effective date of the requirement is later than the date on which the permit is due to expire, unless the original permit or any of its terms and conditions have been extended pursuant to 40 CFR 70.4(b)(10)(i) or (ii) as amended to June 25, 1993.
 c. Reopening and revision on this ground is not required if the additional applicable requirements are implemented in a general permit that is applicable to the source and the source receives approval for coverage under that general permit. 567 IAC 22.108(17)"a", 567 IAC 22.108(17)"b"

3. A permit shall be reopened and revised under any of the following circumstances:
 a. The department receives notice that the administrator has granted a petition for disapproval of a permit pursuant to 40 CFR 70.8(d) as amended to June 25, 1993, provided that the reopening may be stayed pending judicial review of that determination;
 b. The department or the administrator determines that the Title V permit contains a material mistake or that inaccurate statements were made in establishing the emissions standards or other terms or conditions of the Title V permit;
 c. Additional applicable requirements under the Act become applicable to a Title V source, provided that the reopening on this ground is not required if the permit has a remaining term of less than three years, the effective date of the requirement is later than
the date on which the permit is due to expire, or the additional applicable requirements are implemented in a general permit that is applicable to the source and the source receives approval for coverage under that general permit. Such a reopening shall be complete not later than 18 months after promulgation of the applicable requirement.

d. Additional requirements, including excess emissions requirements, become applicable to a Title IV affected source under the acid rain program. Upon approval by the administrator, excess emissions offset plans shall be deemed to be incorporated into the permit.

e. The department or the administrator determines that the permit must be revised or revoked to ensure compliance by the source with the applicable requirements. 567 IAC 22.114(1)

4. Proceedings to reopen and reissue a Title V permit shall follow the procedures applicable to initial permit issuance and shall effect only those parts of the permit for which cause to reopen exists. 567 IAC 22.114(2)

G25. Permit Shield

1. The director may expressly include in a Title V permit a provision stating that compliance with the conditions of the permit shall be deemed compliance with any applicable requirements as of the date of permit issuance, provided that:

 a. Such applicable requirements are included and are specifically identified in the permit; or

 b. The director, in acting on the permit application or revision, determines in writing that other requirements specifically identified are not applicable to the source, and the permit includes the determination or a concise summary thereof.

2. A Title V permit that does not expressly state that a permit shield exists shall be presumed not to provide such a shield.

3. A permit shield shall not alter or affect the following:

 a. The provisions of Section 303 of the Act (emergency orders), including the authority of the administrator under that section;

 b. The liability of an owner or operator of a source for any violation of applicable requirements prior to or at the time of permit issuance;

 c. The applicable requirements of the acid rain program, consistent with Section 408(a) of the Act;

 d. The ability of the department or the administrator to obtain information from the facility pursuant to Section 114 of the Act. 567 IAC 22.108 (18)

G26. Severability

The provisions of this permit are severable and if any provision or application of any provision is found to be invalid by this department or a court of law, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected by such finding. 567 IAC 22.108 (8)

G27. Property Rights

The permit does not convey any property rights of any sort, or any exclusive privilege. 567 IAC 22.108 (9)"d"

G28. Transferability

This permit is not transferable from one source to another. If title to the facility or any part of it is transferred, an administrative amendment to the permit must be sought to determine transferability of the permit. 567 IAC 22.111 (1)"d"
G29. Disclaimer
No review has been undertaken on the engineering aspects of the equipment or control equipment other than the potential of that equipment for reducing air contaminant emissions. 567 IAC 22.3(3)"c"

G30. Notification and Reporting Requirements for Stack Tests or Monitor Certification
The permittee shall notify the department's stack test contact in writing not less than 30 days before a required test or performance evaluation of a continuous emission monitor is performed to determine compliance with an applicable requirement. For the department to consider test results a valid demonstration of compliance with applicable rules or a permit condition, such notice shall be given. Such notice shall include the time, the place, the name of the person who will conduct the test and other information as required by the department. Unless specifically waived by the department's stack test contact, a pretest meeting shall be held not later than 15 days prior to conducting the compliance demonstration. The department may accept a testing protocol in lieu of a pretest meeting. A representative of the department shall be permitted to witness the tests. Results of the tests shall be submitted in writing to the department's stack test contact in the form of a comprehensive report within six weeks of the completion of the testing. Compliance tests conducted pursuant to this permit shall be conducted with the source operating in a normal manner at its maximum continuous output as rated by the equipment manufacturer, or the rate specified by the owner as the maximum production rate at which the source shall be operated. In cases where compliance is to be demonstrated at less than the maximum continuous output as rated by the equipment manufacturer, and it is the owner's intent to limit the capacity to that rating, the owner may submit evidence to the department that the source has been physically altered so that capacity cannot be exceeded, or the department may require additional testing, continuous monitoring, reports of operating levels, or any other information deemed necessary by the department to determine whether such source is in compliance.
Stack test notifications, reports and correspondence shall be sent to:

Stack Test Review Coordinator
Iowa DNR, Air Quality Bureau
7900 Hickman Road, Suite #1
Urbandale, IA 50322
(515) 242-6001

Within Polk and Linn Counties, stack test notifications, reports and correspondence shall also be directed to the supervisor of the respective county air pollution program. 567 IAC 25.1(7)"a", 567 IAC 25.1(9)

G31. Prevention of Air Pollution Emergency Episodes
The permittee shall comply with the provisions of 567 IAC Chapter 26 in the prevention of excessive build-up of air contaminants during air pollution episodes, thereby preventing the occurrence of an emergency due to the effects of these contaminants on the health of persons. 567 IAC 26.1(1)

G32. Contacts List
The current address and phone number for reports and notifications to the EPA administrator is:

Chief of Air Permits
EPA Region 7
Air Permits and Compliance Branch
901 N. 5th Street
Kansas City, KS 66101
(913) 551-7020
The current address and phone number for reports and notifications to the department or the Director is:

Chief, Air Quality Bureau
Iowa Department of Natural Resources
7900 Hickman Road, Suite #1
Urbandale, IA 50322
(515) 242-5100

Reports or notifications to the DNR Field Offices or local programs shall be directed to the supervisor at the appropriate field office or local program. Current addresses and phone numbers are:

<table>
<thead>
<tr>
<th>Field Office 1</th>
<th>Field Office 2</th>
</tr>
</thead>
</table>
| 909 West Main – Suite 4
Manchester, IA 52057
(563) 927-2640 | 2300-15th St., SW
Mason City, IA 50401
(641) 424-4073 |

<table>
<thead>
<tr>
<th>Field Office 3</th>
<th>Field Office 4</th>
</tr>
</thead>
</table>
| 1900 N. Grand Ave.
Spencer, IA 51301
(712) 262-4177 | 1401 Sunnyside Lane
Atlantic, IA 50022
(712) 243-1934 |

<table>
<thead>
<tr>
<th>Field Office 5</th>
<th>Field Office 6</th>
</tr>
</thead>
</table>
| 401 SW 7th Street, Suite I
Des Moines, IA 50309
(515) 725-0268 | 1023 West Madison Street
Washington, IA 52353-1623
(319) 653-2135 |

Polk County Public Works Dept.
Air Quality Division
5885 NE 14th St.
Des Moines, IA 50313
(515) 286-3351

Linn County Public Health Dept.
Air Pollution Control Division
501 13th St., NW
Cedar Rapids, IA 52405
(319) 892-6000
V. Appendix A: 40 CFR 63 Subpart WWWW:
National Emission Standards for Hazardous Air Pollutants for Reinforced Plastic Composites Production

What This Subpart Covers
63.5780 What is the purpose of this subpart?
63.5785 Am I subject to this subpart?
63.5787 What if I also manufacture fiberglass boats or boat parts?
63.5790 What parts of my plant does this subpart cover?
63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source?

Calculating Organic HAP Emissions Factors for Open Molding and Centrifugal Casting
63.5796 What are the organic HAP emissions factor equations in Table 1 to this subpart and how are they used in this subpart?
63.5797 How do I determine the organic HAP content of my resins and gel coats?
63.5798 What if I want to use, or I manufacture, an application technology (new or existing) whose organic HAP emissions characteristics are not represented by the equations in Table 1 to this subpart?
63.5799 How do I calculate my facility’s organic HAP emissions on a tpy basis for purposes of determining which paragraphs of §63.5805 apply?

Compliance Dates and Standards
63.5800 When do I have to comply with this subpart?
63.5805 What standards must I meet to comply with this subpart?

Options for Meeting Standards
63.5810 What are my options for meeting the standards for open molding and centrifugal casting operations at new and existing sources?
63.5820 What are my options for meeting the standards for continuous lamination/casting operations?
63.5830 What are my options for meeting the standards for pultrusion operations subject to the 60 weight percent organic HAP emissions reductions requirement?

General Compliance Requirements
63.5835 What are my general requirements for complying with this subpart?

Testing and Initial Compliance Requirements
63.5840 By what date must I conduct a performance test or other initial compliance demonstration?
63.5845 When must I conduct subsequent performance tests?
63.5850 How do I conduct performance tests, performance evaluations, and design evaluations?
63.5855 What are my monitor installation and operation requirements?
63.5860 How do I demonstrate initial compliance with the standards?
63.5865 What data must I generate to demonstrate compliance with the standards for continuous lamination/casting operations?
63.5870 How do I calculate annual uncontrolled and controlled organic HAP emissions from my wet-out area(s) and from my oven(s) for continuous lamination/casting operations?
63.5875 How do I determine the capture efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous lamination/casting operations?
63.5880 How do I determine how much neat resin plus is applied to the line and how much neat gel coat plus is applied to the line for continuous lamination/casting operations?
63.5885 How do I calculate percent reduction to demonstrate compliance for continuous lamination/casting operations?
63.5890 How do I calculate an organic HAP emissions factor to demonstrate compliance for continuous lamination/casting operations?

Continuous Compliance Requirements

63.5895 How do I monitor and collect data to demonstrate continuous compliance?
63.5900 How do I demonstrate continuous compliance with the standards?

Notifications, Reports, and Records

63.5905 What notifications must I submit and when?
63.5910 What reports must I submit and when?
63.5915 What records must I keep?
63.5920 In what form and how long must I keep my records?

Other Requirements and Information

63.5925 What parts of the General Provisions apply to me?
63.5930 Who implements and enforces this subpart?
63.5935 What definitions apply to this subpart?

Tables to Subpart WWWW of Part 63

Table 1 to Subpart WWWW of Part 63 - Equations to Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams

Table 2 to Subpart WWWW of Part 63 - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

Table 3 to Subpart WWWW of Part 63 - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting Less Than 100 TPY of HAP, and New and Existing Centrifugal Casting and Continuous Lamination/Casting Sources That Emit Less Than 100 TPY of HAP

Table 4 to Subpart WWWW of Part 63 - Work Practice Standards

Table 5 to Subpart WWWW of Part 63 - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standard is Based on a 95 Percent Reduction Requirement

Table 6 to Subpart WWWW of Part 63 - Basic Requirements for Performance Tests, Performance Evaluations, and Design Evaluations for New and Existing Sources Using Add-On Control Devices

Table 7 to Subpart WWWW of Part 63 - Options Allowing Use of the Same Resin Across Different Operations That Use the Same Resin Type

Table 8 to Subpart WWWW of Part 63 - Initial Compliance With Organic HAP Emissions Limits

Table 9 to Subpart WWWW of Part 63 - Initial Compliance With Work Practice Standards.

Table 10 to Subpart WWWW of Part 63 - Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying with a Percent Reduction Limit on a Per Line Basis

Table 11 to Subpart WWWW of Part 63 - Data Requirements for New and Existing Continuous Lamination and Continuous Casting Lines Complying with a Percent Reduction Limit or a Lbs/Ton Limit on an Averaging Basis

Table 12 to Subpart WWWW of Part 63 - Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying with a Lbs/Ton Organic HAP Emissions Limit on a Per Line Basis

Table 13 to Subpart WWWW of Part 63 – Applicability and Timing of Notifications

Table 14 to Subpart WWWW of Part 63 - Requirements for Reports

Table 15 to Subpart WWWW of Part 63 - Applicability of General Provisions (Subpart A) to Subpart WWWW of Part 63
§ 63.5780 What is the purpose of this subpart?

This subpart establishes national emissions standards for hazardous air pollutants (NESHAP) for reinforced plastic composites production. This subpart also establishes requirements to demonstrate initial and continuous compliance with the hazardous air pollutants (HAP) emissions standards.

§ 63.5785 Am I subject to this subpart?

(a) You are subject to this subpart if you own or operate a reinforced plastic composites production facility that is located at a major source of HAP emissions. Reinforced plastic composites production is limited to operations in which reinforced and/or nonreinforced plastic composites or plastic molding compounds are manufactured using thermoset resins and/or gel coats that contain styrene to produce plastic composites. The resins and gel coats may also contain materials designed to enhance the chemical, physical, and/or thermal properties of the product. Reinforced plastic composites production also includes cleaning, mixing, HAP-containing materials storage, and repair operations associated with the production of plastic composites.

(b) You are not subject to this subpart if your facility only repairs reinforced plastic composites. Repair includes the non-routine manufacture of individual components or parts intended to repair a larger item as defined in §63.5935.

(c) You are not subject to this subpart if your facility is a research and development facility as defined in section 112(c)(7) of the Clean Air Act (CAA).

(d) You are not subject to this subpart if your reinforced plastic composites operations use less than 1.2 tons per year (tpy) of thermoset resins and gel coats that contain styrene combined.

§ 63.5787 What if I also manufacture fiberglass boats or boat parts?

(a) If your source meets the applicability criteria in §63.5785, and is not subject to the Boat Manufacturing NESHAP (40 CFR part 63, subpart VVVV), you are subject to this subpart regardless of the final use of the parts you manufacture.

(b) If your source is subject to 40 CFR part 63, subpart VVVV, and all the reinforced plastic composites you manufacture are used in manufacturing your boats, you are not subject to this subpart.

(c) If you are subject to 40 CFR part 63, subpart VVVV, and meet the applicability criteria in §63.5785, and produce reinforced plastic composites that are not used in fiberglass boat manufacture at your facility, all operations associated with the manufacture of the reinforced plastic composites parts that are not used in fiberglass boat manufacture at your facility are subject to this subpart, except as noted in paragraph (d) of this section.

(d) Facilities potentially subject to both this subpart and 40 CFR part 63, subpart VVVV may elect to have the operations in paragraph (c) of this section covered by 40 CFR part 63, subpart VVVV, in lieu of this subpart, if they can demonstrate that this will not result in any organic HAP emissions increase compared to complying with this subpart.
§ 63.5790 What parts of my plant does this subpart cover?

(a) This subpart applies to each new or existing affected source at reinforced plastic composites production facilities.

(b) The affected source consists of all parts of your facility engaged in the following operations: Open molding, closed molding, centrifugal casting, continuous lamination, continuous casting, polymer casting, pultrusion, sheet molding compound (SMC) manufacturing, bulk molding compound (BMC) manufacturing, mixing, cleaning of equipment used in reinforced plastic composites manufacture, HAP-containing materials storage, and repair operations on parts you also manufacture.

(c) The following operations are specifically excluded from any requirements in this subpart: application of mold sealing and release agents; mold stripping and cleaning; repair of parts that you did not manufacture, including non-routine manufacturing of parts; personal activities that are not part of the manufacturing operations (such as hobby shops on military bases); prepreg materials as defined in §63.5935; non-gel coat surface coatings; application of putties, polyputties, and adhesives; repair or production materials that do not contain resin or gel coat; research and development operations as defined in section 112(c)(7) of the CAA; polymer casting; and closed molding operations (except for compression/injection molding). Note that the exclusion of certain operations from any requirements applies only to operations specifically listed in this paragraph. The requirements for any co-located operations still apply.

(d) Production resins that must meet military specifications are allowed to meet the organic HAP limit contained in that specification. In order for this exemption to be used, you must supply to the permitting authority the specifications certified as accurate by the military procurement officer, and those specifications must state a requirement for a specific resin, or a specific resin HAP content. Production resins for which this exemption is used must be applied with nonatomizing resin application equipment unless you can demonstrate this is infeasible. You must keep a record of the resins for which you are using this exemption.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50124, Aug. 25, 2005]

§ 63.5795 How do I know if my reinforced plastic composites production facility is a new affected source or an existing affected source?

(a) A reinforced plastic composites production facility is a new affected source if it meets all the criteria in paragraphs (a)(1) and (2) of this section.

(1) You commence construction of the source after August 2, 2001.

(2) You commence construction, and no other reinforced plastic composites production source exists at that site.

(b) For the purposes of this subpart, an existing affected source is any affected source that is not a new affected source.

[70 FR 50124, Aug. 25, 2005]

Calculating Organic HAP Emissions Factors for Open Molding and Centrifugal Casting
§ 63.5796 What are the organic HAP emissions factor equations in Table 1 to this subpart, and how are they used in this subpart?

Emissions factors are used in this subpart to determine compliance with certain organic HAP emissions limits in Tables 3 and 5 to this subpart. You may use the equations in Table 1 to this subpart to calculate your emissions factors. Equations are available for each open molding operation and centrifugal casting operation and have units of pounds of organic HAP emitted per ton (lb/ton) of resin or gel coat applied. These equations are intended to provide a method for you to demonstrate compliance without the need to conduct for a HAP emissions test. In lieu of these equations, you can elect to use site-specific organic HAP emissions factors to demonstrate compliance provided your site-specific organic HAP emissions factors are incorporated in the facility's air emissions permit and are based on actual facility HAP emissions test data. You may also use the organic HAP emissions factors calculated using the equations in Table 1 to this subpart, combined with resin and gel coat use data, to calculate your organic HAP emissions.

§ 63.5797 How do I determine the organic HAP content of my resins and gel coats?

In order to determine the organic HAP content of resins and gel coats, you may rely on information provided by the material manufacturer, such as manufacturer's formulation data and material safety data sheets (MSDS), using the procedures specified in paragraphs (a) through (c) of this section, as applicable.

(a) Include in the organic HAP total each organic HAP that is present at 0.1 percent by mass or more for Occupational Safety and Health Administration-defined carcinogens, as specified in 29 CFR 1910.1200(d)(4) and at 1.0 percent by mass or more for other organic HAP compounds.

(b) If the organic HAP content is provided by the material supplier or manufacturer as a range, you must use the upper limit of the range for determining compliance. If a separate measurement of the total organic HAP content, such as an analysis of the material by EPA Method 311 of appendix A to 40 CFR part 63, exceeds the upper limit of the range of the total organic HAP content provided by the material supplier or manufacturer, then you must use the measured organic HAP content to determine compliance.

(c) If the organic HAP content is provided as a single value, you may use that value to determine compliance. If a separate measurement of the total organic HAP content is made and is less than 2 percentage points higher than the value for total organic HAP content provided by the material supplier or manufacturer, then you still may use the provided value to demonstrate compliance. If the measured total organic HAP content exceeds the provided value by 2 percentage points or more, then you must use the measured organic HAP content to demonstrate compliance.

§ 63.5798 What if I want to use, or I manufacture, an application technology (new or existing) whose organic HAP emissions characteristics are not represented by the equations in Table 1 to this subpart?

If you wish to use a resin or gel coat application technology (new or existing), whose emission characteristics are not represented by the equations in Table 1 to this subpart, you may use the procedures in paragraphs (a) or (b) of this section to establish an organic HAP emissions factor. This organic HAP emissions factor may then be used to determine compliance with the emission limits in this subpart, and to calculate facility organic HAP emissions.
(a) Perform an organic HAP emissions test to determine a site-specific organic HAP emissions factor using the test procedures in §63.5850.

(b) Submit a petition to the Administrator for administrative review of this subpart. This petition must contain a description of the resin or gel coat application technology and supporting organic HAP emissions test data obtained using EPA test methods or their equivalent. The emission test data should be obtained using a range of resin or gel coat HAP contents to demonstrate the effectiveness of the technology under the different conditions, and to demonstrate that the technology will be effective at different sites. We will review the submitted data, and, if appropriate, update the equations in Table 1 to this subpart.

§ 63.5799 How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining which paragraphs of §63.5805 apply?

To calculate your facility's organic HAP emissions in tpy for purposes of determining which paragraphs in §63.5805 apply to you, you must use the procedures in either paragraph (a) of this section for new facilities prior to startup, or paragraph (b) of this section for existing facilities and new facilities after startup. You are not required to calculate or report emissions under this section if you are an existing facility that does not have centrifugal casting or continuous lamination/casting operations, or a new facility that does not have any of the following operations: Open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC and BMC manufacturing, and mixing. Emissions calculation and emission reporting procedures in other sections of this subpart still apply. Calculate organic HAP emissions prior to any add-on control device, and do not include organic HAP emissions from any resin or gel coat used in operations subject to the Boat Manufacturing NESHAP, 40 CFR part 63, subpart VVVV, or from the manufacture of large parts as defined in §63.5805(d)(2). For centrifugal casting operations at existing facilities, do not include any organic HAP emissions where resin or gel coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the Table 1 footnotes to this subpart present more information on calculating centrifugal casting organic HAP emissions. The timing and reporting of these calculations is discussed in paragraph (c) of this section.

(a) For new facilities prior to startup, calculate a weighted average organic HAP emissions factor for the operations specified in §63.5805(c) and (d) on a lbs/ton of resin and gel coat basis. Base the weighted average on your projected operation for the 12 months subsequent to facility startup. Multiply the weighted average organic HAP emissions factor by projected resin use over the same period. You may calculate your organic HAP emissions factor based on the factors in Table 1 to this subpart, or you may use any HAP emissions factor approved by us, such as factors from the “Compilation of Air Pollutant Emissions Factors, Volume I: Stationary Point and Area Sources (AP-42),” or organic HAP emissions test data from similar facilities.

(b) For existing facilities and new facilities after startup, you may use the procedures in either paragraph (b)(1) or (2) of this section. If the emission factors for an existing facility have changed over the period of time prior to their initial compliance date due to incorporation of pollution-prevention control techniques, existing facilities may base the average emission factor on their operations as they exist on the compliance date. If an existing facility has accepted an enforceable permit limit that would result in less than 100 tpy of HAP measured prior to any add-on controls, and can demonstrate that they will operate at that level subsequent to the compliance date, they can be deemed to be below the 100 tpy threshold.
(1) *Use a calculated emission factor.* Calculate a weighted average organic HAP emissions factor on a lbs/ton of resin and gel coat basis. Base the weighted average on the prior 12 months of operation. Multiply the weighted average organic HAP emissions factor by resin and gel coat use over the same period. You may calculate this organic HAP emissions factor based on the equations in Table 1 to this subpart, or you may use any organic HAP emissions factor approved by us, such as factors from AP–42, or site-specific organic HAP emissions factors if they are supported by HAP emissions test data.

(2) *Conduct performance testing.* Conduct performance testing using the test procedures in §63.5850 to determine a site-specific organic HAP emissions factor in units of lbs/ton of resin and gel coat used. Conduct the test under conditions expected to result in the highest possible organic HAP emissions. Multiply this factor by annual resin and gel coat use to determine annual organic HAP emissions. This calculation must be repeated and reported annually.

(c) Existing facilities must initially perform this calculation based on their 12 months of operation prior to April 21, 2003, and include this information with their initial notification report. Existing facilities must repeat the calculation based on their resin and gel coat use in the 12 months prior to their initial compliance date, and submit this information with their initial compliance report. After their initial compliance date, existing and new facilities must recalculate organic HAP emissions over the 12-month period ending June 30 or December 31, whichever date is the first date following their compliance date specified in §63.5800. Subsequent calculations should cover the periods in the semiannual compliance reports.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50124, Aug. 25, 2005]

Compliance Dates and Standards

§ 63.5800 **When do I have to comply with this subpart?**

You must comply with the standards in this subpart by the dates specified in Table 2 to this subpart. Facilities meeting an organic HAP emissions standard based on a 12-month rolling average must begin collecting data on the compliance date in order to demonstrate compliance.

§ 63.5805 **What standards must I meet to comply with this subpart?**

You must meet the requirements of paragraphs (a) through (h) of this section that apply to you. You may elect to comply using any options to meet the standards described in §§63.5810 through 63.5830. Use the procedures in §63.5799 to determine if you meet or exceed the 100 tpy threshold.

(a) If you have an existing facility that has any centrifugal casting or continuous casting/lamination operations, you must meet the requirements of paragraph (a)(1) or (2) of this section:

(1) If the combination of all centrifugal casting and continuous lamination/casting operations emit 100 tpy or more of HAP, you must reduce the total organic HAP emissions from centrifugal casting and continuous lamination/casting operations by at least 95 percent by weight. As an alternative to meeting the 95 percent by weight requirement, centrifugal casting operations may meet the applicable organic HAP emissions limits in Table 5 to this subpart and continuous lamination/casting operations may meet an organic HAP emissions limit of 1.47 lbs/ton of neat
resin plus and neat gel coat plus applied. For centrifugal casting, the percent reduction requirement does not apply to organic HAP emissions that occur during resin application onto an open centrifugal casting mold using open molding application techniques.

(2) If the combination of all centrifugal casting and continuous lamination/casting operations emit less than 100 tpy of HAP, then centrifugal casting and continuous lamination/casting operations must meet the appropriate requirements in Table 3 to this subpart.

(b) All operations at existing facilities not listed in paragraph (a) of this section must meet the organic HAP emissions limits in Table 3 to this subpart and the work practice standards in Table 4 to this subpart that apply, regardless of the quantity of HAP emitted.

(c) If you have a new facility that emits less than 100 tpy of HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC manufacturing, mixing, and BMC manufacturing, you must meet the organic HAP emissions limits in Table 3 to this subpart and the work practice standards in Table 4 to this subpart that apply to you.

(d)(1) Except as provided in paragraph (d)(2) of this section, if you have a new facility that emits 100 tpy or more of HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC manufacturing, mixing, and BMC manufacturing, you must reduce the total organic HAP emissions from these operations by at least 95 percent by weight and meet any applicable work practice standards in Table 4 to this subpart that apply to you. As an alternative to meeting 95 percent by weight, you may meet the organic HAP emissions limits in Table 5 to this subpart. If you have a continuous lamination/casting operation, that operation may alternatively meet an organic HAP emissions limit of 1.47 lbs/ton of neat resin plus and neat gel coat plus applied.

(2)(i) If your new facility manufactures large reinforced plastic composites parts using open molding or pultrusion operations, the specific open molding and pultrusion operations used to produce large parts are not required to reduce HAP emissions by 95 weight percent, but must meet the emission limits in Table 3 to this subpart.

(ii) A large open molding part is defined as a part that, when the final finished part is enclosed in the smallest rectangular six-sided box into which the part can fit, the total interior volume of the box exceeds 250 cubic feet, or any interior sides of the box exceed 50 square feet.

(iii) A large pultruded part is a part that exceeds an outside perimeter of 24 inches or has more than 350 reinforcements.

(e) If you have a new or existing facility subject to paragraph (a)(2) or (c) of this section at its initial compliance date that subsequently meets or exceeds the 100 tpy threshold in any calendar year, you must notify your permitting authority in your compliance report. You may at the same time request a one-time exemption from the requirements of paragraph (a)(1) or (d) of this section in your compliance report if you can demonstrate all of the following:

(1) The exceedance of the threshold was due to circumstances that will not be repeated.

(2) The average annual organic HAP emissions from the potentially affected operations for the last 3 years were below 100 tpy.
(3) Projected organic HAP emissions for the next calendar year are below 100 tpy, based on projected resin and gel coat use and the HAP emission factors calculated according to the procedures in §63.5799.

(f) If you apply for an exemption in paragraph (e) of this section and subsequently exceed the HAP emission thresholds specified in paragraph (a)(2) or (c) of this section over the next 12-month period, you must notify the permitting authority in your semiannual report, the exemption is removed, and your facility must comply with paragraph (a)(1) or (d) of this section within 3 years from the time your organic HAP emissions first exceeded the threshold.

(g) If you have repair operations subject to this subpart as defined in §63.5785, these repair operations must meet the requirements in Tables 3 and 4 to this subpart and are not required to meet the 95 percent organic HAP emissions reduction requirements in paragraph (a)(1) or (d) of this section.

(h) If you use an add-on control device to comply with this subpart, you must meet all requirements contained in 40 CFR part 63, subpart SS.

[70 FR 50124, Aug. 25, 2005]

Options for Meeting Standards

§ 63.5810 What are my options for meeting the standards for open molding and centrifugal casting operations at new and existing sources?

You must use one of the following methods in paragraphs (a) through (d) of this section to meet the standards for open molding or centrifugal casting operations in Table 3 or 5 to this subpart.

You may use any control method that reduces organic HAP emissions, including reducing resin and gel coat organic HAP content, changing to nonatomized mechanical application, using covered curing techniques, and routing part or all of your emissions to an add-on control. You may use different compliance options for the different operations listed in Table 3 or 5 to this subpart. The necessary calculations must be completed within 30 days after the end of each month. You may switch between the compliance options in paragraphs (a) through (d) of this section. When you change to an option based on a 12-month rolling average, you must base the average on the previous 12 months of data calculated using the compliance option you are changing to, unless you were previously using an option that did not require you to maintain records of resin and gel coat use. In this case, you must immediately begin collecting resin and gel coat use data and demonstrate compliance 12 months after changing options.

(a) Demonstrate that an individual resin or gel coat, as applied, meets the applicable emission limit in Table 3 or 5 to this subpart. (1) Calculate your actual organic HAP emissions factor for each different process stream within each operation type. A process stream is defined as each individual combination of resin or gel coat, application technique, and control technique. Process streams within operations types are considered different from each other if any of the following four characteristics vary: the neat resin plus or neat gel coat plus organic HAP content, the gel coat type, the application technique, or the control technique. You must calculate organic HAP emissions factors for each different process stream by using the appropriate equations in Table 1 to this subpart for open molding and for centrifugal casting, or site-specific organic HAP emissions factors discussed in §63.5796. The emission factor calculation should include any and all emission reduction techniques used including any add-on controls. If you are using vapor
suppressants to reduce HAP emissions, you must determine the vapor suppressant effectiveness (VSE) by conducting testing according to the procedures specified in appendix A to subpart WWWWW of 40 CFR part 63. If you are using an add-on control device to reduce HAP emissions, you must determine the add-on control factor by conducting capture and control efficiency testing using the procedures specified in §63.5850. The organic HAP emissions factor calculated from the equations in Table 1 to this subpart, or a site-specific emissions factor, is multiplied by the add-on control factor to calculate the organic HAP emissions factor after control. Use Equation 1 of this section to calculate the add-on control factor used in the organic HAP emissions factor equations.

\[\text{Add-on Control Factor} = 1 - \frac{\% \text{ Control Efficiency}}{100} \quad \text{(Eq. 1)} \]

Where:

Percent Control Efficiency=a value calculated from organic HAP emissions test measurements made according to the requirements of §63.5850 to this subpart.

(2) If the calculated emission factor is less than or equal to the appropriate emission limit, you have demonstrated that this process stream complies with the emission limit in Table 3 to this subpart. It is not necessary that all your process streams, considered individually, demonstrate compliance to use this option for some process streams. However, for any individual resin or gel coat you use, if any of the process streams that include that resin or gel coat are to be used in any averaging calculations described in paragraphs (b) through (d) of this section, then all process streams using that individual resin or gel coat must be included in the averaging calculations.

(b) Demonstrate that, on average, you meet the individual organic HAP emissions limits for each combination of operation type and resin application method or gel coat type. Demonstrate that on average you meet the individual organic HAP emissions limits for each unique combination of operation type and resin application method or gel coat type shown in Table 3 to this subpart that applies to you.

(1)(i) Group the process streams described in paragraph (a) to this section by operation type and resin application method or gel coat type listed in Table 3 to this subpart and then calculate a weighted average emission factor based on the amounts of each individual resin or gel coat used for the last 12 months. To do this, sum the product of each individual organic HAP emissions factor calculated in paragraph (a)(1) of this section and the amount of neat resin plus and neat gel coat plus usage that corresponds to the individual factors and divide the numerator by the total amount of neat resin plus and neat gel coat plus used in that operation type as shown in Equation 2 of this section.

\[\text{Average organic HAP Emissions Factor} = \frac{\sum_{i=1}^{n}(\text{Actual Process Stream EF}_i \times \text{Material}_i)}{\sum_{i=1}^{n}\text{Material}_i} \quad \text{(Eq. 2)} \]

Where:

Actual Process Stream EF\(_i\)=actual organic HAP emissions factor for process stream i, lbs/ton;

Material\(_i\)=neat resin plus or neat gel coat plus used during the last 12 calendar months for process stream i, tons;

n=number of process streams where you calculated an organic HAP emissions factor.
(ii) You may, but are not required to, include process streams where you have demonstrated compliance as described in paragraph (a) of this section, subject to the limitations described in paragraph (a)(2) of this section, and you are not required to and should not include process streams for which you will demonstrate compliance using the procedures in paragraph (d) of this section.

(2) Compare each organic HAP emissions factor calculated in paragraph (b)(1) of this section with its corresponding organic HAP emissions limit in Table 3 or 5 to this subpart. If all emissions factors are equal to or less than their corresponding emission limits, then you are in compliance.

(c) **Demonstrate compliance with a weighted average emission limit.** Demonstrate each month that you meet each weighted average of the organic HAP emissions limits in Table 3 or 5 to this subpart that apply to you. When using this option, you must demonstrate compliance with the weighted average organic HAP emissions limit for all your open molding operations, and then separately demonstrate compliance with the weighted average organic HAP emissions limit for all your centrifugal casting operations. Open molding operations and centrifugal casting operations may not be averaged with each other.

(1) Each month calculate the weighted average organic HAP emissions limit for all open molding operations and the weighted average organic HAP emissions limit for all centrifugal casting operations for your facility for the last 12-month period to determine the organic HAP emissions limit you must meet. To do this, multiply the individual organic HAP emissions limits in Table 3 or 5 to this subpart for each open molding (centrifugal casting) operation type by the amount of neat resin plus or neat gel coat plus used in the last 12 months for each open molding (centrifugal casting) operation type, sum these results, and then divide this sum by the total amount of neat resin plus and neat gel coat plus used in open molding (centrifugal casting) operations over the last 12 months as shown in Equation 3 of this section.

\[
\text{Weighted Average Emission Limit} = \frac{\sum_{i=1}^{n} (EL_i \times \text{Material}_i)}{\sum_{i=1}^{n} \text{Material}_i} \quad \text{(Eq. 3)}
\]

Where:

\(EL_i\) = organic HAP emissions limit for operation type i, lbs/ton from Tables 3 or 5 to this subpart;

\(\text{Material}_i\) = neat resin plus or neat gel coat plus used during the last 12-month period for operation type i, tons;

\(n\) = number of operations.

(2) Each month calculate your weighted average organic HAP emissions factor for open molding and centrifugal casting. To do this, multiply your actual open molding (centrifugal casting) operation organic HAP emissions factors calculated in paragraph (b)(1) of this section and the amount of neat resin plus and neat gel coat plus used in each open molding (centrifugal casting) operation type, sum the results, and divide this sum by the total amount of neat resin plus and neat gel coat plus used in open molding (centrifugal casting) operations as shown in Equation 4 of this section.
Actual Individual EF_i = Actual organic HAP emissions factor for operation type <i>i</i>, lbs/ton;

Material_i = neat resin plus or neat gel coat plus used during the last 12 calendar months for operation type <i>i</i>, tons;

n = number of operations.

(3) Compare the values calculated in paragraphs (c)(1) and (2) of this section. If each 12-month rolling average organic HAP emissions factor is less than or equal to the corresponding 12-month rolling average organic HAP emissions limit, then you are in compliance.

(d) Meet the organic HAP emissions limit for one application method and use the same resin(s) for all application methods of that resin type. This option is limited to resins of the same type. The resin types for which this option may be used are noncorrosion-resistant, corrosion-resistant and/or high strength, and tooling.

(1) For any combination of manual resin application, mechanical resin application, filament application, or centrifugal casting, you may elect to meet the organic HAP emissions limit for any one of these application methods and use the same resin in all of the resin application methods listed in this paragraph (d)(1). Table 7 to this subpart presents the possible combinations based on a facility selecting the application process that results in the highest allowable organic HAP content resin. If the resin organic HAP content is below the applicable value shown in Table 7 to this subpart, the resin is in compliance.

(2) You may also use a weighted average organic HAP content for each application method described in paragraph (d)(1) of this section. Calculate the weighted average organic HAP content monthly. Use Equation 2 in paragraph (b)(1) of this section except substitute organic HAP content for organic HAP emissions factor. You are in compliance if the weighted average organic HAP content based on the last 12 months of resin use is less than or equal to the applicable organic HAP contents in Table 7 to this subpart.

(3) You may simultaneously use the averaging provisions in paragraph (b) or (c) of this section to demonstrate compliance for any operations and/or resins you do not include in your compliance demonstrations in paragraphs (d)(1) and (2) of this section. However, any resins for which you claim compliance under the option in paragraphs (d)(1) and (2) of this section may not be included in any of the averaging calculations described in paragraph (b) or (c) of this section.

(4) You do not have to keep records of resin use for any of the individual resins where you demonstrate compliance under the option in paragraph (d)(1) of this section unless you elect to include that resin in the averaging calculations described in paragraph (d)(2) of this section.

[70 FR 50125, Aug. 25, 2005]
§ 63.5820 What are my options for meeting the standards for continuous lamination/casting operations?

You must use one or more of the options in paragraphs (a) through (d) of this section to meet the standards in §63.5805. Use the calculation procedures in §§63.5865 through 63.5890.

(a) Compliant line option. Demonstrate that each continuous lamination line and each continuous casting line complies with the applicable standard.

(b) Averaging option. Demonstrate that all continuous lamination and continuous casting lines combined, comply with the applicable standard.

(c) Add-on control device option. If your operation must meet the 58.5 weight percent organic HAP emissions reduction limit in Table 3 to this subpart, you have the option of demonstrating that you achieve 95 percent reduction of all wet-out area organic HAP emissions.

(d) Combination option. Use any combination of options in paragraphs (a) and (b) of this section or, for affected sources at existing facilities, any combination of options in paragraphs (a), (b), and (c) of this section (in which one or more lines meet the standards on their own, two or more lines averaged together meet the standards, and one or more lines have their wet-out areas controlled to a level of 95 percent).

§ 63.5830 What are my options for meeting the standards for pultrusion operations subject to the 60 weight percent organic HAP emissions reductions requirement?

You must use one or more of the options in paragraphs (a) through (e) of this section to meet the 60 weight percent organic HAP emissions limit in Table 3 to this subpart, as required in §63.5805.

(a) Achieve an overall reduction in organic HAP emissions of 60 weight percent by capturing the organic HAP emissions and venting them to a control device or any combination of control devices. Conduct capture and destruction efficiency testing as specified in 63.5850 to this subpart to determine the percent organic HAP emissions reduction.

(b) Design, install, and operate wet area enclosures and resin drip collection systems on pultrusion machines that meet the criteria in paragraphs (b)(1) through (10) of this section.

(1) The enclosure must cover and enclose the open resin bath and the forming area in which reinforcements are pre-wet or wet-out and moving toward the die(s). The surfaces of the enclosure must be closed except for openings to allow material to enter and exit the enclosure.

(2) For open bath pultrusion machines with a radio frequency pre-heat unit, the enclosure must extend from the beginning of the resin bath to within 12.5 inches or less of the entrance of the radio frequency pre-heat unit. If the stock that is within 12.5 inches or less of the entrance to the radio frequency pre-heat unit has any drip, it must be enclosed. The stock exiting the radio frequency pre-heat unit is not required to be in an enclosure if the stock has no drip between the exit of the radio frequency pre-heat unit to within 0.5 inches of the entrance of the die.

(3) For open bath pultrusion machines without a radio frequency pre-heat unit, the enclosure must extend from the beginning of the resin bath to within 0.5 inches or less of the die entrance.
(4) For pultrusion lines with pre-wet area(s) prior to direct die injection, no more than 12.5 inches of open wet stock is permitted between the entrance of the first pre-wet area and the entrance to the die. If the pre-wet stock has any drip, it must be enclosed.

(5) The total open area of the enclosure must not exceed two times the cross sectional area of the puller window(s) and must comply with the requirements in paragraphs (b)(5)(i) through (iii) of this section.

(i) All areas that are open need to be included in the total open area calculation with the exception of access panels, doors, and/or hatches that are part of the enclosure.

(ii) The area that is displaced by entering reinforcement or exiting product is considered open.

(iii) Areas that are covered by brush covers are considered closed.

(6) Open areas for level control devices, monitoring devices, agitation shafts, and fill hoses must have no more than 1.0 inch clearance.

(7) The access panels, doors, and/or hatches that are part of the enclosure must close tightly. Damaged access panels, doors, and/or hatches that do not close tightly must be replaced.

(8) The enclosure may not be removed from the pultrusion line, and access panels, doors, and/or hatches that are part of the enclosure must remain closed whenever resin is in the bath, except for the time period discussed in paragraph (b)(9) of this section.

(9) The maximum length of time the enclosure may be removed from the pultrusion line or the access panels, doors, and/or hatches and may be open, is 30 minutes per 8 hour shift, 45 minutes per 12 hour shift, or 90 minutes per day if the machine is operated for 24 hours in a day. The time restrictions do not apply if the open doors or panels do not cause the limit of two times the puller window area to be exceeded. Facilities may average the times that access panels, doors, and/or hatches are open across all operating lines. In that case the average must not exceed the times shown in this paragraph (b)(9). All lines included in the average must have operated the entire time period being averaged.

(10) No fans, blowers, and/or air lines may be allowed within the enclosure. The enclosure must not be ventilated.

(c) Use direct die injection pultrusion machines with resin drip collection systems that meet all the criteria specified in paragraphs (c)(1) through (3) of this section.

(1) All the resin that is applied to the reinforcement is delivered directly to the die.

(2) No exposed resin is present, except at the face of the die.

(3) Resin drip is captured in a closed system and recycled back to the process.

(d) Use a preform injection system that meets the definition in §63.5935

(e) Use any combination of options in paragraphs (a) through (d) of this section in which different pultrusion lines comply with different options described in paragraphs (a) through (d) of this section, and

(1) Each individual pultrusion machine meets the 60 percent reduction requirement, or
(2) The weighted average reduction based on resin throughput of all machines combined is 60 percent. For purposes of the average percent reduction calculation, wet area enclosures reduce organic HAP emissions by 60 percent, and direct die injection and preform injection reduce organic HAP emissions by 90 percent.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50127, Aug. 25, 2005]

General Compliance Requirements

§ 63.5835 What are my general requirements for complying with this subpart?

(a) You must be in compliance at all times with the work practice standards in Table 4 to this subpart, as well as the organic HAP emissions limits in Tables 3, or 5, or the organic HAP content limits in Table 7 to this subpart, as applicable, that you are meeting without the use of add-on controls.

(b) You must be in compliance with all organic HAP emissions limits in this subpart that you meet using add-on controls, except during periods of startup, shutdown, and malfunction.

(c) You must always operate and maintain your affected source, including air pollution control and monitoring equipment, according to the provisions in §63.6(e)(1)(i).

(d) You must develop a written startup, shutdown, and malfunction plan according to the provisions in §63.6(e)(3) for any organic HAP emissions limits you meet using an add-on control.

[68 FR 19402, Apr. 21, 2003, as amended at 71 FR 20466, Apr. 20, 2006]

Testing and Initial Compliance Requirements

§ 63.5840 By what date must I conduct a performance test or other initial compliance demonstration?

You must conduct performance tests, performance evaluations, design evaluations, capture efficiency testing, and other initial compliance demonstrations by the compliance date specified in Table 2 to this subpart, with three exceptions. Open molding and centrifugal casting operations that elect to meet an organic HAP emissions limit on a 12-month rolling average must initiate collection of the required data on the compliance date, and demonstrate compliance 1 year after the compliance date. New sources that use add-on controls to initially meet compliance must demonstrate compliance within 180 days after their compliance date.

§ 63.5845 When must I conduct subsequent performance tests?

You must conduct a performance test every 5 years following the initial performance test for any standard you meet with an add-on control device.

§ 63.5850 How do I conduct performance tests, performance evaluations, and design evaluations?

(a) If you are using any add-on controls to meet an organic HAP emissions limit in this subpart, you must conduct each performance test, performance evaluation, and design evaluation in 40
CFR part 63, subpart SS, that applies to you. The basic requirements for performance tests, performance evaluations, and design evaluations are presented in Table 6 to this subpart.

(b) Each performance test must be conducted according to the requirements in §63.7(e)(1) and under the specific conditions that 40 CFR part 63, subpart SS, specifies.

(c) Each performance evaluation must be conducted according to the requirements in §63.8(e) as applicable and under the specific conditions that 40 CFR part 63, subpart SS, specifies.

(d) You may not conduct performance tests or performance evaluations during periods of startup, shutdown, or malfunction, as specified in §63.7(e)(1).

(e) You must conduct the control device performance test using the emission measurement methods specified in paragraphs (e)(1) through (5) of this section.

1) Use either Method 1 or 1A of appendix A to 40 CFR part 60, as appropriate, to select the sampling sites.

2) Use Method 2, 2A, 2C, 2D, 2F or 2G of appendix A to 40 CFR part 60, as appropriate, to measure gas volumetric flow rate.

3) Use Method 18 of appendix A to 40 CFR part 60 to measure organic HAP emissions or use Method 25A of appendix A to 40 CFR part 60 to measure total gaseous organic emissions as a surrogate for total organic HAP emissions. If you use Method 25A, you must assume that all gaseous organic emissions measured as carbon are organic HAP emissions. If you use Method 18 and the number of organic HAP in the exhaust stream exceeds five, you must take into account the use of multiple chromatographic columns and analytical techniques to get an accurate measure of at least 90 percent of the total organic HAP mass emissions. Do not use Method 18 to measure organic HAP emissions from a combustion device; use instead Method 25A and assume that all gaseous organic mass emissions measured as carbon are organic HAP emissions.

4) You may use American Society for Testing and Materials (ASTM) D6420–99 (available for purchase from at least one of the following addresses: 100 Barr Harbor Drive, West Conshohocken, PA 19428–2959; or University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.) in lieu of Method 18 of 40 CFR part 60, appendix A, under the conditions specified in paragraphs (c)(4)(i) through (iii) of this section.

(i) If the target compound(s) is listed in Section 1.1 of ASTM D6420–99 and the target concentration is between 150 parts per billion by volume and 100 parts per million by volume.

(ii) If the target compound(s) is not listed in Section 1.1 of ASTM D6420–99, but is potentially detected by mass spectrometry, an additional system continuing calibration check after each run, as detailed in Section 10.5.3 of ASTM D6420–99, must be followed, met, documented, and submitted with the performance test report even if you do not use a moisture condenser or the compound is not considered soluble.

(iii) If a minimum of one sample/analysis cycle is completed at least every 15 minutes.

5) Use the procedures in EPA Method 3B of appendix A to 40 CFR part 60 to determine an oxygen correction factor if required by §63.997(e)(2)(iii)(C). You may use American Society of Mechanical Engineers (ASME) PTC 19–10–1981–Part 10 (available for purchase from ASME,
P.O. Box 2900, 22 Law Drive, Fairfield, New Jersey, 07007–2900, or online at www.asme.org/catalog as an alternative to EPA Method 3B of appendix A to 40 CFR part 60.

(f) The control device performance test must consist of three runs and each run must last at least 1 hour. The production conditions during the test runs must represent normal production conditions with respect to the types of parts being made and material application methods. The production conditions during the test must also represent maximum potential emissions with respect to the organic HAP content of the materials being applied and the material application rates.

(g) If you are using a concentrator/oxidizer control device, you must test the combined flow upstream of the concentrator, and the combined outlet flow from both the oxidizer and the concentrator to determine the overall control device efficiency. If the outlet flow from the concentrator and oxidizer are exhausted in separate stacks, you must test both stacks simultaneously with the inlet to the concentrator to determine the overall control device efficiency.

(h) During the test, you must also monitor and record separately the amounts of production resin, tooling resin, pigmented gel coat, clear gel coat, and tooling gel coat applied inside the enclosure that is vented to the control device.

§ 63.5855 What are my monitor installation and operation requirements?

You must monitor and operate all add-on control devices according to the procedures in 40 CFR part 63, subpart SS.

§ 63.5860 How do I demonstrate initial compliance with the standards?

(a) You demonstrate initial compliance with each organic HAP emissions standard in paragraphs (a) through (h) of §63.5805 that applies to you by using the procedures shown in Tables 8 and 9 to this subpart.

(b) If using an add-on control device to demonstrate compliance, you must also establish each control device operating limit in 40 CFR part 63, subpart SS, that applies to you.

Emission Factor, Percent Reduction, and Capture Efficiency Calculation Procedures for Continuous Lamination/Casting Operations

§ 63.5865 What data must I generate to demonstrate compliance with the standards for continuous lamination/casting operations?

(a) For continuous lamination/casting affected sources complying with a percent reduction requirement, you must generate the data identified in Tables 10 and 11 to this subpart for each data requirement that applies to your facility.

(b) For continuous lamination/casting affected sources complying with a lbs/ton limit, you must generate the data identified in Tables 11 and 12 to this subpart for each data requirement that applies to your facility.
§ 63.5870 How do I calculate annual uncontrolled and controlled organic HAP emissions from my wet-out area(s) and from my oven(s) for continuous lamination/casting operations?

To calculate your annual uncontrolled and controlled organic HAP emissions from your wet-out areas and from your ovens, you must develop uncontrolled and controlled wet-out area and uncontrolled and controlled oven organic HAP emissions estimation equations or factors to apply to each formula applied on each line, determine how much of each formula for each end product is applied each year on each line, and assign uncontrolled and controlled wet-out area and uncontrolled and controlled oven organic HAP emissions estimation equations or factors to each formula. You must determine the overall capture efficiency using the procedures in §63.5850 to this subpart.

(a) To develop uncontrolled and controlled organic HAP emissions estimation equations and factors, you must, at a minimum, do the following, as specified in paragraphs (a)(1) through (6) of this section:

(1) Identify each end product and the thickness of each end product produced on the line. Separate end products into the following end product groupings, as applicable: corrosion-resistant gel coated end products, noncorrosion-resistant gel coated end products, corrosion-resistant nongel coated end products, and noncorrosion-resistant nongel coated end products. This step creates end product/thickness combinations.

(2) Identify each formula used on the line to produce each end product/thickness combination. Identify the amount of each such formula applied per year. Rank each formula used to produce each end product/thickness combination according to usage within each end product/thickness combination.

(3) For each end product/thickness combination being produced, select the formula with the highest usage rate for testing.

(4) If not already selected, also select the worst-case formula (likely to be associated with the formula with the highest organic HAP content, type of HAP, application of gel coat, thin product, low line speed, higher resin table temperature) amongst all formulae. (You may use the results of the worst-case formula test for all formulae if desired to limit the amount of testing required.)

(5) For each formula selected for testing, conduct at least one test (consisting of three runs). During the test, track information on organic HAP content and type of HAP, end product thickness, line speed, and resin temperature on the wet-out area table.

(b) In lieu of using the method specified in paragraph (a) of this section for developing uncontrolled and controlled organic HAP emissions estimation equations and factors, you may either method specified in paragraphs (b)(1) and (2) of this section, as applicable.
(1) For either uncontrolled or controlled organic HAP emissions estimates, you may use previously established, facility-specific organic HAP emissions equations or factors, provided they allow estimation of both wet-out area and oven organic HAP emissions, where necessary, and have been approved by your permitting authority. If a previously established equation or factor is specific to the wet-out area only, or to the oven only, then you must develop the corresponding uncontrolled or controlled equation or factor for the other organic HAP emissions source.

(2) For uncontrolled (controlled) organic HAP emissions estimates, you may use controlled (uncontrolled) organic HAP emissions estimates and control device destruction efficiency to calculate your uncontrolled (controlled) organic HAP emissions provided the control device destruction efficiency was calculated at the same time you collected the data to develop your facility's controlled (uncontrolled) organic HAP emissions estimation equations and factors.

(c) Assign to each formula an uncontrolled organic HAP emissions estimation equation or factor based on the end product/thickness combination for which that formula is used.

(d)(1) To calculate your annual uncontrolled organic HAP emissions from wet-out areas that do not have any capture and control and from wet-out areas that are captured by an enclosure but are vented to the atmosphere and not to a control device, multiply each formula's annual usage by its appropriate organic HAP emissions estimation equation or factor and sum the individual results.

(2) To calculate your annual uncontrolled organic HAP emissions that escape from the enclosure on the wet-out area, multiply each formula's annual usage by its appropriate uncontrolled organic HAP emissions estimation equation or factor, sum the individual results, and multiply the summation by 1 minus the percent capture (expressed as a fraction).

(3) To calculate your annual uncontrolled oven organic HAP emissions, multiply each formula's annual usage by its appropriate uncontrolled organic HAP emissions estimation equation or factor and sum the individual results.

(4) To calculate your annual controlled organic HAP emissions, multiply each formula's annual usage by its appropriate organic HAP emissions estimation equation or factor and sum the individual results to obtain total annual controlled organic HAP emissions.

(e) Where a facility is calculating both uncontrolled and controlled organic HAP emissions estimation equations and factors, you must test the same formulae. In addition, you must develop both sets of equations and factors from the same tests.

§ 63.5875 How do I determine the capture efficiency of the enclosure on my wet-out area and the capture efficiency of my oven(s) for continuous lamination/casting operations?

(a) The capture efficiency of a wet-out area enclosure is assumed to be 100 percent if it meets the design and operation requirements for a permanent total enclosure (PTE) specified in EPA Method 204 of appendix M to 40 CFR part 51. If a PTE does not exist, then a temporary total enclosure must be constructed and verified using EPA Method 204, and capture efficiency testing must be determined using EPA Methods 204B through E of appendix M to 40 CFR part 51.
(b) The capture efficiency of an oven is to be considered 100 percent, provided the oven is operated under negative pressure.

§ 63.5880 How do I determine how much neat resin plus is applied to the line and how much neat gel coat plus is applied to the line for continuous lamination/casting operations?

Use the following procedures to determine how much neat resin plus and neat gel coat plus is applied to the line each year.

(a) Track formula usage by end product/thickness combinations.

(b) Use in-house records to show usage. This may be either from automated systems or manual records.

(c) Record daily the usage of each formula/end product combination on each line. This is to be recorded at the end of each run (i.e., when a changeover in formula or product is made) and at the end of each shift.

(d) Sum the amounts from the daily records to calculate annual usage of each formula/end product combination by line.

§ 63.5885 How do I calculate percent reduction to demonstrate compliance for continuous lamination/casting operations?

You may calculate percent reduction using any of the methods in paragraphs (a) through (d) of this section.

(a) Compliant line option. If all of your wet-out areas have PTE that meet the requirements of EPA Method 204 of appendix M of 40 CFR part 51, and all of your wet-out area organic HAP emissions and oven organic HAP emissions are vented to an add-on control device, use Equation 1 of this section to demonstrate compliance. In all other situations, use Equation 2 of this section to demonstrate compliance.

\[
PR = \frac{\text{Inlet} - \text{Outlet}}{\text{Inlet}} \times 100 \quad (\text{Eq. 1})
\]

Where:

PR=percent reduction;

Inlet=HAP emissions entering the control device, lbs per year;

Outlet=HAP emissions existing the control device to the atmosphere, lbs per year.

\[
PR = \frac{\left(WAE_{ci} + O_{ci}\right) - \left(WAE_{co} + O_{co}\right)}{\left(WAE_{ci} + WAE_{ci} + O_{ci} + O_{ci}\right)} \times 100 \quad (\text{Eq. 2})
\]

Where:

PR=percent reduction;

WAE_{ci}=wet-out area organic HAP emissions, lbs per year, vented to a control device;

WAE_{ci}=wet-out area organic HAP emissions, lbs per year, not vented to a control device;
Oj\textsubscript{u} = oven organic HAP emissions, lbs per year, not vented to a control device;

Oj\textsubscript{ci} = oven organic HAP emissions, lbs per year, vented to a control device;

WAE\textsubscript{i} = wet-out area organic HAP emissions, lbs per year, from the control device outlet;

Oj\textsubscript{co} = oven organic HAP emissions, lbs per year, from the control device outlet.

(b) *Averaging option.* Use Equation 3 of this section to calculate percent reduction.

\[PR = \left(\frac{\sum_{i=1}^{m} WAE_{i, ci} + \sum_{j=1}^{n} O_{j, ci} - \left(\sum_{i=1}^{m} WAE_{i, co} + \sum_{j=1}^{n} O_{j, co} \right)}{\sum_{i=1}^{m} WAE_{i, ci} + \sum_{j=1}^{n} O_{j, ci} + \sum_{i=1}^{m} WAE_{i, u} + \sum_{j=1}^{n} O_{j, u}} \right) \times 100 \]

(Eq. 3)

Where:

PR = percent reduction;

WAE\textsubscript{i} = wet-out area organic HAP emissions from wet-out area \(i \), lbs per year, sent to a control device;

WAE\textsubscript{i} = wet-out area organic HAP emissions from wet-out area \(i \), lbs per year, not sent to a control device;

WAE\textsubscript{co} = wet-out area organic HAP emissions from wet-out area \(i \), lbs per year, at the outlet of a control device;

Oj\textsubscript{u} = organic HAP emissions from oven \(j \), lbs per year, not sent to a control device;

Oj\textsubscript{ci} = organic HAP emissions from oven \(j \), lbs per year, sent to a control device;

Oj\textsubscript{co} = organic HAP emissions from oven \(j \), lbs per year, at the outlet of the control device;

m = number of wet-out areas;

n = number of ovens.

(c) *Add-on control device option.* Use Equation 1 of this section to calculate percent reduction.

(d) *Combination option.* Use Equations 1 through 3 of this section, as applicable, to calculate percent reduction.

[70 FR 50127, Aug. 25, 2005]

§ 63.5890 How do I calculate an organic HAP emissions factor to demonstrate compliance for continuous lamination/casting operations?

(a) *Compliant line option.* Use Equation 1 of this section to calculate an organic HAP emissions factor in lbs/ton.

\[E = \frac{WAE_{u} + WAE_{c} + O_{u} + O_{c}}{(R + G)} \]

(Eq. 1)

Where:

E = HAP emissions factor in lbs/ton of resin and gel coat

WAE\textsubscript{u} = uncontrolled wet-out area organic HAP emissions, lbs per year
WAE\(_c\)=controlled wet-out area organic HAP emissions, lbs per year

O\(_u\)=uncontrolled oven organic HAP emissions, lbs per year

O\(_c\)=controlled oven organic HAP emissions, lbs per year

R=total usage of neat resin plus, tpy

G=total usage of neat gel coat plus, tpy

(b) Averaging option. Use Equation 2 of this section to demonstrate compliance.

\[
E = \frac{\sum_{i=1}^{m} WAE_{ai} + \sum_{i=1}^{o} WAE_{ci} + \sum_{j=1}^{n} O_{uj} + \sum_{j=2}^{p} O_{cj}}{(R + G)} \tag{Eq. 2}
\]

Where:

E=HAP emissions factor in lbs/ton of resin and gel coat

WAE\(_{ai}\)=uncontrolled organic HAP emissions from wet-out area i, lbs per year

WAE\(_{ci}\)=controlled organic HAP emissions from wet-out area i, lbs per year

O\(_{uj}\)=uncontrolled organic HAP emissions from oven j, lbs per year

O\(_{cj}\)=controlled organic HAP emissions from oven j, lbs per year

i=number of wet-out areas

j=number of ovens

m=number of wet-out areas uncontrolled

n=number of ovens uncontrolled

o=number of wet-out areas controlled

p=number of ovens controlled

R=total usage of neat resin plus, tpy

G=total usage of neat gel coat plus, tpy

(c) Combination option. Use Equations 1 and 2 of this section, as applicable, to demonstrate compliance.

Continuous Compliance Requirements

§ 63.5895 How do I monitor and collect data to demonstrate continuous compliance?

(a) During production, you must collect and keep a record of data as indicated in 40 CFR part 63, subpart SS, if you are using an add-on control device.

(b) You must monitor and collect data as specified in paragraphs (b)(1) through (4) of this section.
(1) Except for monitoring malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), you must conduct all monitoring in continuous operation (or collect data at all required intervals) at all times that the affected source is operating.

(2) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities for purposes to this subpart, including data averages and calculations, or fulfilling a minimum data availability requirement, if applicable. You must use all the data collected during all other periods in assessing the operation of the control device and associated control system.

(3) At all times, you must maintain necessary parts for routine repairs of the monitoring equipment.

(4) A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring equipment to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) You must collect and keep records of resin and gel coat use, organic HAP content, and operation where the resin is used if you are meeting any organic HAP emissions limits based on an organic HAP emissions limit in Tables 3 or 5 to this subpart. You must collect and keep records of resin and gel coat use, organic HAP content, and operation where the resin is used if you are meeting any organic HAP content limits in Table 7 to this subpart if you are averaging organic HAP contents. Resin use records may be based on purchase records if you can reasonably estimate how the resin is applied. The organic HAP content records may be based on MSDS or on resin specifications supplied by the resin supplier.

(d) Resin and gel coat use records are not required for the individual resins and gel coats that are demonstrated, as applied, to meet their applicable emission as defined in §63.5810(a). However, you must retain the records of resin and gel coat organic HAP content, and you must include the list of these resins and gel coats and identify their application methods in your semiannual compliance reports. If after you have initially demonstrated that a specific combination of an individual resin or gel coat, application method, and controls meets its applicable emission limit, and the resin or gel coat changes or the organic HAP content increases, or you change the application method or controls, then you again must demonstrate that the individual resin or gel coat meets its emission limit as specified in paragraph (a) of §63.5810. If any of the previously mentioned changes results in a situation where an individual resin or gel coat now exceeds its applicable emission limit in Table 3 or 5 of this subpart, you must begin collecting resin and gel coat use records and calculate compliance using one of the averaging options on a 12-month rolling average.

(e) For each of your pultrusion machines, you must record all times that wet area enclosures doors or covers are open and there is resin present in the resin bath.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50128, Aug. 25, 2005]

§ 63.5900 How do I demonstrate continuous compliance with the standards?

(a) You must demonstrate continuous compliance with each standard in §63.5805 that applies to you according to the methods specified in paragraphs (a)(1) through (3) of this section.
(1) Compliance with organic HAP emissions limits for sources using add-on control devices is demonstrated following the procedures in 40 CFR part 63, subpart SS. Sources using add-on controls may also use continuous emissions monitors to demonstrate continuous compliance as an alternative to control parameter monitoring.

(2) Compliance with organic HAP emissions limits is demonstrated by maintaining an organic HAP emissions factor value less than or equal to the appropriate organic HAP emissions limit listed in Table 3 or 5 to this subpart, on a 12-month rolling average, and/or by including in each compliance report a statement that individual resins and gel coats, as applied, meet the appropriate organic HAP emissions limits, as discussed in §63.5895(d).

(3) Compliance with organic HAP content limits in Table 7 to this subpart is demonstrated by maintaining an average organic HAP content value less than or equal to the appropriate organic HAP contents listed in Table 7 to this subpart, on a 12-month rolling average, and/or by including in each compliance report a statement that resins and gel coats individually meet the appropriate organic HAP content limits in Table 7 to this subpart, as discussed in §63.5895(d).

(4) Compliance with the work practice standards in Table 4 to this subpart is demonstrated by performing the work practice required for your operation.

(b) You must report each deviation from each standard in §63.5805 that applies to you. The deviations must be reported according to the requirements in §63.5910.

(c) Except as provided in paragraph (d) of this section, during periods of startup, shutdown or malfunction, you must meet the organic HAP emissions limits and work practice standards that apply to you.

(d) When you use an add-on control device to meet standards in §63.5805, you are not required to meet those standards during periods of startup, shutdown, or malfunction, but you must operate your affected source to minimize emissions in accordance with §63.6(e)(1).

(e) Consistent with §§63.6(e) and 63.7(e)(1), deviations that occur during a period of malfunction for those affected sources and standards specified in paragraph (d) of this section are not violations if you demonstrate to the Administrator's satisfaction that you were operating in accordance with §63.6(e)(1). The Administrator will determine whether deviations that occur during a period of startup, shutdown, and malfunction are violations, according to the provisions in §63.6(e).

Notifications, Reports, and Records

§ 63.5905 What notifications must I submit and when?

(a) You must submit all of the notifications in Table 13 to this subpart that apply to you by the dates specified in Table 13 to this subpart. The notifications are described more fully in 40 CFR part 63, subpart A, referenced in Table 13 to this subpart.

(b) If you change any information submitted in any notification, you must submit the changes in writing to the Administrator within 15 calendar days after the change.
§ 63.5910 What reports must I submit and when?

(a) You must submit each report in Table 14 to this subpart that applies to you.

(b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date specified in Table 14 to this subpart and according to paragraphs (b)(1) through (5) of this section.

1. The first compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.5800 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.5800.

2. The first compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.5800.

3. Each subsequent compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

4. Each subsequent compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

5. For each affected source that is subject to permitting requirements pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to §70.6 (a)(3)(iii)(A) or §71.6(a)(3)(iii)(A), you may submit the first and subsequent compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (4) of this section.

(c) The compliance report must contain the information in paragraphs (c)(1) through (6) of this section:

1. Company name and address.

2. Statement by a responsible official with that official's name, title, and signature, certifying the truth, accuracy, and completeness of the content of the report.

3. Date of the report and beginning and ending dates of the reporting period.

4. If you had a startup, shutdown, or malfunction during the reporting period and you took actions consistent with your startup, shutdown, and malfunction plan, the compliance report must include the information in §63.10(d)(5)(i).

5. If there are no deviations from any organic HAP emissions limitations (emissions limit and operating limit) that apply to you, and there are no deviations from the requirements for work practice standards in Table 4 to this subpart, a statement that there were no deviations from the organic HAP emissions limitations or work practice standards during the reporting period.

6. If there were no periods during which the continuous monitoring system (CMS), including a continuous emissions monitoring system (CEMS) and an operating parameter monitoring system were out of control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out of control during the reporting period.
(d) For each deviation from an organic HAP emissions limitation (i.e., emissions limit and operating limit) and for each deviation from the requirements for work practice standards that occurs at an affected source where you are not using a CMS to comply with the organic HAP emissions limitations or work practice standards in this subpart, the compliance report must contain the information in paragraphs (c)(1) through (4) of this section and in paragraphs (d)(1) and (2) of this section. This includes periods of startup, shutdown, and malfunction.

(1) The total operating time of each affected source during the reporting period.

(2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.

(e) For each deviation from an organic HAP emissions limitation (i.e., emissions limit and operating limit) occurring at an affected source where you are using a CMS to comply with the organic HAP emissions limitation in this subpart, you must include the information in paragraphs (c)(1) through (4) of this section and in paragraphs (e)(1) through (12) of this section. This includes periods of startup, shutdown, and malfunction.

(1) The date and time that each malfunction started and stopped.

(2) The date and time that each CMS was inoperative, except for zero (low-level) and high-level checks.

(3) The date, time, and duration that each CMS was out of control, including the information in §63.8(c)(8).

(4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of startup, shutdown, or malfunction, or during another period.

(5) A summary of the total duration of the deviation during the reporting period and the total duration as a percent of the total source operating time during that reporting period.

(6) A breakdown of the total duration of the deviations during the reporting period into those that are due to startup, shutdown, control equipment problems, process problems, other known causes, and other unknown causes.

(7) A summary of the total duration of CMS downtime during the reporting period and the total duration of CMS downtime as a percent of the total source operating time during that reporting period.

(8) An identification of each organic HAP that was monitored at the affected source.

(9) A brief description of the process units.

(10) A brief description of the CMS.

(11) The date of the latest CMS certification or audit.

(12) A description of any changes in CMS, processes, or controls since the last reporting period.

(f) You must report if you have exceeded the 100 tpy organic HAP emissions threshold if that exceedance would make your facility subject to §63.5805(a)(1) or (d). Include with this report any request for an exemption under §63.5805(e). If you receive an exemption under §63.5805(e)
and subsequently exceed the 100 tpy organic HAP emissions threshold, you must report this exceedance as required in §63.5805(f).

(g) Each affected source that has obtained a title V operating permit pursuant to 40 CFR part 70 or 71 must report all deviations as defined in this subpart in the semiannual monitoring report required by §70.6(a)(3)(iii)(A) or §71.6(a)(3)(iii)(A). If an affected source submits a compliance report pursuant to Table 14 to this subpart along with, or as part of, the semiannual monitoring report required by §70.6(a)(3)(iii)(A) or §71.6(a)(3)(iii)(A), and the compliance report includes all required information concerning deviations from any organic HAP emissions limitation (including any operating limit) or work practice requirement in this subpart, submission of the compliance report shall be deemed to satisfy any obligation to report the same deviations in the semiannual monitoring report. However, submission of a compliance report shall not otherwise affect any obligation the affected source may have to report deviations from permit requirements to the permitting authority.

(h) Submit compliance reports and startup, shutdown, and malfunction reports based on the requirements in Table 14 to this subpart, and not based on the requirements in §63.999.

(i) Where multiple compliance options are available, you must state in your next compliance report if you have changed compliance options since your last compliance report.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50128, Aug. 25, 2005]

§ 63.5915 What records must I keep?

(a) You must keep the records listed in paragraphs (a)(1) through (3) of this section.

(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirements in §63.10(b)(2)(xiv).

(2) The records in §63.6(e)(3)(iii) through (v) related to startup, shutdown, and malfunction.

(3) Records of performance tests, design, and performance evaluations as required in §63.10(b)(2).

(b) If you use an add-on control device, you must keep all records required in 40 CFR part 63, subpart SS, to show continuous compliance with this subpart.

(c) You must keep all data, assumptions, and calculations used to determine organic HAP emissions factors or average organic HAP contents for operations listed in Tables 3, 5, and 7 to this subpart.

(d) You must keep a certified statement that you are in compliance with the work practice requirements in Table 4 to this subpart, as applicable.

(e) For a new or existing continuous lamination/casting operation, you must keep the records listed in paragraphs (e)(1) through (4) of this section, when complying with the percent reduction and/or lbs/ton requirements specified in paragraphs (a) and (c) through (d) of §63.5805.

(1) You must keep all data, assumptions, and calculations used to determine percent reduction and/or lbs/ton as applicable;
(2) You must keep a brief description of the rationale for the assignment of an equation or factor to each formula;

(3) When using facility-specific organic HAP emissions estimation equations or factors, you must keep all data, assumptions, and calculations used to derive the organic HAP emissions estimation equations and factors and identification and rationale for the worst-case formula; and

(4) For all organic HAP emissions estimation equations and organic HAP emissions factors, you must keep documentation that the appropriate permitting authority has approved them.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50129, Aug. 25, 2005]

§ 63.5920 In what form and how long must I keep my records?

(a) You must maintain all applicable records in such a manner that they can be readily accessed and are suitable for inspection according to §63.10(b)(1).

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record onsite for at least 2 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1). You can keep the records offsite for the remaining 3 years.

(d) You may keep records in hard copy or computer readable form including, but not limited to, paper, microfilm, computer floppy disk, magnetic tape, or microfiche.

Other Requirements and Information

§ 63.5925 What parts of the General Provisions apply to me?

Table 15 to this subpart shows which parts of the General Provisions in §§63.1 through 63.15 apply to you.

§ 63.5930 Who implements and enforces this subpart?

(a) This subpart can be administered by us, the EPA, or a delegated authority such as your State, local, or tribal agency. If the EPA Administrator has delegated authority to your State, local, or tribal agency, then that agency has the authority to administer and enforce this subpart. You should contact your EPA Regional Office to find out if this subpart is delegated to your State, local, or tribal agency.

(b) In delegating implementation and enforcement authority of this subpart to a State, local, or tribal agency under 40 CFR part 63, subpart E, the authorities contained in paragraph (c) of this section are not delegated.

(c) The authorities that will not be delegated to State, local, or tribal agencies are listed in paragraphs (c)(1) through (4) of this section:

(1) Approval of alternatives to the organic HAP emissions standards in §63.5805 under §63.6(g).
(2) Approval of major changes to test methods under §63.7(e)(2)(ii) and (f) and as defined in §63.90.

(3) Approval of major changes to monitoring under §63.8(f) and as defined in §63.90.

(4) Approval of major changes to recordkeeping and reporting under §63.10(f) and as defined in §63.90.

§ 63.5935 What definitions apply to this subpart?

Terms used in this subpart are defined in the CAA, in 40 CFR 63.2, and in this section as follows:

Atomized mechanical application means application of resin or gel coat with spray equipment that separates the liquid into a fine mist. This fine mist may be created by forcing the liquid under high pressure through an elliptical orifice, bombarding a liquid stream with directed air jets, or a combination of these techniques.

Bulk molding compound (BMC) means a putty-like molding compound containing resin(s) in a form that is ready to mold. In addition to resins, BMC may contain catalysts, fillers, and reinforcements. Bulk molding compound can be used in compression molding and injection molding operations to manufacture reinforced plastic composites products.

BMC manufacturing means a process that involves the preparation of BMC.

Centrifugal casting means a process for fabricating cylindrical composites, such as pipes, in which composite materials are positioned inside a rotating hollow mandrel and held in place by centrifugal forces until the part is sufficiently cured to maintain its physical shape.

Charge means the amount of SMC or BMC that is placed into a compression or injection mold necessary to complete one mold cycle.

Cleaning means removal of composite materials, such as cured and uncured resin from equipment, finished surfaces, floors, hands of employees, or any other surfaces.

Clear production gel coat means an unpigmented, quick-setting resin used to improve the surface appearance and/or performance of composites. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Closed molding means a grouping of processes for fabricating composites in a way that HAP-containing materials are not exposed to the atmosphere except during the material loading stage (e.g., compression molding, injection molding, and resin transfer molding). Processes where the mold is covered with plastic (or equivalent material) prior to resin application, and the resin is injected into the covered mold are also considered closed molding.

Composite means a shaped and cured part produced by using composite materials.

Composite materials means the raw materials used to make composites. The raw materials include styrene containing resins. They may also include gel coat, monomer, catalyst, pigment, filler, and reinforcement.
Compression molding means a closed molding process for fabricating composites in which composite materials are placed inside matched dies that are used to cure the materials under heat and pressure without exposure to the atmosphere. The addition of mold paste or in-mold coating is considered part of the closed molding process. The composite materials used in this process are generally SMC or BMC.

Compression/injection molding means a grouping of processes that involves the use of compression molding and/or injection molding.

Continuous casting means a continuous process for fabricating composites in which composite materials are placed on an in-line conveyor belt to produce cast sheets that are cured in an oven.

Continuous lamination means a continuous process for fabricating composites in which composite materials are typically sandwiched between plastic films, pulled through compaction rollers, and cured in an oven. This process is generally used to produce flat or corrugated products on an in-line conveyor.

Continuous lamination/casting means a grouping of processes that involves the use of continuous lamination and/or continuous casting.

Controlled emissions means those organic HAP emissions that are vented from a control device to the atmosphere.

Corrosion-resistant gel coat means a gel coat used on a product made with a corrosion-resistant resin that has a corrosion-resistant end-use application.

Corrosion-resistant end-use applications means applications where the product is manufactured specifically for an application that requires a level of chemical inertness or resistance to chemical attack above that required for typical reinforced plastic composites products. These applications include, but are not limited to, chemical processing and storage; pulp and paper production; sewer and wastewater treatment; power generation; potable water transfer and storage; food and drug processing; pollution or odor control; metals production and plating; semiconductor manufacturing; petroleum production, refining, and storage; mining; textile production; nuclear materials storage; swimming pools; and cosmetic production, as well as end-use applications that require high strength resins.

Corrosion-resistant industry standard includes the following standards: ASME RTP–1 or Sect. X; ASTM D5364, D3299, D4097, D2996, D2997, D3262, D3517, D3754, D3840, D4024, D4160, D4161, D4162, D4184, D3982, or D3839; ANSI/AWWA C950; UL 215, 1316 or 1746, IAPMO PS–199, or written customer requirements for resistance to specified chemical environments.

Corrosion-resistant product means a product made with a corrosion-resistant resin and is manufactured to a corrosion-resistant industry standard, or a food contact industry standard, or is manufactured for corrosion-resistant end-use applications involving continuous or temporary chemical exposures.

Corrosion-resistant resin means a resin that either:

(1) Displays substantial retention of mechanical properties when undergoing ASTM C–581 coupon testing, where the resin is exposed for 6 months or more to one of the following materials: Material with a pH ≥ 12.0 or ≤ 3.0, oxidizing or reducing agents, organic solvents, or
fuels or additives as defined in 40 CFR 79.2. In the coupon testing, the exposed resin needs to demonstrate a minimum of 50 percent retention of the relevant mechanical property compared to the same resin in unexposed condition. In addition, the exposed resin needs to demonstrate an increased retention of the relevant mechanical property of at least 20 percentage points when compared to a similarly exposed general-purpose resin. For example, if the general-purpose resin retains 45 percent of the relevant property when tested as specified above, then a corrosion-resistant resin needs to retain at least 65 percent (45 percent plus 20 percent) of its property. The general-purpose resin used in the test needs to have an average molecular weight of greater than 1,000, be formulated with a 1:2 ratio of maleic anhydride to phthalic anhydride and 100 percent diethylene glycol, and a styrene content between 43 to 48 percent; or

(2) Complies with industry standards that require specific exposure testing to corrosive media, such as UL 1316, UL 1746, or ASTM F–1216.

Doctor box means the box or trough on an SMC machine into which the liquid resin paste is delivered before it is metered onto the carrier film.

Filament application means an open molding process for fabricating composites in which reinforcements are fed through a resin bath and wound onto a rotating mandrel. The materials on the mandrel may be rolled out or worked by using nonmechanical tools prior to curing. Resin application to the reinforcement on the mandrel by means other than the resin bath, such as spray guns, pressure-fed rollers, flow coaters, or brushes is not considered filament application.

Filled Resin means that fillers have been added to a resin such that the amount of inert substances is at least 10 percent by weight of the total resin plus filler mixture. Filler putty made from a resin is considered a filled resin.

Fillers means inert substances dispersed throughout a resin, such as calcium carbonate, alumina trihydrate, hydrous aluminum silicate, mica, feldspar, wollastonite, silica, and talc. Materials that are not considered to be fillers are glass fibers or any type of reinforcement and microspheres.

Fire retardant gel coat means a gel coat used for products for which low-flame spread/low-smoke resin is used.

Fluid impingement technology means a spray gun that produces an expanding non-misting curtain of liquid by the impingement of low-pressure uninterrupted liquid streams.

Food contact industry standard means a standard related to food contact application contained in Food and Drug Administration's regulations at 21 CFR 177.2420.

Gel Coat means a quick-setting resin used to improve surface appearance and/or performance of composites. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Gel coat application means a process where either clear production, pigmented production, white/off-white or tooling gel coat is applied.

HAP-containing materials storage means an ancillary process which involves keeping HAP-containing materials, such as resins, gel coats, catalysts, monomers, and cleaners, in containers or bulk storage tanks for any length of time. Containers may include small tanks, totes, vessels, and buckets.
High Performance gel coat means a gel coat used on products for which National Sanitation Foundation, United States Department of Agriculture, ASTM, durability, or other property testing is required.

High strength gel coat means a gel coat applied to a product that requires high strength resin.

High strength resins means polyester resins which have a casting tensile strength of 10,000 pounds per square inch or more and which are used for manufacturing products that have high strength requirements such as structural members and utility poles.

Injection molding means a closed molding process for fabricating composites in which composite materials are injected under pressure into a heated mold cavity that represents the exact shape of the product. The composite materials are cured in the heated mold cavity.

Low Flame Spread/Low Smoke Products means products that meet the following requirements. The products must meet both the applicable flame spread requirements and the applicable smoke requirements. Interior or exterior building application products must meet an ASTM E–84 Flame Spread Index of less than or equal to 25, and Smoke Developed Index of less than or equal to 450, or pass National Fire Protection Association 286 Room Corner Burn Test with no flash over and total smoke released not exceeding 1000 meters square. Mass transit application products must meet an ASTM E–162 Flame Spread Index of less than or equal to 35 and ASTM E662 Smoke Density Ds @ 1.5 minutes less than or equal to 100 and Ds @ 4 minutes less than to equal to 200. Duct application products must meet ASTM E084 Flame Spread Index less than or equal to 25 and Smoke Developed Index less than or equal to 50 on the interior and/or exterior of the duct.

Manual resin application means an open molding process for fabricating composites in which composite materials are applied to the mold by pouring or by using hands and nonmechanical tools, such as brushes and rollers. Materials are rolled out or worked by using nonmechanical tools prior to curing. The use of pressure-fed rollers and flow coaters to apply resin is not considered manual resin application.

Mechanical resin application means an open molding process for fabricating composites in which composite materials (except gel coat) are applied to the mold by using mechanical tools such as spray guns, pressure-fed rollers, and flow coaters. Materials are rolled out or worked by using nonmechanical tools prior to curing.

Mixing means the blending or agitation of any HAP-containing materials in vessels that are 5.00 gallons (18.9 liters) or larger, and includes the mixing of putties or polyputties. Mixing may involve the blending of resin, gel coat, filler, reinforcement, pigments, catalysts, monomers, and any other additives.

Mold means a cavity or matrix into or onto which the composite materials are placed and from which the product takes its form.

Neat gel coat means the resin as purchased for the supplier, but not including any inert fillers.

Neat gel coat plus means neat gel coat plus any organic HAP-containing materials that are added to the gel coat by the supplier or the facility, excluding catalysts and promoters. Neat gel coat plus does include any additions of styrene or methyl methacrylate monomer in any form, including in catalysts and promoters.
Neat resin means the resin as purchased from the supplier, but not including any inert fillers.

Neat resin plus means neat resin plus any organic HAP-containing materials that are added to the resin by the supplier or the facility. Neat resin plus does not include any added filler, reinforcements, catalysts, or promoters. Neat resin plus does include any additions of styrene or methyl methacrylate monomer in any form, including in catalysts and promoters.

Nonatomized mechanical application means the use of application tools other than brushes to apply resin and gel coat where the application tool has documentation provided by its manufacturer or user that this design of the application tool has been organic HAP emissions tested, and the test results showed that use of this application tool results in organic HAP emissions that are no greater than the organic HAP emissions predicted by the applicable nonatomized application equation(s) in Table 1 to this subpart. In addition, the device must be operated according to the manufacturer's directions, including instructions to prevent the operation of the device at excessive spray pressures. Examples of nonatomized application include flow coaters, pressure fed rollers, and fluid impingement spray guns.

Noncorrosion-resistant resin means any resin other than a corrosion-resistant resin or a tooling resin.

Noncorrosion-resistant product means any product other than a corrosion-resistant product or a mold.

Non-routine manufacture means that you manufacture parts to replace worn or damaged parts of a reinforced plastic composites product, or a product containing reinforced plastic composite parts, that was originally manufactured in another facility. For a part to qualify as non-routine manufacture, it must be used for repair or replacement, and the manufacturing schedule must be based on the current or anticipated repair needs of the reinforced plastic composites product, or a product containing reinforced plastic composite parts.

Operation means a specific process typically found at a reinforced plastic composites facility. Examples of operations are noncorrosion-resistant manual resin application, corrosion-resistant mechanical resin application, pigmented gel coat application, mixing and HAP-containing materials storage.

Operation group means a grouping of individual operations based primarily on mold type. Examples are open molding, closed molding, and centrifugal casting.

Open molding means a process for fabricating composites in a way that HAP-containing materials are exposed to the atmosphere. Open molding includes processes such as manual resin application, mechanical resin application, filament application, and gel coat application. Open molding also includes application of resins and gel coats to parts that have been removed from the open mold.

Pigmented gel coat means a gel coat that has a color, but does not contain 10 percent of more titanium dioxide by weight. It can be used to form the surface layer of any composites other than those used for molds in tooling operations.

Polymer casting means a process for fabricating composites in which composite materials are ejected from a casting machine or poured into an open, partially open, or closed mold and cured. After the composite materials are poured into the mold, they are not rolled out or worked while...
the mold is open, except for smoothing the material and/or vibrating the mold to remove bubbles. The composite materials may or may not include reinforcements. Products produced by the polymer casting process include cultured marble products and polymer concrete.

Preform Injection means a form of pultrusion where liquid resin is injected to saturate reinforcements in an enclosed system containing one or more chambers with openings only large enough to admit reinforcements. Resin, which drips out of the chamber(s) during the process, is collected in closed piping or covered troughs and then into a covered reservoir for recycle. Resin storage vessels, reservoirs, transfer systems, and collection systems are covered or shielded from the ambient air. Preform injection differs from direct die injection in that the injection chambers are not directly attached to the die.

Prepreg materials means reinforcing fabric received precoated with resin which is usually cured through the addition of heat.

Pultrusion means a continuous process for manufacturing composites that have a uniform cross-sectional shape. The process consists of pulling a fiber-reinforcing material through a resin impregnation chamber or bath and through a shaping die, where the resin is subsequently cured. There are several types of pultrusion equipment, such as open bath, resin injection, and direct die injection equipment.

Repair means application of resin or gel coat to a part to correct a defect, where the resin or gel coat application occurs after the part has gone through all the steps of its typical production process, or the application occurs outside the normal production area. For purposes of this subpart, rerouting a part back through the normal production line, or part of the normal production line, is not considered repair.

Resin transfer molding means a process for manufacturing composites whereby catalyzed resin is transferred or injected into a closed mold in which fiberglass reinforcement has been placed.

Sheet molding compound (SMC) means a ready-to-mold putty-like molding compound that contains resin(s) processed into sheet form. The molding compound is sandwiched between a top and a bottom film. In addition to resin(s), it may also contain catalysts, fillers, chemical thickeners, mold release agents, reinforcements, and other ingredients. Sheet molding compound can be used in compression molding to manufacture reinforced plastic composites products.

Shrinkage controlled resin means a resin that when promoted, catalyzed, and filled according to the resin manufacturer's recommendations demonstrates less than 0.3 percent linear shrinkage when tested according to ASTM D2566.

SMC manufacturing means a process which involves the preparation of SMC.

Tooling gel coat means a gel coat that is used to form the surface layer of molds. Tooling gel coats generally have high heat distortion temperatures, low shrinkage, high barcol hardness, and high dimensional stability.

Tooling resin means a resin that is used to produce molds. Tooling resins generally have high heat distortion temperatures, low shrinkage, high barcol hardness, and high dimensional stability.

Uncontrolled oven organic HAP emissions means those organic HAP emissions emitted from the oven through closed vent systems to the atmosphere and not to a control device. These organic HAP emissions do not include organic HAP emissions that may escape into the workplace.
through the opening of panels or doors on the ovens or other similar fugitive organic HAP emissions in the workplace.

Uncontrolled wet-out area organic HAP emissions means any or all of the following: Organic HAP emissions from wet-out areas that do not have any capture and control, organic HAP emissions that escape from wet-out area enclosures, and organic HAP emissions from wet-out areas that are captured by an enclosure but are vented to the atmosphere and not to an add-on control device.

Unfilled means that there has been no addition of fillers to a resin or that less than 10 percent of fillers by weight of the total resin plus filler mixture has been added.

Vapor suppressant means an additive, typically a wax, that migrates to the surface of the resin during curing and forms a barrier to seal in the styrene and reduce styrene emissions.

Vapor-suppressed resin means a resin containing a vapor suppressant added for the purpose of reducing styrene emissions during curing.

White and off-white gel coat means a gel coat that contains 10 percent of more titanium dioxide by weight.

[68 FR 19402, Apr. 21, 2003, as amended at 70 FR 50129, Aug. 25, 2005]
As required in § 63.5810, use the equations in the following table to calculate organic HAP emissions factors for specific open molding and centrifugal casting process streams:

<table>
<thead>
<tr>
<th>If your operation type is a new or existing...</th>
<th>And you use</th>
<th>With</th>
<th>Use this organic HAP Emissions Factor (EF) Equation for materials with less than 33 percent organic HAP (19 percent organic HAP for nonatomized gel coat)</th>
<th>Use this organic HAP emissions Factor (EF) Equation for materials with 33 percent or more organic HAP (19 percent for nonatomized gel coat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Open Molding Operation</td>
<td>a. manual resin application i. nonvapor-suppressed resin</td>
<td>$EF = 0.126 \times % \text{HAP} \times 2000$</td>
<td>$EF = ((0.286 \times % \text{HAP}) - 0.0529) \times 2000$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. vapor suppressed resin</td>
<td>$EF = 0.126 \times % \text{HAP} \times 2000 \times (1-(0.5 \times \text{VSE factor}))$</td>
<td>$EF = ((0.286 \times % \text{HAP}) - 0.0529) \times 2000 \times (1-(0.5 \times \text{VSE factor}))$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. vacuum bagging/closedmold curing with roll out</td>
<td>$EF = 0.126 \times % \text{HAP} \times 2000 \times 0.8$</td>
<td>$EF = ((0.286 \times % \text{HAP}) - 0.0529) \times 2000 \times 0.8$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. vacuum bagging/closedmold curing without roll out</td>
<td>$EF = (0.126 \times % \text{HAP} \times 2000 \times 0.5$</td>
<td>$EF = ((0.286 \times % \text{HAP}) - 0.0529) \times 2000 \times 0.5$</td>
<td></td>
</tr>
<tr>
<td>b. atomized mechanical resin application</td>
<td>i. nonvapor-suppressed resin</td>
<td>$EF = 0.169 \times % \text{HAP} \times 2000$</td>
<td>$EF = ((0.714 \times % \text{HAP}) - 0.18) \times 2000$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. vapor-suppressed resin</td>
<td>$EF = 0.169 \times % \text{HAP} \times 2000 \times (1-(0.45 \times \text{VSE factor}))$</td>
<td>$EF = ((0.714 \times % \text{HAP}) - 0.18) \times 2000 \times (1-(0.45 \times \text{VSE factor}))$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. vacuum bagging/closedmold curing with roll out</td>
<td>$EF = 0.169 \times % \text{HAP} \times 2000 \times 0.85$</td>
<td>$EF = ((0.714 \times % \text{HAP}) - 0.18) \times 2000 \times 0.85$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. vacuum bagging/closedmold curing without roll out</td>
<td>$EF = 0.169 \times % \text{HAP} \times 2000 \times 0.55$</td>
<td>$EF = ((0.714 \times % \text{HAP}) - 0.18) \times 2000 \times 0.55$</td>
<td></td>
</tr>
<tr>
<td>c. nonatomized mechanical resin application</td>
<td>i. nonvapor-suppressed resin</td>
<td>$EF = 0.107 \times % \text{HAP} \times 2000$</td>
<td>$EF = ((0.157 \times % \text{HAP}) - 0.0165) \times 2000$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. vapor-suppressed resin</td>
<td>$EF = 0.107 \times % \text{HAP} \times 2000$</td>
<td>$EF = ((0.157 \times % \text{HAP}) - 0.0165) \times 2000$</td>
<td></td>
</tr>
<tr>
<td>Operation Description</td>
<td>Resin Type</td>
<td>EF Equation for Non-Vapor Suppressed Resin</td>
<td>EF Equation for Vapor Suppressed Resin</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>--</td>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>iii. closed-mold curing with roll out</td>
<td>nonvapor-suppressed resin</td>
<td>EF = 0.107 x %HAP x 2000 x 0.85</td>
<td>EF = ((0.157 x %HAP) x 0.0165) x 2000 x 0.85</td>
<td></td>
</tr>
<tr>
<td>iv. vacuum bagging/closed-mold curing without roll-out</td>
<td>nonvapor-suppressed resin</td>
<td>EF = 0.107 x %HAP x 2000 x 0.55</td>
<td>EF = ((0.157 x %HAP) x 0.0165) x 2000 x 0.55</td>
<td></td>
</tr>
<tr>
<td>d. atomized mechanical resin application with robotic or automated spray control</td>
<td></td>
<td>EF = 0.169 x %HAP x 2000 x 0.77</td>
<td>EF = 0.77 x ((0.714 x %HAP) - 0.18) x 2000</td>
<td></td>
</tr>
<tr>
<td>e. filament application</td>
<td>i. nonvapor-suppressed resin</td>
<td>EF = 0.184 x %HAP x 2000</td>
<td>EF = ((0.2746 x %HAP) - 0.0298) x 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. vapor-suppressed resin</td>
<td>EF = 0.12 x %HAP x 2000</td>
<td>EF = ((0.2746 x %HAP) - 0.0298) x 2000 x 0.65</td>
<td></td>
</tr>
<tr>
<td>f. atomized spray gel coat application</td>
<td>nonvapor-suppressed gel coat</td>
<td>EF = 0.445 x %HAP x 2000</td>
<td>EF = ((1.03646 x %HAP) - 0.195) x 2000</td>
<td></td>
</tr>
<tr>
<td>g. nonatomized spray gel coat application</td>
<td>nonvapor-suppressed gel coat</td>
<td>EF = 0.185 x %HAP x 2000</td>
<td>EF = ((0.4506 x %HAP) - 0.0505) x 2000</td>
<td></td>
</tr>
<tr>
<td>h. manual gel coat application</td>
<td>nonvapor-suppressed gel coat</td>
<td>EF = 0.126 x %HAP x 2000</td>
<td>EF = ((0.286 x %HAP) - 0.0529) x 2000 (for emissions estimation only; see footnote f)</td>
<td></td>
</tr>
<tr>
<td>2. centrifugal casting operations</td>
<td>heated air blown through molds</td>
<td>EF = 0.558 x (%HAP) x 2000</td>
<td>EF = 0.558 x (%HAP) x 2000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vapor-solvent suppressed resin</td>
<td>EF = 0.026 x (%HAP) x 2000</td>
<td>EF = 0.026 x (%HAP) x 2000</td>
<td></td>
</tr>
</tbody>
</table>

Footnotes to Table 1
1. The equations in this table are intended for use in calculating emission factors to demonstrate compliance with the emission limits in subpart WWWW. These equations may not be the most appropriate methods to calculate emission estimates for other purposes. However, this does not preclude a facility from using the equations in this table to calculate emission factors for purposes other than rule compliance if these equations are the most accurate available.
2. To obtain the organic HAP emissions factor value for an operation with an add-on control device multiply the EF above by the add-on control factor calculated using Equation 1 of §63.5810. The organic HAP emissions factors have units of lbs of organic HAP per ton of resin or gel coat applied.
3. Percent HAP means total weight percent of organic HAP (styrene, methyl methacrylate, and any other organic HAP) in the resin or gel coat prior to the addition of fillers, catalyst, and promoters. Input the percent HAP as a decimal, i.e. 33 percent HAP should be input as 0.33, not 33.
4. The VSE factor means the percent reduction in organic HAP emissions expressed as a decimal measured by the VSE test method of Appendix A to this subpart.
5. This equation is based on a organic HAP emissions factor equation developed for mechanical atomized controlled spray. It may only be used for automated or robotic spray systems with atomized spray. All spray operations using hand held spray guns must use the appropriate
mechanical atomized or mechanical nonatomized organic HAP emissions factor equation. Automated or robotic spray systems using nonatomized spray should use the appropriate nonatomized mechanical resin application equation.

6- Applies only to filament application using an open resin bath. If resin is applied manually or with a spray gun, use the appropriate manual or mechanical application organic HAP emissions factor equation.

f Do not use this equation for determining compliance with emission limits in Tables 3 or 5 to this subpart. To determine compliance with emission limits you must treat all gel coat as if were applied as part of your gel coat spray application operations. If you apply gel coat by manual techniques only, you must treat the gel coat as if it were applied with atomized spray and use Equation 1.f to determine compliance with the appropriate emission limits in Tables 3 or 5 to this subpart. To estimate emissions from manually applied gel coat, you may either include the gel coat quantities you apply manually with the quantities applied using spray, or use this equation to estimate emissions from the manually applied portion of your gel coat.

7- These equations are for centrifugal casting operations where the mold is vented during spinning. Centrifugal casting operations where the mold is completely sealed after resin injection are considered to be closed molding operations.

8- If a centrifugal casting operation uses mechanical or manual resin application techniques to apply resin to an open centrifugal casting mold, use the appropriate open molding equation with covered cure and no rollout to determine an emission factor for operations prior to the closing of the centrifugal casting mold. If the closed centrifugal casting mold is vented during spinning, use the appropriate centrifugal casting equation to calculate an emission factor for the portion of the process where spinning and cure occur. If a centrifugal casting operation uses mechanical or manual resin application techniques to apply resin to an open centrifugal casting mold, and the mold is then closed and is not vented, treat the entire operation as open molding with covered cure and no rollout to determine emission factors.

Table 2 to Subpart WWW of Part 63 - Compliance Dates for New and Existing Reinforced Plastic Composites Facilities

As required in §§63.5800 and 63.5840 you must demonstrate compliance with the standards by the dates in the following table:

<table>
<thead>
<tr>
<th>If your Facility is</th>
<th>and</th>
<th>then you must comply by this date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. an existing source</td>
<td>a. is a major source on or before the publication date of this subpart</td>
<td>i. April 21, 2006 or ii. you must accept and meet an enforceable HAP emissions limit below the major source threshold prior to April 21, 2006</td>
</tr>
<tr>
<td>2. an existing source that is an area source</td>
<td>becomes a major source after the publication date of this subpart</td>
<td>3 years after becoming a major source or April 21, 2006 whichever is later.</td>
</tr>
<tr>
<td>3. an existing source, and emits less than 100 tpy of organic HAP from the combination of all centrifugal casting and continuous lamination/casting operations at the time of initial compliance with this subpart</td>
<td>Subsequently increases its actual organic HAP emissions to 100 tpy or more from these operations, which requires that the facility must now comply with the standards in §63.5805(b)</td>
<td>3 years of the date your semi-annual compliance report indicates your facility meets or exceeds the 100 tpy threshold.</td>
</tr>
<tr>
<td>4. a new source</td>
<td>is a major source at startup</td>
<td>upon startup or April 21, 2003, whichever is later.</td>
</tr>
<tr>
<td>5. a new source</td>
<td>is an area source at startup and becomes a major source</td>
<td>immediately upon becoming a major source.</td>
</tr>
<tr>
<td>6. a new source, and emits less than 100 tpy of organic HAP from the combination of all open molding, centrifugal casting, continuous lamination/casting, pultrusion, SMC and BMC manufacturing, and mixing operations at the time of initial compliance with this subpart</td>
<td>Subsequently increases its actual organic HAP emissions to 100 tpy or more from the combination of these operations, which requires that the facility must now meet the standards in §63.5805(d)</td>
<td>3 years from the date that your semi-annual compliance report indicates your facility meets or exceeds the 100 tpy threshold.</td>
</tr>
<tr>
<td>If your operation type is...</td>
<td>And you use...</td>
<td>Your organic HAP emissions limit is ...</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>1. open molding - corrosion-resistant and/or high strength (CR/HS)</td>
<td>a. mechanical resin application</td>
<td>113 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. filament application</td>
<td>171 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. manual resin application</td>
<td>123 lb/ton</td>
</tr>
<tr>
<td>2. open molding - non-CR/HS</td>
<td>a. mechanical resin application</td>
<td>88 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. filament application</td>
<td>188 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. manual resin application</td>
<td>87 lb/ton</td>
</tr>
<tr>
<td>3. open molding - tooling</td>
<td>a. mechanical resin application</td>
<td>254 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. manual resin application</td>
<td>157 lb/ton</td>
</tr>
<tr>
<td>4. open molding – lowflame spread/low-smoke products</td>
<td>a. mechanical resin application</td>
<td>497 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. filament application</td>
<td>270 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. manual resin application</td>
<td>238 lb/ton</td>
</tr>
<tr>
<td>5. open molding - shrinkage controlled resins</td>
<td>a. mechanical resin application</td>
<td>354 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. filament application</td>
<td>215 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. manual resin application</td>
<td>180 lb/ton</td>
</tr>
<tr>
<td>6. open molding - gel coat</td>
<td>a. tooling gel coating</td>
<td>440 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. white/off white pigmented gel coating</td>
<td>267 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. all other pigmented gel coating</td>
<td>377 lb/ton</td>
</tr>
<tr>
<td></td>
<td>d. CR/HS or high performance gel coat</td>
<td>605 lb/ton</td>
</tr>
<tr>
<td></td>
<td>e. fire retardant gel coat</td>
<td>854 lb/ton</td>
</tr>
<tr>
<td></td>
<td>f. clear production gel coat</td>
<td>522 lb/ton</td>
</tr>
<tr>
<td>7. centrifugal casting - CR/HS</td>
<td>a. resin application with the mold closed, and the mold is vented during spinning and cure,</td>
<td>25 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. resin application with the mold closed, and the mold is not vented during spinning and cure,</td>
<td>NA- this is considered to be a closed molding operation</td>
</tr>
<tr>
<td></td>
<td>c. resin application with the mold open, and the mold is vented during spinning and cure,</td>
<td>25 lb/ton</td>
</tr>
<tr>
<td></td>
<td>d. resin application with the mold open and the mold is not vented during spinning and cure</td>
<td>Use the appropriate open molding emission limit</td>
</tr>
<tr>
<td>8. centrifugal casting - non-CR/HS</td>
<td>a. resin application with the mold closed, and the mold is vented during spinning and cure,</td>
<td>20 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. resin application with the mold closed, and the mold is not vented during spinning and cure,</td>
<td>NA- this is considered to be a closed molding operation</td>
</tr>
<tr>
<td></td>
<td>c. resin application with the mold open, and the mold is vented during spinning and cure,</td>
<td>20 lb/ton</td>
</tr>
<tr>
<td></td>
<td>d. resin application with the mold open and the mold is not vented during spinning and cure</td>
<td>Use the appropriate open molding emission limit</td>
</tr>
<tr>
<td>9. Pultrusion</td>
<td>N/A</td>
<td>reduce total organic HAP emissions by at least 60 weight percent</td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>10. continuous lamination/casting</td>
<td>N/A</td>
<td>reduce total organic HAP emissions by at least 58.5 weight percent or not exceed a organic HAP emissions limit of 15.7 lbs of organic HAP per ton of neat resin plus and neat gel coat plus</td>
</tr>
</tbody>
</table>

Footnotes to Table 3
1 Organic HAP emissions limits for open molding and centrifugal casting are expressed as lb/ton. You must be at or below these values based on a 12-month rolling average.
2 This emission limit applies regardless of whether the shrinkage controlled resin is used as a production resin or a tooling resin.
3 If you only apply gel coat with manual application, for compliance purposes treat the gel coat as if it were applied using atomized spray guns to determine both emission limits and emission factors. If you use multiple application methods and any portion of a specific gel coat is applied using nonatomized spray, you may use the nonatomized spray gel coat equation to calculate an emission factor for the manually applied portion of that gel coat. Otherwise, use the atomized spray gel coat application equation to calculate emission factors.
4 For compliance purposes, calculate your emission factor using only the appropriate centrifugal casting equation in item 2 of Table 1 to this subpart, or a site specific emission factor for after the mold is closed as discussed in Sec. 63.5796.
5 Calculate your emission factor using the appropriate open molding covered cure emission factor in item 1 of Table 1 to this subpart, or a site specific emission factor as discussed in Sec. 63.5796.
6 Pultrusion machines that produce parts that meet the following criteria: 1,000 or more reinforcements or the glass equivalent of 1,000 ends of 113 yield roving or more; and have a cross sectional area of 60 square inches or more are not subject to this requirement. Their requirement is the work practice of air flow management which is described in Table 4 to this subpart.

Table 4 to Subpart WWWW of Part 63 - Work Practice Standards

<table>
<thead>
<tr>
<th>For…</th>
<th>You Must</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. a new or existing closed molding operation using compression/injection molding</td>
<td>uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill all molds for one cycle. For machines with robotic loaders, no more than one charge may be exposed prior to the loader. For machines fed by hoppers, sufficient material may be uncovered to fill the hopper. Hoppers must be closed when not adding materials. Materials may be uncovered to feed to slitting machines. Materials must be recovered after slitting.</td>
</tr>
<tr>
<td>2. a new or existing cleaning operation</td>
<td>not use cleaning solvents that contain HAP, except that styrene may be used as a cleaner in closed systems, and organic HAP containing cleaners may be used to clean cured resin from application equipment. Application equipment includes any equipment that directly contacts resin.</td>
</tr>
<tr>
<td>3. a new or existing materials HAP-containing materials storage operation</td>
<td>keep containers that store HAP-containing materials closed or covered except during the addition or removal of materials. Bulk HAP-containing materials storage tanks may be vented as necessary for safety.</td>
</tr>
<tr>
<td>4. an existing or new SMC manufacturing operation</td>
<td>close or cover the resin delivery system to the doctor box on each SMC manufacturing machine. The doctor box itself may be open.</td>
</tr>
<tr>
<td>5. an existing or new SMC manufacturing operation</td>
<td>use a nylon containing film to enclose SMC.</td>
</tr>
<tr>
<td>6. all mixing or BMC manufacturing operations1</td>
<td>use mixer covers with no visible gaps present in the mixer covers, except that gaps of up to 1 inch are permissible around mixer shafts and any required instrumentation.</td>
</tr>
<tr>
<td>7. all mixing or BMC manufacturing operations1</td>
<td>close any mixer vents when actual mixing is occurring, except that venting is allowed during addition of materials, or as necessary prior to adding materials or opening the cover for safety. Vents routed to a 95 percent efficient control device are exempt from this requirement.</td>
</tr>
</tbody>
</table>
8. all mixing or BMC manufacturing operations

keep the mixer covers closed while actual mixing is occurring except when adding materials or changing covers to the mixing vessels.

9. a new or existing pultrusion operation manufacturing parts that meet the following criteria: 1,000 or more reinforcements or the glass equivalent of 1,000 ends of 113 yield roving or more; and have a cross sectional area of 60 square inches or more that is not subject to the 95 percent organic HAP emission reduction requirement.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>i.</td>
<td>not allow vents from the building ventilation system, or local or portable fans to blow directly on or across the wetout area(s),</td>
</tr>
<tr>
<td>ii.</td>
<td>not permit point suction of ambient air in the wet-out area(s) unless that air is directed to a control device,</td>
</tr>
<tr>
<td>iii.</td>
<td>use devices such as deflectors, baffles, and curtains when practical to reduce air flow velocity across the wet-out area(s),</td>
</tr>
<tr>
<td>iv.</td>
<td>direct any compressed air exhausts away from resin and wet-out area(s),</td>
</tr>
<tr>
<td>v.</td>
<td>convey resin collected from drip-off pans or other devices to reservoirs, tanks, or sumps via covered troughs, pipes, or other covered conveyance that shields the resin from the ambient air,</td>
</tr>
<tr>
<td>vi.</td>
<td>cover all reservoirs, tanks, sumps, or HAP-containing materials storage vessels except when they are being charged or filled, and</td>
</tr>
<tr>
<td>vii.</td>
<td>cover or shield from ambient air resin delivery systems to the wet-out area(s) from reservoirs, tanks, or sumps where practical.</td>
</tr>
</tbody>
</table>

Containers of 5 gallons or less may be open when active mixing is taking place, or during periods when they are in process (i.e., they are actively being used to apply resin). For polymer casting mixing operations, containers with a surface area of 500 square inches or less may be open while active mixing is taking place.
Table 5 to Subpart WWW of Part 63.—Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards are Based on a 95 Percent Reduction Requirement

As specified in § 63.5805, as an alternative to the 95 percent organic HAP emissions requirements, you may meet the appropriate organic HAP emissions limits in the following table:

<table>
<thead>
<tr>
<th>If your operation type is...</th>
<th>And you use...</th>
<th>Your organic HAP emissions limit is a...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. open molding – corrosion resistant and/or high strength(CR/HS)</td>
<td>a. mechanical resin application</td>
<td>6 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. filament application</td>
<td>9 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. manual resin application</td>
<td>7 lb/ton</td>
</tr>
<tr>
<td>2. open molding - non-CR/HS</td>
<td>a. mechanical resin application</td>
<td>13 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. filament application</td>
<td>10 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. manual resin application</td>
<td>5 lb/ton</td>
</tr>
<tr>
<td>3. open molding - tooling</td>
<td>a. mechanical resin application</td>
<td>13 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. manual resin application</td>
<td>8 lb/ton</td>
</tr>
<tr>
<td>4. open molding - low flame spread/low smoke products</td>
<td>a. mechanical resin application</td>
<td>25 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. filament application</td>
<td>14 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. manual resin application</td>
<td>12 lb/ton</td>
</tr>
<tr>
<td>5. open molding – shrinkage controlled resins</td>
<td>a. mechanical resin application</td>
<td>18 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. filament application</td>
<td>11 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. manual resin application</td>
<td>9 lb/ton</td>
</tr>
<tr>
<td>6. open molding - gel coat b</td>
<td>a. tooling gel coating</td>
<td>22 lb/ton</td>
</tr>
<tr>
<td></td>
<td>b. white/off white pigmented gel coating</td>
<td>22 lb/ton</td>
</tr>
<tr>
<td></td>
<td>c. all other pigmented gel coating</td>
<td>19 lb/ton</td>
</tr>
<tr>
<td></td>
<td>d. CR/HS or high performance gel coat</td>
<td>31 lb/ton</td>
</tr>
<tr>
<td></td>
<td>e. fire retardant gel coat</td>
<td>43 lb/ton</td>
</tr>
<tr>
<td></td>
<td>f. clear production gel coat</td>
<td>27 lb/ton</td>
</tr>
<tr>
<td>7. centrifugal casting - CR/HS c, d</td>
<td>a vent system that moves heated air</td>
<td>27 lb/ton</td>
</tr>
<tr>
<td>8. centrifugal casting - non-CR/HS c, d</td>
<td>moves heated air</td>
<td>21 lb/ton</td>
</tr>
<tr>
<td>7. centrifugal casting - CR/HS c, d</td>
<td>a vent system that moves ambient air through the mold</td>
<td>2 lb/ton</td>
</tr>
<tr>
<td>8. centrifugal casting - non-CR/HS c, d</td>
<td>a vent system that moves ambient air through the mold</td>
<td>1 lb/ton</td>
</tr>
<tr>
<td>9. SMC Manufacturing</td>
<td>N/A</td>
<td>2.4 lb/ton</td>
</tr>
</tbody>
</table>

a Organic HAP emissions limits for open molding and centrifugal casting expressed as lb/ton are calculated using the equations shown in Table 1 to this subpart. You must be at or below these values based on a 12-month rolling average. These limits are for spray application of gel coat. Manual gel coat application must be included as part of spray gel coat application for compliance purposes using the same organic HAP emissions factor equation and organic HAP emissions limit. If you only apply gel coat with manual application, treat the manually applied gel coat as if it were applied with atomized spray for compliance determinations.

C Centrifugal casting operations where the mold is not vented during spinning and cure are considered to be closed molding and are not subject to any emissions limit. Centrifugal casting operations where the mold is not vented during spinning and cure, and the resin is applied to the open centrifugal casting mold using mechanical or manual open molding resin application techniques are considered to be open molding operations and the appropriate open molding emission limits apply.

d Centrifugal casting operations where the mold is vented during spinning and the resin is applied to the open centrifugal casting mold using mechanical or manual open molding resin application techniques, use the appropriate centrifugal casting emission limit to determine compliance. Calculate your emission factor using the appropriate centrifugal casting emission factor in Table 1 to this subpart, or a site specific emission factor as discussed in §63.5796.
Table 6 to Subpart WWWW of Part 63 - Basic Requirements for Performance Tests, Performance Evaluations, and Design Evaluations for New and Existing Sources Using Add-On Control Devices

As required in §63.5850 you must conduct performance tests, performance evaluations, and design evaluation according to the requirements in the following table:

<table>
<thead>
<tr>
<th>For</th>
<th>You Must</th>
<th>Using</th>
<th>According to the following requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. each enclosure used to collect and route organic HAP emissions to an add-on control device that is a PTE</td>
<td>meet the requirements for a PTE</td>
<td>EPA method 204 of appendix M of 40 CFR part 51</td>
<td>Enclosures that meet the requirements of EPA Method 204 of appendix M of 40 CFR part 51 for a PTE are assumed to have a capture efficiency of 100%. Note that the criteria that all access doors and windows that are not treated as natural draft openings shall be closed during routine operation of the process is not intended to require that these doors and windows be closed at all times. It means that doors and windows must be closed any time that you are not actually moving parts or equipment through them. Also, any styrene retained in hollow parts and liberated outside the PTE is not considered to be a violation of the EPA Method 204 criteria.</td>
</tr>
<tr>
<td>2. each enclosure used to collect and route organic HAP emissions to an add-on control device that is not a PTE</td>
<td>a. determine the capture efficiency of each enclosure used to capture organic HAP emissions sent to an add-on control device</td>
<td>i. EPA methods 204B through E of appendix M of 40 CFR part 51, or (1) Enclosures that do not meet the requirements for a PTE must determine the capture efficiency by constructing a temporary total enclosure according to the requirements of EPA Method 204 of appendix M of 40 CFR part 51 and measuring the mass flow rates of the organic HAP in the exhaust streams going to the atmosphere and to the control device. Test runs for EPA Methods 204B through E of appendix M of 40 CFR part 51</td>
<td></td>
</tr>
</tbody>
</table>

80
must be at least 3 hours.

(1) The alternative test method must meet the data quality objectives and lower confidence limit approaches for alternative capture efficiency protocols requirements contained in 40 CFR part 63 subpart KK, appendix A.

Table 7 to Subpart WWWW of Part 63 - Options Allowing Use of the Same Resin Across Different Operations That Use the Same Resin Type

As specified in § 63.5810(d), when electing to use the same resin(s) for multiple resin application methods, you may use any resin(s) with an organic HAP content less than or equal to the values shown in the following table, or any combination of resins whose weighted average organic HAP content based on a 12-month rolling average is less than or equal to the values shown in the following table:

<table>
<thead>
<tr>
<th>If your facility has the following resin type and application method...</th>
<th>The highest resin weight percent organic HAP content, or weighted average weight percent organic HAP content, you can use for...</th>
<th>is...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CR/HS resins, centrifugal casting ¹,²</td>
<td>a. CR/HS mechanical</td>
<td>48.0³</td>
</tr>
<tr>
<td></td>
<td>b. CR/HS filament application</td>
<td>48.0</td>
</tr>
<tr>
<td></td>
<td>c. CR/HS manual</td>
<td>48.0</td>
</tr>
<tr>
<td>2. CR/HS resins, nonatomized mechanical</td>
<td>a. CR/HS filament application</td>
<td>46.4</td>
</tr>
<tr>
<td></td>
<td>b. CR/HS manual</td>
<td>46.4</td>
</tr>
<tr>
<td>3. CR/HS resins, filament application</td>
<td>CR/HS manual</td>
<td>42.0</td>
</tr>
<tr>
<td>4. non-CR/HS resins, filament application</td>
<td>a. non-CR/HS mechanical</td>
<td>45.0³</td>
</tr>
<tr>
<td></td>
<td>b. non-CR/HS manual</td>
<td>45.0</td>
</tr>
<tr>
<td></td>
<td>c. non-CR/HS centrifugal casting ¹,²</td>
<td>45.0</td>
</tr>
<tr>
<td>5. non-CR/HS resins, nonatomized mechanical</td>
<td>a. non-CR/HS manual</td>
<td>38.5</td>
</tr>
<tr>
<td></td>
<td>b. non-CR/HS centrifugal casting</td>
<td>38.5</td>
</tr>
<tr>
<td>6. non-CR/HS resins, centrifugal casting</td>
<td>non-CR/HS manual</td>
<td>37.5</td>
</tr>
<tr>
<td>7. tooling resins, nonatomized mechanical</td>
<td>tooling manual</td>
<td>91.4</td>
</tr>
<tr>
<td>8. tooling resins, manual</td>
<td>tooling atomized mechanical</td>
<td>45.9</td>
</tr>
</tbody>
</table>

¹ If the centrifugal casting operation blows heated air through the molds, then 95 percent capture and control must be used if the facility wishes to use this compliance option.
² If the centrifugal casting molds are not vented, the facility may treat the centrifugal casting operations as if they were vented if they wish to use this compliance option.
Nonatomized mechanical application must be used.

Table 8 to Subpart WWWW of Part 63 - Initial Compliance With organic HAP Emissions Limits

As specified in § 63.5860(a), you must demonstrate initial compliance with organic HAP emissions limits as specified in the following table:

<table>
<thead>
<tr>
<th>For</th>
<th>That must meet the following organic HAP emissions limit...</th>
<th>You have demonstrated initial compliance if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. open molding and centrifugal casting operations</td>
<td>a. a organic HAP emissions limit shown in Tables 3 or 5 to this subpart, or an organic HAP content limit shown in Table 7 to this subpart</td>
<td>i. you have met the appropriate organic HAP emissions limits for these operations as calculated using the procedures in § 63.5810 on a 12-month rolling average 1 year after the appropriate compliance date, and/or ii. you demonstrate that any individual resins or gel coats not included in (i) above, as applied, meet their applicable emission limits, or iii. you demonstrate using the appropriate values in Table 7 to this subpart that the weighted average of all resins and gel coats for each resin type and application method meet the appropriate organic HAP contents.</td>
</tr>
<tr>
<td>2. open molding, centrifugal casting, continuous lamination/casting, SMC and BMC manufacturing, and mixing operations</td>
<td>a. reduce total organic HAP emissions by at least 95 percent by weight</td>
<td>total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 95 percent by weight.</td>
</tr>
<tr>
<td>3. continuous lamination/casting operations</td>
<td>a. reduce total organic HAP emissions by at least 58.5 weight percent, or b. not exceed an organic HAP emissions limit of 15.7 lbs of organic HAP per ton of neat resin plus and neat gel coat plus</td>
<td>total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart and the calculation procedures specified in §§63.5865 through 63.5890, are reduced by at least 58.5 percent by weight.</td>
</tr>
<tr>
<td>4. continuous lamination/casting operations</td>
<td>a. reduce total organic HAP emissions by at least 95 weight percent or b. not exceed an organic HAP emissions limit of 1.47 lbs of organic HAP per ton of neat resin plus and neat gel coat plus</td>
<td>total organic HAP emissions, based on the results of the capture efficiency and destruction efficiency testing specified in Table 6 to this subpart and the calculation procedures specified in §§63.5865 through 63.5890, are reduced by at least 95 percent by weight.</td>
</tr>
<tr>
<td>5. pultrusion operations</td>
<td>a. reduce total organic HAP emissions by at least 60</td>
<td>i. total organic HAP emissions, based on the results of the capture efficiency and add-on control device...</td>
</tr>
</tbody>
</table>
percent by weight

destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 60 percent by weight, and

ii. as part of the notification of initial compliance status, the owner/operator submits a certified statement that all pultrusion lines not controlled with an add-on control device are using direct die injection, perform injection, and/or wet-area enclosures that meet the criteria of §63.5830.

6. pultrusion operations

a. reduce total organic HAP emissions by at least 95 percent by weight

i. total organic HAP emissions, based on the results of the capture efficiency and add-on control device destruction efficiency testing specified in Table 6 to this subpart, are reduced by at least 95 percent by weight.

Table 9 to Subpart WWWW of Part 63. Initial Compliance With Work Practice Standards

As required in §63.5860(a), you must demonstrate initial compliance with work practice standards as specified in the following table:

<table>
<thead>
<tr>
<th>For</th>
<th>That must meet the following standard...</th>
<th>You have demonstrated initial compliance if...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. a new or existing closed molding operation using compression/injection molding</td>
<td>uncover, unwrap or expose only one charge per mold cycle per compression/injection molding machine. For machines with multiple molds, one charge means sufficient material to fill all molds for one cycle. For machines with robotic loaders, no more than one charge may be exposed prior to the loader. For machines fed by hoppers, sufficient material may be uncovered to fill the hopper. Hoppers must be closed when not adding materials. Materials may be uncovered to feed to slitting machines. Materials must be recovered after slitting.</td>
<td>the owner or operator submits a certified statement in the notice of compliance status that only one charge is uncovered, unwrapped or exposed per mold cycle per compression/injection molding machine, or prior to the loader, hoppers are closed except when adding materials, and materials are recovered after slitting.</td>
</tr>
<tr>
<td>2. a new or existing cleaning operation</td>
<td>not use cleaning solvents that contain HAP, except that styrene may be used in closed systems, and organic HAP containing materials may be used to clean cured resin from application equipment. Application equipment includes any equipment that directly contacts resin between storage and applying resin to the mold or reinforcement. Materials must be recovered after slitting.</td>
<td>the owner or operator submits a certified statement in the notice of compliance status that all cleaning materials, except styrene contained in closed systems, or materials used to clean cured resin from application equipment contain no HAP.</td>
</tr>
<tr>
<td>3. a new or existing materials HAP containing materials storage operation</td>
<td>keep containers that store HAP containing materials closed or covered except during the addition or removal of materials. Bulk HAP-containing materials storage tanks may be vented as necessary for safety.</td>
<td>the owner or operator submits a certified statement in the notice of compliance status that all HAP-containing storage containers are kept closed or covered except when adding or removing materials, and that any bulk storage tanks are vented only as necessary for safety.</td>
</tr>
<tr>
<td>4. an existing or new SMC manufacturing operation</td>
<td>close or cover the resin delivery system to the doctor box on each SMC manufacturing machine. The doctor box itself may be open.</td>
<td>the owner or operator submits a certified statement in the notice of compliance status that the resin delivery system is closed or covered.</td>
</tr>
<tr>
<td>5. an existing or new SMC manufacturing operation</td>
<td>use a nylon containing film to enclose SMC.</td>
<td>the owner or operator submits a certified statement in the notice of compliance status that nylon-containing film is used to enclose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6. an existing or new mixing or BMC manufacturing operation</td>
<td>use mixer covers with no visible gaps present in the mixer covers, except that gaps up to 1 inch are permissible around mixer shafts and any required instrumentation.</td>
<td>the owner or operator submits a certified statement in the notice of compliance status that mixer covers are closed during mixing except when adding materials to the mixers, and that gaps around mixer shafts and required instrumentation are less than 1 inch.</td>
</tr>
<tr>
<td>7. an existing mixing or BMC manufacturing operation</td>
<td>not actively vent mixers to the atmosphere while the mixing agitator is turning, except that venting is allowed during addition of materials, or as necessary prior to adding materials for safety.</td>
<td>the owner or operator submits a certified statement in the notice of compliance status that mixers are not actively vented to the atmosphere when the agitator is turning except when adding materials or as necessary for safety.</td>
</tr>
<tr>
<td>8. a new or existing mixing or BMC manufacturing operation</td>
<td>keep the mixer covers closed during mixing except when adding materials to the mixing vessels.</td>
<td>the owner or operator submits a certified statement in the notice of compliance status that mixers are not closed except when adding materials to the mixing vessels.</td>
</tr>
</tbody>
</table>
| **9. a new or existing pultrusion operation manufacturing parts that meet the following criteria:** | **i. Not allow vents from the building ventilation system, or local or portable fans to blow directly on or across the wet-out area(s),**
ii. not permit point suction of ambient air in the wet-out area(s) unless that air is directed to a control device,
iii. use devices such as deflectors, baffles, and curtains when practical to reduce air flow velocity across the wet-out area(s),
iv. direct any compressed air exhausts away from resin and wet-out area(s),
v. convey resin collected from drip-off pans or other devices to reservoirs, tanks, or sumps via covered troughs, pipes, or other covered conveyance that shields the resin from the ambient air,
vi. cover all reservoirs, tanks, sumps, or HAP-containing materials storage vessels except when they are being charged or filled, and
vii. cover or shield from ambient air resin delivery systems to the wet-out area(s) from reservoirs, tanks, or sumps where practical. | the owner or operator submits a certified statement in the notice of compliance status that they have complied with all the requirements listed in 9.i through 9.vii. |
Table 10 to Subpart WWWW of Part 63 - Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying with a Percent Reduction Limit on a Per Line Basis
As required in §63.5865(a), in order to comply with a percent reduction limit for continuous lamination lines and continuous casting lines you must determine the data in the following table:

<table>
<thead>
<tr>
<th>For each line where the wetout area...</th>
<th>And the oven...</th>
<th>You must determine...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. has an enclosure that is not a permanent total enclosure (PTE) and the captured organic HAP emissions are controlled by an add-on control device</td>
<td>a. is uncontrolled</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual controlled wetout area organic HAP emissions, iii. annual uncontrolled oven organic HAP emissions, iv. the capture efficiency of the wet-out area enclosure, v. the destruction efficiency of the add-on control device, and vi. the amount of neat resin plus and neat gel coat plus applied.</td>
</tr>
<tr>
<td>2. has an enclosure that is a PTE and the captured organic HAP emissions are controlled by an add-on control device</td>
<td>a. is uncontrolled</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual controlled wetout area organic HAP emissions, iii. annual uncontrolled oven organic HAP emissions, iv. that the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, v. the destruction efficiency of the add-on control device, and vi. the amount of neat resin plus and neat gel coat plus applied.</td>
</tr>
<tr>
<td>3. is uncontrolled</td>
<td>a. is controlled by an add-on control device</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual uncontrolled oven organic HAP emissions, iii. annual controlled oven organic HAP emissions, iv. the capture efficiency of the oven, v. the destruction efficiency of the add-on control device, and vi. the amount of neat resin plus and neat gel coat plus applied.</td>
</tr>
<tr>
<td>4. has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device</td>
<td>a. is controlled by an add-on control device</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual controlled wetout area organic HAP emissions, iii. annual uncontrolled oven organic HAP emissions, iv. annual controlled oven organic HAP emissions; v. the capture efficiency of the wet-out area enclosure, vi. inlet organic HAP emissions to the add-on control device, vii. outlet organic HAP emissions from the add-on control device, and...</td>
</tr>
</tbody>
</table>
viii. the amount of neat resin plus and neat gel coat plus applied.

<table>
<thead>
<tr>
<th>For Each</th>
<th>That</th>
<th>You Must Determine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. wet-out area</td>
<td>is uncontrolled</td>
<td>annual uncontrolled wetout area organic HAP emissions.</td>
</tr>
</tbody>
</table>
| 2. wet-out area | a. has an enclosure that is not a PTE | i. the capture efficiency of the enclosure, and
ii. annual organic HAP emissions that escape the enclosure. |
| 3. wet-out area | has an enclosure that is a PTE | that the enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE. |
| 4. oven | is uncontrolled | annual uncontrolled oven organic HAP emissions. |
| 5. line | a. is controlled or uncontrolled | i. the amount of neat resin plus applied, and
ii. the amount of neat gel coat plus applied. |
| 6. add-on control device | | i. total annual inlet organic HAP emissions, and total annual outlet organic HAP emissions. |
Table 12 to Subpart WWWW of Part 63. Data Requirements for New and Existing Continuous Lamination Lines and Continuous Casting Lines Complying with a Lbs/Ton Organic HAP Emissions Limit on a Per Line Basis

As required in §63.5865(b), in order to comply with a lbs/ton organic HAP emissions limit for continuous lamination lines and continuous casting lines you must determine the data in the following table:

<table>
<thead>
<tr>
<th>For each line where the wetout area ...,</th>
<th>And the oven ...,</th>
<th>You must determine ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. is uncontrolled</td>
<td>a. is uncontrolled</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual uncontrolled oven organic HAP emissions, and iii. annual neat resin plus and neat gel coat plus applied.</td>
</tr>
<tr>
<td>2. has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device</td>
<td>a. is uncontrolled</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual controlled wetout area organic HAP emissions, iii. annual uncontrolled oven organic HAP emissions, iv. the capture efficiency of the wet-out area enclosure, v. the destruction efficiency of the add-on control device, and vi. the amount of neat resin plus and neat gel coat plus applied.</td>
</tr>
<tr>
<td>3. has an enclosure that is a PTE, and the captured organic HAP emissions are controlled by an add-on control device</td>
<td>a. is uncontrolled</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual controlled wetout area organic HAP emissions, iii. annual uncontrolled oven organic HAP emissions, iv. that the wet-out area enclosure meets the requirements of EPA Method 204 of appendix M to 40 CFR part 51 for a PTE, v. the destruction efficiency of the add-on control device, and vi. the amount of neat resin plus and neat gel coat plus applied.</td>
</tr>
<tr>
<td>4. is uncontrolled</td>
<td>a. is controlled by an add-on control device</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual uncontrolled oven organic HAP emissions, iii. annual controlled oven organic HAP emissions, iv. the capture efficiency of the oven, v. the destruction efficiency of the add-on control device, and vi. the amount of neat resin plus and neat gel coat plus applied.</td>
</tr>
<tr>
<td>5. has an enclosure that is not a PTE and the captured organic HAP emissions are controlled by an add-on control device</td>
<td>a. is controlled by an add-on control device</td>
<td>i. annual uncontrolled wetout area organic HAP emissions, ii. annual controlled wetout area organic HAP emissions, iii. annual uncontrolled oven organic HAP emissions, iv. annual controlled oven organic HAP emissions, v. the capture efficiency of the wet-out area enclosure, vi. the capture efficiency of the oven, vii. the destruction efficiency of the add-on control device, and viii. the amount of neat resin plus and neat gel coat plus applied.</td>
</tr>
</tbody>
</table>
6. has an enclosure that is a PTE, and the captured organic HAP emissions are controlled by an add-on control device

<table>
<thead>
<tr>
<th>If your facility...</th>
<th>You must submit...</th>
<th>By this date.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. is an existing source subject to this subpart</td>
<td>an Initial Notification containing the information specified in §63.9(b)(2)</td>
<td>no later than the dates specified in §63.9(b)(2).</td>
</tr>
<tr>
<td>2. is a new source subject to this subpart</td>
<td>the notifications specified in §63.9(b)(4) and (5)</td>
<td>no later than the dates specified in §63.9(b)(4) and (5).</td>
</tr>
<tr>
<td>3. qualifies for a compliance extension as specified in §63.9(c)</td>
<td>a request for a compliance extension as specified in §63.9(c)</td>
<td>no later than the dates specified in §63.9(c).</td>
</tr>
<tr>
<td>4. is complying with organic HAP emissions limit averaging provisions</td>
<td>a Notification of Compliance Status as specified in §63.9(h)</td>
<td>no later than 1 year plus 30 days after your facility’s compliance date.</td>
</tr>
<tr>
<td>5. is complying with organic HAP content limits, application equipment requirements, or organic HAP emissions limit other than organic HAP emissions limit averaging</td>
<td>a Notification of Compliance Status as specified in §63.9(h)</td>
<td>no later than 30 calendar days after your facility’s compliance date.</td>
</tr>
<tr>
<td>6. is complying by using an add-on control device</td>
<td>a. a notification of intent to conduct a performance test as specified in §63.9(e)</td>
<td>no later than the date specified in §63.9(e).</td>
</tr>
<tr>
<td></td>
<td>b. a notification of the date for the CMS performance evaluation as specified in §63.9(g)</td>
<td>the date of submission of notification of intent to conduct a performance test.</td>
</tr>
<tr>
<td></td>
<td>c. a Notification of Compliance Status as specified in §63.9(h)</td>
<td>no later than 60 calendar days after the completion of the add-on control device performance test and CMS performance evaluation.</td>
</tr>
</tbody>
</table>

Table 13 to Subpart WWWW of Part 63. Applicability and Timing of Notifications

As required in §63.5905(a), you must determine the applicable notifications and submit them by the dates shown in the following table:
Table 14 to Subpart WWWW of Part 63 - Requirements for Reports

As required in §63.5910(a), (b), (g), and (h), you must submit reports on the schedule shown in the following table:

<table>
<thead>
<tr>
<th>You must submit</th>
<th>The report must contain...</th>
<th>You must submit the report...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. compliance report</td>
<td>a. a statement that there were no deviations during that reporting period if there were no deviations from any emission limitations (emission limit, operating limit, opacity limit, and visible emission limit) that apply to you and there were no deviations from the requirements for work practice standards in Table 4 to this subpart that apply to you. If there were no periods during which the CMS, including CEMS, and operating parameter monitoring systems, was out of control as specified in §63.8(c)(7), the report must also contain a statement that there were no periods during which the CMS was out of control during the reporting period.</td>
<td>Semiannually according to the requirements in §63.5910(b).</td>
</tr>
<tr>
<td></td>
<td>b. the information in §63.5910(d) if you have a deviation from any emission limitation (emission limit, operating limit, or work practice standard) during the reporting period. If there were periods during which the CMS, including CEMS, and operating parameter monitoring systems, was out of control, as specified in §63.8(c)(7), the report must contain the information in §63.5910(e).</td>
<td>Semiannually according to the requirements in §63.5910(b).</td>
</tr>
<tr>
<td></td>
<td>c. the information in §63.10(d)(5)(i) if you had a startup, shutdown or malfunction during the reporting period, and you took actions consistent with your startup, shutdown, and malfunction plan.</td>
<td>Semiannually according to the requirements in §63.5910(b).</td>
</tr>
<tr>
<td>2. an immediate startup, shutdown, and malfunction report if you had a startup, shutdown, or malfunction during the reporting period that is not consistent with your startup, shutdown, and malfunction plan</td>
<td>a. actions taken for the event.</td>
<td>by fax or telephone within 2 working days after starting actions inconsistent with the plan.</td>
</tr>
<tr>
<td></td>
<td>b. the information in §63.10(d)(5)(ii).</td>
<td>by letter within 7 working days after the end of the event unless you have made alternative arrangements with the permitting authority. (§63.10(d)(5)(ii)).</td>
</tr>
</tbody>
</table>