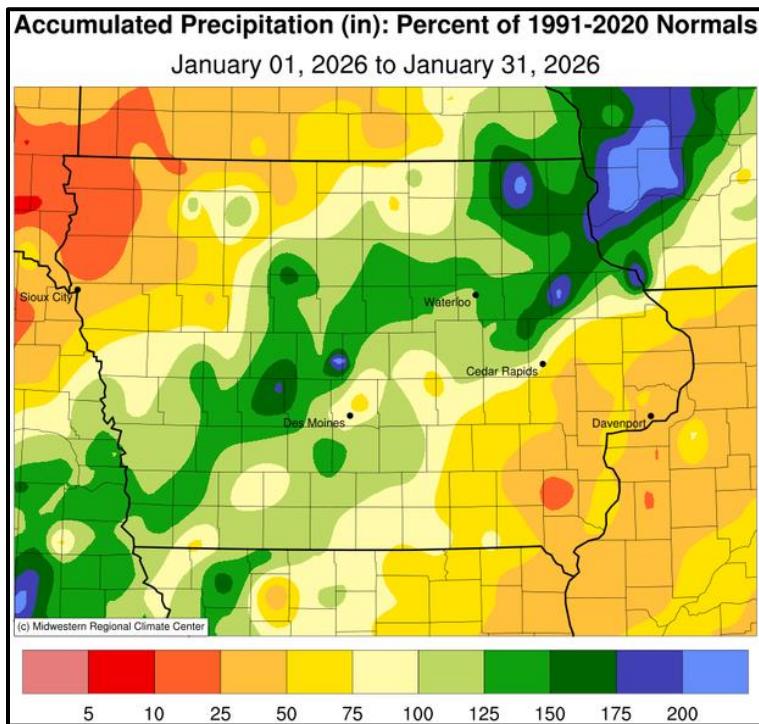


WATER SUMMARY UPDATE

Published Date February 5, 2026 | Issue 176

A snapshot of water resource trends for January 2026

IOWA DROUGHT CONDITIONS


CONDITION SUMMARY - JANUARY CONDITIONS IMPROVE

Despite below-normal precipitation for many months, which led to the return of drought in early October, previous drought watches have been lifted. In January, Iowa saw a slightly below normal accumulation of precipitation, and the impact was significant. Only half of the state now falls under D0 - Abnormally Dry classification, mainly in southern and eastern Iowa. Conditions in eastern Iowa improved enough that previous D1 - Moderate Drought areas were removed. Though streamflow largely remains normal as we are in the driest part of the year, soil moisture is trending drier across the state. The Climate Prediction Center's (CPC) Seasonal Drought Outlook suggests that the current area of drought will likely persist through April, with no indication of drought development for the rest of the state. For February, the precipitation outlook is uncertain, but the entire state is expected to experience colder-than-normal temperatures.

January Precipitation and Temperature

Iowa's statewide preliminary precipitation totaled 0.93 inches, or 0.04 inches below normal. Many stations in northwest and southeast Iowa reported the driest conditions, with around 30% of normal precipitation in the northwest corner. However, a narrow band of above-normal rainfall and snow ran southwest-to-northeast, effectively dividing the state into two halves. Monthly precipitation totals ranged from a trace in Sioux Center to 3.70 inches at Dubuque Lock and Dam.

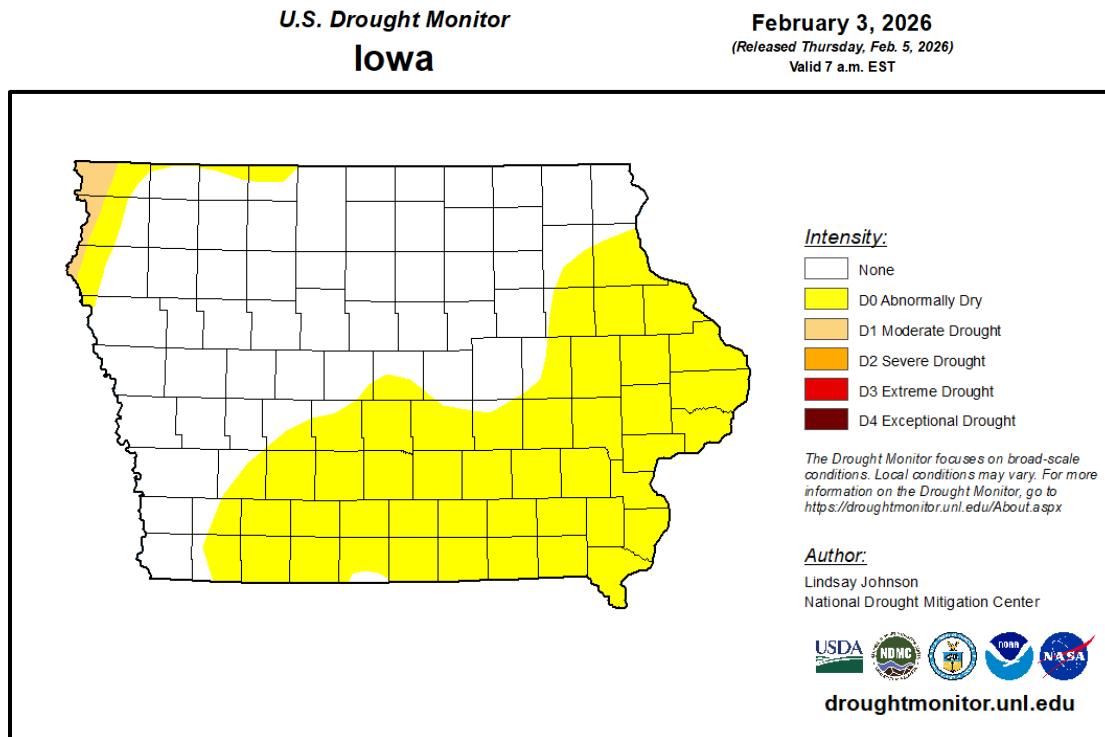
The preliminary statewide average temperature was 19.3 degrees, 0.2 degrees below normal. Lamoni reported the month's high temperature of 67 degrees on the 8th, 34 degrees above normal. Emmetsburg and Waukon recorded the month's low temperature of -24 degrees on the 24th, on average 31 degrees below normal.

Standardized Precipitation Index (SPI)

The SPI is an index based on accumulated precipitation for various time scales. SPI is the most commonly used indicator worldwide for detecting and characterizing meteorological droughts. The SPI indicator measures precipitation differences based on a comparison of observed total precipitation amounts over the period of interest with the long-term historical precipitation record for that period. Droughts are characterized by negative SPI values, while positive SPI values indicate wet periods. The range of SPI values is between -3 and +3, denoting "extremely dry" to "extremely wet".

Ninety-day SPI values for all drought regions in January (comparing November, December, and January precipitation) range from -0.3 to 0.1, with most values below zero. Drought Region 1 180-day SPI value had the largest decrease, and all values remain below zero.

Drought Region	3-month SPI	6-month SPI	IDP Classification \uparrow = improving \downarrow = degrading \leftrightarrow = no trend
1	-0.3	-1.2	Normal \uparrow
2	0.1	-0.4	Normal \uparrow
3	0.1	-0.3	Normal \uparrow
4	-0.3	-0.5	Normal \downarrow
5	-0.1	-1.0	Normal \downarrow


Standardized Streamflow Index (SSI) and Streamflow

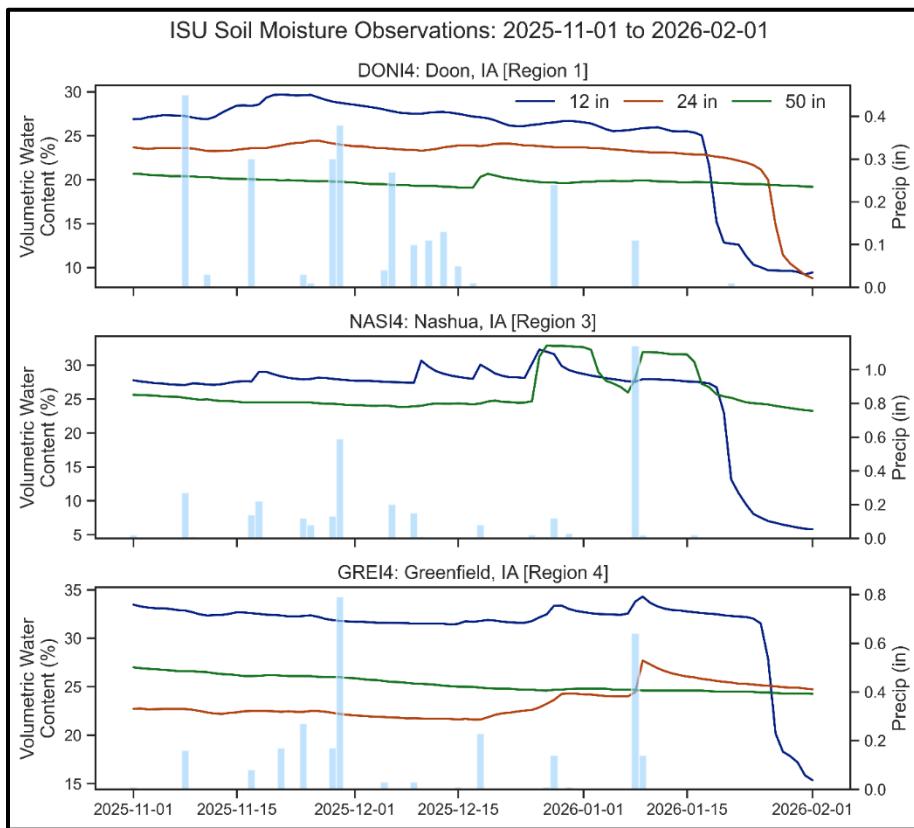
SSI is a metric that compares current streamflow against the historical record to determine how far away the current streamflow value is from the river's historical mean observed on the same date. SSI values in four of the five drought regions have increased, with Drought Region 2 with the largest 30-day SSI increase in January compared to December. Drought Region 3 saw no significant trend in 30-day SSI values relative to the previous month.

According to the US Geological Survey, in January, streamflow levels increased to normal conditions in the Nodaway and branches of the One Hundred and Two Rivers in southwest Iowa. The Floyd, East Fork Des Moines, Middle Raccoon, South Raccoon, Little Cedar, Shell, upper portion of the Cedar, Iowa, and Des Moines below Lake Red Rock increased to above normal conditions. Lizard Creek and Boone, Des Moines above Lake Red Rock, North Raccoon, Winnebago, middle portion of the Cedar, and upper portion of the Iowa Rivers increased to much above normal conditions. The Soldier, Chariton, and Fox Rivers decreased to below normal conditions.

US DROUGHT MONITOR AND DROUGHT CONDITIONS

The latest US Drought Monitor (USDM), released on February 5, shows improved conditions across Iowa. While D1 - Moderate Drought persists in a small area in far northwest Iowa, it was eliminated in eastern Iowa in early January. Currently, half of the state is experiencing some level of dryness, with the map showing further easing of D0 - Abnormally Dry and D1 - Moderate Drought, particularly in the eastern and southwestern regions.

The Seasonal Drought Outlook, released on January 31, 2026, by the CPC, is valid through April 30, 2026, and indicates a drought-free forecast for most of the state. The only exception is far northwestern Iowa, where existing drought conditions are expected to persist. While the Seasonal Precipitation Outlook offers no clear signal for precipitation across the state, the Seasonal Temperature Outlook suggests that below-normal temperatures are likely to prevail statewide. The Seasonal Drought Outlook considers the impacts of recent precipitation as well as seasonal precipitation outlooks.


OTHER WATER RESOURCE INFORMATION

Border River Conditions

Current conditions on both the Missouri and Mississippi Rivers show generally normal flows. On February 4, 2026, the US Army Corps of Engineers (USACE) reported that the 2026 calendar year runoff forecast for the Missouri River Basin above Sioux City continues to be below average at 23.4 Million Acre-Feet (MAF), or just 91% of average. The Corps indicated that the volume of water stored in the system of reservoirs is 48.9 MAF, below normal for this time of year.

January Soil Moisture

Low soil moisture conditions in surface soils - ranging between 20 to 40 percent saturation - are predominant across the entire state, with the lowest values observed in northwestern Iowa. Surface estimates have large uncertainty this time of the year due to cold conditions. Deeper soils show larger saturation, from 50% to 70%, and lower values from 30% to 40% in the entire western Iowa.

ADDITIONAL INFORMATION

This edition of the Water Summary Update continues to reflect use of the 2023 Iowa Drought Plan (IDP), which was developed as a collaborative effort between the Department of Natural Resources, the Department of Agriculture and Land Stewardship, and the Department of Homeland Security and Emergency Management. The IDP can be seen in its entirety on the DNR's website: [The Iowa Drought Plan](#).

For additional information on the information in this Water Summary Update please contact any of the following:

General Information, Jessica Reese McIntyre, Iowa DNR.....Jessica.ReeseMcIntyre@dnr.iowa.gov, 515-725-9547
State Climatologist & Drought Coordinator, Justin Glisan, IDALS.....Justin.Glisan@iowaagriculture.gov, 515-281-8981
Standardized Streamflow Index (SSI), Elliot Anderson, IGSelliott-anderson@uiowa.edu, 319-335-1575
Stream Flow, Padraic O'Shea, USGSposhea@usgs.gov, 319-358-3653
Stream Flow, Mike Anderson, Iowa DNRMichael.Anderson@dnr.iowa.gov, 515-725-0336
Soil Moisture, Filipe Quintero Duque, Iowa Flood Center.....felipe-quintero@uiowa.edu, 319-384-1727