Chapter One

A Need for Comprehensive Wildlife Conservation

Required Element #8: Each State's provisions to provide the necessary public participation in the development, revision, and implementation of its Strategy.

Background

The North American Model of Wildlife Conservation

Wildlife conservation frameworks in the United States and Canada share several distinct features and were developed as a result of the unique circumstances of the establishment of these nations. Collectively these frameworks are referred to as the *North American Model of Wildlife Conservation* (hereafter referred to as the Model). The democratic principles that shaped the U.S. also extended to the realm of wildlife ownership and management as the European notion of a landowner also owning the wildlife inhabiting the land was discarded in favor of a belief that wildlife are held in the public trust. The history, foundational principles, challenges to, and future of the Model are thoughtfully presented in a technical review developed by The Wildlife Society and the Boone and Crockett Club (Organ et al. 2012). The Model is founded upon seven principles, or pillars (Box 1-1). The underlying foundation of the Model is the Public Trust Doctrine.

Box 1-1

Pillars of the North American Model of Wildlife Conservation

- 1. Wildlife resources are a public trust.
- 2. Markets for game are eliminated.
- 3. Allocation of wildlife is by law.
- 4. Wildlife can be killed only for legitimate purposes.
- 5. Wildlife is considered an international resource.
- 6. Science is the proper tool to discharge wildlife policy.
- 7. Democracy of hunting is standard.

The Public Trust Doctrine

The Public Trust Doctrine asserts the idea that certain resources, including wildlife, are owned by no one and are held in trust by the government for the benefit of present and future generations. This doctrine is at the root of this Plan. The Public Trust Doctrine stems from early Greek and Roman law, was reaffirmed by the English Magna Carta in 1215, and later redefined in English common law in 1641, which was subsequently applied to the 13 British Colonies (Batcheller et al. 2010). After U.S. independence, the Doctrine was first upheld by the U.S. Supreme Court in "Martin v. Waddell," an 1842 decision that declared that the public held a common right to certain resources. More recent case law has upheld and expanded the reach of the Doctrine, although its extent varies among states. For a review of the Public Trust Doctrine as it relates to wildlife conservation and management, see Batcheller et al. (2010).

In the U.S., fish and wildlife management responsibility is shared by the Federal government and State, Tribal, and Territorial governments. Through the Public Trust Doctrine, states are trustees of wildlife except in instances where the Constitution provided for federal oversight.

Traditional Funding Model for Wildlife Conservation in the U.S.

Since the development of modern-day wildlife management in the 1930s, the funding model for wildlife conservation in the U.S. has been heavily reliant upon sportsmen and women. This relationship is described by Organ et al. (2012):

"From the earliest days of active management and enforcement by nascent state fish and wildlife agencies, hunters, anglers, and trappers have funded restoration and conservation initiatives. License and permit fees, a motor boat fuels tax, and excise taxes on hunting, shooting sports, and angling products provide dedicated funding for habitat conservation, harvest management, research, restoration, and monitoring initiatives by state agencies. The excise tax programs have permanent, indefinite appropriation status, which means that the revenues are automatically distributed to the states each year and not subject to congressional whim."

To learn more about how conservation is funded in the U.S., please visit the <u>Association of Fish & Wildlife Agencies</u> (AFWA) webpage dedicated to the subject.

Efforts to Modernize the Funding Model for Wildlife Conservation

This funding model served wildlife conservation well for many decades and led to the successful restoration of many species of wildlife as well as the habitats upon which they depend. However, as participation in hunting and angling declines have been observed over the long term, it has become increasingly clear that the reliance upon sportsmen and women for conservation of all wildlife is insufficient and unsustainable. Furthermore, as all wildlife, not just game and sportfish species, are held in the public trust, the fairness of the funding system has been questioned.

Sustainable Funding Initiatives

Since the 1980s, state fish and wildlife agencies have struggled to meet an increasing number of constituent demands while facing larger and more complex threats to the natural world, while relying on a funding model which was developed in large part to restore populations of sportfish and game. As the scientific fields of Wildlife and Fisheries Management, Conservation Biology, Landscape Ecology, Global Change Biology and Human Dimensions of Wildlife Conservation advanced and matured, the complexity of the conservation issues faced by State Fish and Wildlife Agencies was increasingly recognized. The need for management attention to nongame species and to functioning ecosystems became increasingly apparent. In the 1990s, in response to these increased challenges, the Association of Fish and Wildlife Agencies (AFWA) initiated the Teaming With Wildlife (TWW) coalition on behalf of State Fish and Wildlife Agencies. This coalition sought sustainable, dedicated funding for fish and wildlife conservation at the national level. In the 1990s, the coalition focused on the creation of an excise tax on birding, hiking, camping, and other recreational equipment, one that would mirror and build from the success of long established excise taxes for hunting, shooting sports, and angling equipment. However, some members of the outdoor recreation industry opposed the effort and it failed to gain support in Congress.

Starting in 1996, the TWW coalition made a second large-scale attempt to find dedicated funding for all wildlife, this time based on the use of offshore oil and gas lease funds. The Conservation and Reinvestment Act (CARA) would have generated \$350 million annually for wildlife conservation nationwide; approximately \$4.5 million would have been lowa's share. In 2001, CARA was passed in the House and had widespread support in the Senate. Ultimately, however, the measure failed. Instead, a vastly smaller, one-time appropriation for state wildlife diversity programs was enacted, called the Wildlife Conservation and Restoration Program (WCRP). Beginning in 2002, a similar program was enacted, called the State and Tribal Wildlife Grant Program, which has received annual appropriations ever since.

In 2015, AFWA established the Blue Ribbon Panel on Sustaining America's Diverse Fish & Wildlife Resources to develop recommendations on a sustainable funding model for conservation of the full array of the nation's fish & wildlife. Panel members included representatives of the outdoor recreation retail and manufacturing sector, the energy and automotive industries, private landowners, educational institutions, conservation organizations, sportsmen's groups and state and federal fish and wildlife agencies. The Blue Ribbon Panel made two recommendations:

- Congress dedicate up to \$1.3 billion annually in existing revenue from the development of energy and mineral resources on federal lands and waters to the Wildlife Conservation Restoration Program.
- The Blue Ribbon Panel will examine the impact of societal changes on the relevancy of fish and wildlife
 conservation and make recommendations on how programs and agencies can transform to engage and serve
 broader constituencies.

The first recommendation led to legislation known as Recovering America's Wildlife Act, which was introduced in 2021 in the 117th Congress, and again in 2023 in the 188th Congress. Despite considerable bipartisan support for the Act, it was not passed. The second recommendation led to the development of a Relevancy Roadmap for Fish and Wildlife Agencies, as well as a Community of Practice.

State and Tribal Wildlife Grants Program

Appropriations titled *State and Tribal Wildlife Grants (STWG)* have been passed annually since 2002, though the program is subject to yearly Congressional debate. The program's annual allocations have averaged approximately \$67.8 million. These grants, managed by the U.S. Fish and Wildlife Service, have required non-federal matching funds that vary from 25% to 50% depending on the year and type of program. Iowa DNR has received approximately \$17 million in WCRP and SWG funds from 2001-2025, with an average annual appropriation of ~\$686,300. These funds have been

used to implement this Plan through increased research, habitat protection, and management for Species of Greatest Conservation Need designated in the Plan. Iowa must match the SWG income with non-federal funds and many partners have worked together to leverage the federal funds in order to most effectively conserve the species and habitats that were identified as priorities within this Plan. Projects using SWG funds must benefit Species of Greatest Conservation Need identified in a State's Wildlife Action Plan.

Other Funding Initiatives

In an effort to diversify and strengthen the funding needed to carry out wildlife conservation, States have attempted to direct funding to wildlife conservation from a variety of sources, such as lottery funds, general fund appropriations, special license plates, and tax checkoffs. A few state fish and wildlife agencies, including Minnesota, Missouri and Arkansas, have obtained broad-based funding to augment their traditional funding sources. In 2010, lowa voters approved the creation of the Natural Resources and Outdoor Recreation Trust Fund, to be funded through a portion of the next sales tax increase. However, in 2025, lowa still awaits the sales tax increase necessary to supply that Trust Fund with money.

In lowa other efforts to diversify funding sources have been successful, but funding for wildlife conservation remains at levels vastly outmatched by the need. For example, lowa's Chickadee Checkoff program currently generates approximately \$150,000 annually. The Resource Enhancement and Protection (REAP) Natural Resource License Plate funds have also provided a boost to DNR's ability to conserve a diverse array of wildlife, providing roughly \$400,000/year. In 2024, Natural Resource License Plates accounted for approximately 0.7% of all lowa license plates. When compared to roughly \$38 million generated by hunters and anglers, these funding sources are relatively small. When this Plan was initially developed in 2005, it was estimated that the annual shortfall in funds needed for implementation was \$39,375,000. That annual shortfall has now risen to roughly \$80 million (Table 10-1). Thus, despite several successful efforts to increase funds dedicated to wildlife conservation, the existing funding remains far short of the need.

State Wildlife Action Plans

In 2003, as a requirement to maintain eligibility for State Wildlife Grant funds, all states, territories and tribes which received SWG appropriations were required by Congress to develop Comprehensive Wildlife Conservation Strategies, now generally referred to as State Wildlife Action Plans (SWAPs). All 50 States and five U.S. territories developed a SWAP in 2005.

State Wildlife Action Plans outline the steps that are needed to conserve wildlife and habitat before they become too rare or costly to restore. Taken as a whole, these proactive plans present a national action agenda for preventing wildlife from becoming endangered.

State Wildlife Action Plans conserve wildlife and natural places. They assess the health of each state's wildlife and habitats, identify the problems they face, and outline the actions that are needed to conserve them over the long term.

The Eight Required Elements of State Wildlife Action Plans

As a condition of receiving SWG funds, Congress mandated that state fish and wildlife agencies develop a *Comprehensive Wildlife Conservation Plan* (State Wildlife Action Plan) by October 1, 2005, and review and revise the plan every 10 years thereafter. Congress directed that the plans must identify and be focused on the species in greatest need of conservation yet address the full array of wildlife and wildlife-related issues. Congress identified eight required elements to be addressed in each State's Plan:

- 1. Information on the distribution and abundance of wildlife, including low and declining populations as each State Fish and Wildlife agency [DNR] deems to be appropriate, that are indicative of the diversity and health of wildlife of the State. Low and declining populations of fish and wildlife are defined in the Plan as Species of Greatest Conservation Need (SGCN).
- 2. Locations and relative conditions of key habitats and community types essential to conservation of SGCN.

- 3. Descriptions of problems which may adversely affect SGCN or their habitats and priority research and survey efforts needed to identify factors that may assist in restoration and improved conservation of SGCN and their habitats.
- 4. Descriptions of conservation actions necessary to conserve SGCN and their habitats and establish priorities for implementing such actions.
- 5. Provisions for periodic monitoring of SGCN and their habitats, for monitoring the effectiveness of conservation actions, and for adapting these conservation actions as appropriate to respond to new information or changing conditions.
- 6. Each State's provisions to review its Strategy [Plan] at intervals not to exceed ten years.
- 7. Each State's provisions for coordination during the development, implementation, review, and revision of its Strategy [Plan] with Federal, State, and local agencies and Indian Tribes that manage significant areas of land water within the State, or administer programs that significantly affect the conservation of SGCN or their habitats.
- 8. Each State's provisions to provide the necessary public participation in the development, revision, and implementation of its Strategy [Plan].

The Plan must utilize the best available knowledge on the distribution and abundance of wildlife, historical documentation and other references to identify lowa's wildlife conservation needs. The Plan must address the needs of all wildlife, but focus primarily on SGCN and their habitats as determined by DNR.

Iowa's Wildlife Action Plan

lowa's Plan was initially approved in 2006, modified in 2012, and fully revised in 2015 and 2025. This version represents the second comprehensive revision of Iowa's Plan.

Framework Outlined in Initial Plan

The Steering Committee which first developed Iowa's Plan made several decisions which have left a lasting imprint upon this first comprehensive revision.

- 1. The IWAP would be a wildlife plan; plants are not specifically addressed except as an integral component of wildlife habitat.
- 2. The IWAP would have a 25-year focus. Long-term continuity is needed to accomplish ambitious objectives, but achievements are needed to be accomplished in a time frame that can be appreciated by Plan supporters.
- 3. The IWAP would be strategic in nature. Operational plans to implement the visions and strategies would be crafted later to fit the unique missions and capabilities of conservation organizations and individuals interested in Plan Implementation.

To assure the Plan would involve a diversity of conservation viewpoints, representatives of 105 conservation, recreation, education and agricultural support organizations were invited to serve on a formal Advisory Group; 93 individuals representing 59 organizations agreed to participate (Appendix 2).

The Advisory Group met in Des Moines on July 17, 2004. The purpose of the meeting was to develop a vision for the IWAP and strategies for attaining that vision by the year 2030. The Advisory Group was updated on the planning process and the status of wildlife and their habitats in Iowa. The large group then broke into eight focus groups and developed vision elements and conservation actions. When condensed by the steering committee, these vision elements and conservation actions form the basis for the strategies and priorities outlined in Chapters 6-10.

One of the key factors identified during the process of determining the SGCN was the lack of current, credible information on the distribution and abundance of many nongame species. For this reason, the Multiple Species Inventory and Monitoring Program has been a signature aspect in the implementation of this Plan.

2012 Modification

In 2012, an update to certain portions of the Iowa Wildlife Action Plan was completed and approved. That modification was focused primarily on adding and removing several species from the list of SGCN, as well as editing the map of High

Opportunity Areas for Collaborative Conservation in order to more fully represent the priorities of conservation entities within the state.

During the public comment period for the 2012 modification, comments were received from eight people (3 DNR employees and 5 non-employees). To the extent that integration of these comments was feasible and within the scope of this modification, the comments were all integrated. Those who submitted comments that addressed broader issues of the scope, priorities, or format of the IWAP were informed that their comments had been compiled and would be addressed in the full review/revision of the IWAP

2015 Comprehensive Revision Process

Persons representing much of the ecological and conservation expertise existing in the state were included in various stages of the revision process. A variety of efforts were made to ensure that information about the Plan received statewide distribution to the public as well. The public comment period for the draft IWAP revision was held from August 4, 2015-September 11, 2015. A total of three written comments were received and incorporated in whole or part into the final version of the Plan.

2025 Comprehensive Revision Process

Individuals across the state with relevant ecological and conservation expertise once again engaged in various stages of the revision process, either as members of committees or as consultants and reviewers of specific portions of the IWAP.

A variety of efforts were made to ensure that information about the Plan received statewide distribution to the public as well:

- A complete draft of the revised Plan was placed on the DNR's web site with the email address for the Plan Coordinator, who received comments.
- Statewide news releases advertised completion of the Draft revised Plan, where it was available and how to comment.

Box 1-2

The ABC's of Wildlife Action Plans (SWAP and SWG and SGCN (oh my!))

SWAP = State Wildlife Action Plan SWG = State and Tribal Wildlife Grant Program SGCN = Species of Greatest Conservation Need

These three acronyms are used often in reference to wildlife diversity conservation. The use of so many acronyms can lead to confusion about how they relate. **SWAPs** are comprehensive conservation strategies developed by states, territories, and tribes. These documents identify **SGCN** which are indicative of the diversity and health of the region's wildlife. Development of **SWAPs** was required by Congress in order for states, tribes, and territories to remain eligible for federal funding provided through the **SWG** program. The **SWG** program is the only funding source dedicated solely to implementation of **SWAPs**. Conservation of **SGCN** is a requirement of projects funded by the program. However, the **SWAPs** are meant to be comprehensive strategies, rather than just spending plans for **SWG**. Together, the **SWAPs** have created a national blueprint for the future of fish and wildlife conservation.

Iowa's Conservation Legacy

lowa has a long and important role in the advancement of fish and wildlife conservation. Some of the most prominent figures in the nation's history of conservation have roots in lowa:

• Iowa Congressman John Lacey brought us the Lacey Act, which was passed in 1900. This Act essentially brought the era of market hunting to a close. The Act prohibits interstate transport or export of illegally harvested species.

- Aldo Leopold, author of "Game Management" and "A Sand County Almanac" (among many other works) was a
 conservationist, philosopher, author, forester, hunter, and educator. Leopold, commonly viewed as the father of
 wildlife management, was born and raised in Burlington, Iowa. In addition to serving as the nation's first Chair of
 Game Management (at UW-Madison), he helped found The Wilderness Society and The Wildlife Society.
- Jay N. "Ding" Darling, was a Pulitzer Prize-winning editorial cartoonist for the Des Moines Register. Darling was instrumental in the development of the Federal Duck Stamp Program and designed its first stamp. He was also involved in founding the National Wildlife Federation.
- Paul Errington was a professor of Zoology and led the nation's first Cooperative Fish and Wildlife Research Unit at Iowa State College (now Iowa State University).

lowans strongly favor conservation. In 2013, a non-partisan survey of lowa's voters found that 97% of respondents agree with the statement "We need to ensure that our children and grandchildren can enjoy lowa's land, water, wildlife, and natural beauty the same way we do" (Weigel and Metz, 2013).

Preserving all the species that reside in or migrate through the state and their habitats is important to maintaining the health of lowa's wildlife which contributes not only to the economy, but also to the aesthetic value of the state. Maintaining lowa's biological diversity will help this natural resource persist for many years into the future and continue to provide nature's benefits that we enjoy through hunting, fishing, wildlife viewing, and other outdoor recreational activities.

While a large number of individuals contributed in some manner to the IWAP, ultimate responsibility for its content lies with the Implementation Committee and the Iowa Department of Natural Resources.

References Cited in Chapter One

- Batcheller, GR, MC Bambery, L Bies, T Decker, S Dyke, D Guynn, M McEnroe, M O'Brien, JF Organ, SJ Riley, and G Roehm. 2010. The Public Trust Doctrine: implications for wildlife management and conservation in the United States and Canada. Technical Review 10-1. The Wildlife Society, Bethesda, Maryland, USA.
- Organ, JF, V Geist, SP Mahoney, S Williams, PR Krausman, GR Batcheller, TA Decker, R Carmichael, P Nanjappa, R Regan, RA Medellin, R Cantu, RE McCabe, S Craven, GM Vecellio, and DJ Decker. 2012. The North American Model of Wildlife Conservation. The Wildlife Society Technical Review 12-04. The Wildlife Society, Bethesda, Maryland, USA.
- Weigel, L and D Metz. 2013. Key findings from a survey of Iowa voters regarding a tax increase to fund the natural resources & outdoor recreation trust fund. Fairbank, Maslin, Maullin, Metz & Associates, and Public Opinion Strategies.

Chapter Two

History of the Formation and Conservation of Iowa's Natural Communities

Required Element #2: Descriptions of the extent and condition of habitats and community types essential to conservation of species identified in Element 1.

Physiography

Topography

lowa is a state of 56,239 square miles (36,016,500 acres) bordered by the Mississippi River on the east, and the Missouri and Big Sioux Rivers on the west. Iowa has a relatively low relief - elevations run from a high of 1,670 feet above mean sea level in Osceola County in northwestern lowa to 480 feet above mean sea level in Lee County in the southeastern corner of the state.

Climate

lowa's climate is classified as humid continental and is characterized by warm summers and cold winters. The long-term (1895-2024) average annual temperature was 47.7°F. More recently, the average annual temperature during 2000-2024 was 48.7°F. Average temperature during the summer is 71.8°F (from 2000 to present). December to February winter temperatures average 23.0°F from 2000 to present (NOAA 2025). Average winter temperature differences range 6.5 degrees between north and south. Temperature minimums of -25°F are not uncommon in northern lowa. lowa's temperature has been gradually increasing (Box 2-1).

The long-term (1895-2024) statewide average annual precipitation was 32.5 inches (NOAA 2025). A shorter-term average used to estimate "normal" rainfall amounts (2000-2024) was 34.86 inches. The northwest part of the state is the driest with an annual precipitation of 30.74 inches (1991-2020 average) while the eastern third is the wettest with an annual precipitation of 37.81 inches (1991-2020 average, Midwestern Regional Climate Center, 2025). Annual precipitation has been increasing (Box 2-1).

lowa often experiences seasonal extremes and frequent local, rapid weather changes due to the convergence of cold, dry Arctic air, moist maritime air from the Gulf of Mexico, and dry Pacific air masses. Like most states, periods of severe drought and periods of excessive precipitation can have a dramatic impact on terrestrial and aquatic vegetation as well as their associated fish and wildlife species.

Statewide winter snowfall averages 32 inches. Northern Iowa (north of U.S. Highway 30) receives frequent snow often associated with strong winds, blowing and drifting. Southern Iowa may experience substantial snowfall as well as more frequent ice storms. This results in a snow cover that is often covered by a surface crust of ice or hard snow. Harsh conditions seldom last for more than a few weeks in most of the state, even less in the south half.

These climatic factors combine to influence the length of the growing season across the state. Late frosts in the spring and early freezes in the fall result in a reduced growing season of 135 days in northeastern and northwestern lowa. The longest growing season is in southeastern lowa, with an average of 175 days. The statewide average growing season is 158 days long.

lowa now has a statewide average of five more frost-free days per year than 50 years ago, and 8 to 9 more than at the beginning of the 20th century. This provides lowa with a longer growing season, earlier seasonal snowmelt, and longer ice-free period on lakes and streams (Takle, 2011).

Box 2-1

Seasonal Climate Trends

1905

1915

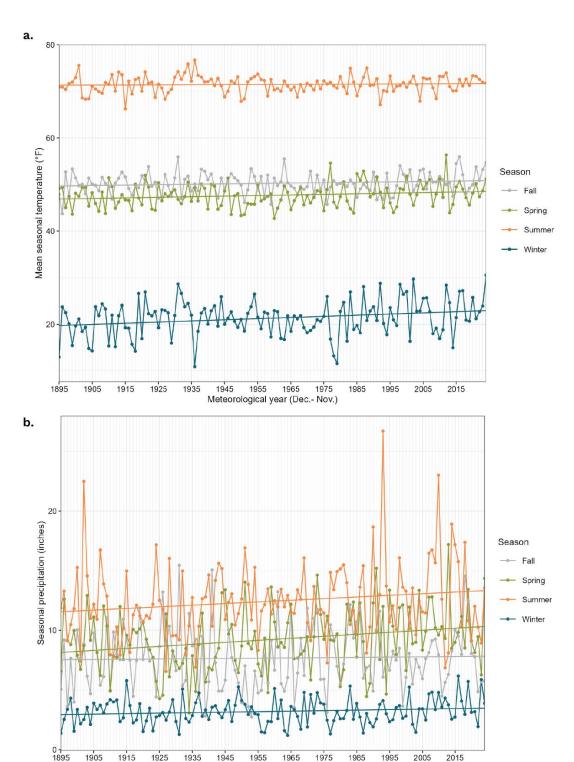
1925

1935

1955

Meteorological year (Dec.- Nov.)

1975


1985

1995

2005

2015

Annual temperatures in Iowa show an increasing trend with the warming concentrated in winter and fall (a). Annual precipitation has also had an increasing trend, with most increases coming in spring and summer (b) (NOAA 2025). These changing weather patterns can influence wildlife distribution, survival, disease, or the ecosystems they rely on.

Geology

lowa's natural communities are as much a result of its recent geologic past as they are a result of climatic conditions (Prior 1991). The boundaries of the ecoregions that resulted from this geologic history coincide well with the boundaries of other habitat based classification systems (Map 2-1). The names of the ecoregions follow the US EPA (Omernik) Level III and IV Ecoregions. The numbers and descriptions of each Level IV ecoregion are taken from Chapman et al. (2002). Descriptions of Level III ecoregions are taken from the US Environmental Protection Agency (EPA)'s <u>Descriptions of Level III Ecoregions</u>, accessed on the EPA website.

Map 2-1. Level III & IV Ecoregions of Iowa (US EPA - Omernik)
Large font denotes the names of Level III ecoregions and small font, Level IV ecoregions.

Level III Ecoregion Descriptions

The following narrative is organized by EPA Level III ecoregions. Although Level III ecoregions are relatively homogeneous, tables under each major heading describe subtle differences in landform, geology and native plant communities that characterize the EPA Level IV ecoregions they encompass.

40. The Central Irregular Plains

The Central Irregular Till Plains have a mix of land use and are topographically more irregular than the Western Corn Belt Plains (47) to the north, where most of the land is in crops. The region, however, is less irregular and less forest covered than the ecoregions to the south and east. The potential natural vegetation (PNV) of this ecological region is a grassland/forest mosaic with wider forested strips along the streams than historically found in Ecoregion 47 to the north. The mix of land use activities in the Central Irregular Plains includes mining operations of high-sulfur bituminous coal. The disturbance of these coal strata in southern lowa has degraded water quality and affected aquatic biota.

Table 2-1. Characteristics of Level IV Ecoregions within the Central Irregular Plains

Level IV Ecoregion Name	Physiography	Geology	Potential Natural Vegetation
40a. Loess Flats and Till Plains	Glaciated. Low hills and smooth plains. Perennial streams with many channelized.	Moderate loess over loamy till and clay loam till. Pennsylvanian sandstone, limestone, shale. Also, Mississippian limestone in lowa.	Mosaic of Little Bluestem- Sideoats Grama prairie, Bur Oak woodland, and Chinkapin Oak woodland.

47. Western Corn Belt Plains

Once mostly covered with tallgrass prairie, over 80 percent of the Western Corn Belt Plains is now used for cropland agriculture and much of the remainder is in forage for livestock. A combination of nearly level to gently rolling glaciated till plains and hilly loess plains, an average annual precipitation of 26 to 37 inches, which occurs mainly in the growing season, and fertile, warm, moist soils make this one of the most productive areas of corn and soybeans in the world. Agricultural practices have contributed to environmental issues, including surface and groundwater contamination from fertilizer and pesticide applications as well as concentrated livestock production.

Table 2-2. Characteristics of Level IV Ecoregions within the Western Corn Belt Plains

Level IV Ecoregion Name	Physiography	Geology	Potential Natural Vegetation
47a. Northwest Iowa Loess Prairies	Irregular plains. Dendridic streams.	Moderate to thick loess over clay-loam till. Cretacious shale, sandstone, and limestone, some Precambrian Sioux Quartzite.	Big Bluestem-Indiangrass prairie, Little Bluestem-Indiangrass prairie, limited areas of Bur Oak woodland.
47b. Des Moines Lobe	Smooth to irregular plains. Dendridic streams and drained depressional wetlands.	Loamy till with no loess cover. Ground, stagnation and end moraines.	Big Bluestem-Indiangrass prairie, Cordgrass wet prairie, limited areas of Bur Oak woodland.
47c. Eastern Iowa and Minnesota Drift Plains	Irregular to smooth plains. Low gradient streams.	Thin loess cover over loamy till. Devonian and Silurian limestone and dolomite.	Big Bluestem-Indiangrass prairie, areas of Bur Oak mixed savanna and woodlands.
47d. Missouri Alluvial Plain	Smooth to irregular alluvial plain. Channelized streams.	Alluvium over Pennsylvanian and Cretacious shale, sandstone and limestone.	Northern floodplain forest, pin oak forest, and cordgrass wet prairie.
47e. Steeply Rolling Loess Prairies	Open low hills. Intermittent and perennial streams, many channelized.	Moderate to thick loess, 25-50 feet, over clay loam till. Pennsylvanian shale, sandstone and limestone.	Big Bluestem-Indiangrass prairie, and White Oak-Red Oak Woodland, Bur Oak mixed woodland.
47f. Rolling Loess Prairies	Irregular plains to open low hills. Intermittent and perennial streams, many channelized.	Moderate to thick loess, generally less than 25 feet, over clay loam till. Pennsylvanian and Cretacious shale, sandstone and limestone.	Mosaic of Big Bluestem- Indiangrass prairie, and Bur Oak woodland.
47m. Western Loess Hills	Open hills and bluffs. Intermittent and perennial streams.	Thick loess, 60-150 feet over clay-loam till. Pennsylvanian shale, sandstone and limestone in southern half of region; Cretacious shale, sandstone and limestone in the northern half.	Mosaic of Bur Oak woodland and Big Bluestem-Indiangrass prairie.

52. The Driftless Area

The hilly uplands of the Driftless Area easily distinguish it from surrounding ecoregions. Much of the area consists of a deeply dissected, loess-capped, bedrock dominated plateau. The region is also called the Paleozoic Plateau because the landscape's appearance is a result of erosion through rock strata of Paleozoic age rather than glacial or post-glacial deposition. Although there is evidence of glacial drift in the region, its influence on the landscape has been minor compared to adjacent ecoregions. In contrast to adjacent ecoregions, the Driftless Area has few lakes, most of which are

reservoirs with generally high trophic states. Livestock and dairy farming are major land uses and have had a major impact on stream quality.

Table 2-3. Characteristics of Level IV Ecoregions within the Driftless Area

Level IV Ecoregion Name	Physiography	Geology	Potential Natural Vegetation
52b. Paleozoic Plateau/ Coulee Section	Dissected hills, rolling to steep- sided valleys. Perennial streams.	Thin loess and patches of glacial drift over Silurian, Ordovician and Cambrian dolomite, shale, sandstone, and limestone.	Mosaic Little Bluestem-Indian grass prairie, Bur Oak and White Oak forests, and areas of Maple-Basswood forests.
52c. Rochester/ Paleozoic Plateau Upland	Rugged region of bluffs and valleys cut by tributaries of the Mississippi River.	Thinly deposited loess and pre- Wisconsin glacial till over an eroded Paleozoic sedimentary plateau. Pre-Wisconsin till exposed mainly in the west where loess deposits are thin and discontinuous	Mosaic Little Bluestem-Indian grass prairie on flat, fire-prone remnants of the plateau, with oak forests developing downslope. Mesic forest of basswood and sugar maple on north and east-facing slopes with wet mesic forests on silty bottomlands.

72. Interior River Valleys and Hills

The Interior River Lowland is made up of many wide, flat-bottomed terraced valleys, forested valley slopes, and dissected glacial till plains. In contrast to the generally rolling to slightly irregular plains in adjacent ecological regions to the north (54), east (55) and west (40, 47), where most of the land is cultivated for corn and soybeans, a little less than half of this area is in cropland, about 30 percent is in pasture, and the remainder is in forest. Bottomland deciduous forests and swamp forests were common on wet lowland sites, with mixed oak and oak-hickory forests on uplands. Paleozoic sedimentary rock is typical and coal mining occurs in several areas.

Table 2-4. Characteristics of Level IV Ecoregions within the Interior River Valleys and Hills

Level IV Ecoregion Name	Physiography	Geology	Potential Natural Vegetation
72d. Upper Mississippi Alluvial Plain	Smooth to irregular alluvial plains. Channelized streams.	Alluvium. Brown to gray silt, clay, sand, and gravel. Thickness of alluvial and older fluvial deposits > 100 feet.	Cottonwood-willow riparian forest, Pin Oak forest, Cordgrass wet prairie.

The glacial history and topography of each landform affect the type and distribution of current wildlife habitats and agricultural land use. These land uses are displayed in Map 4-3. Present-day land uses and habitats are discussed further in Chapter 4.

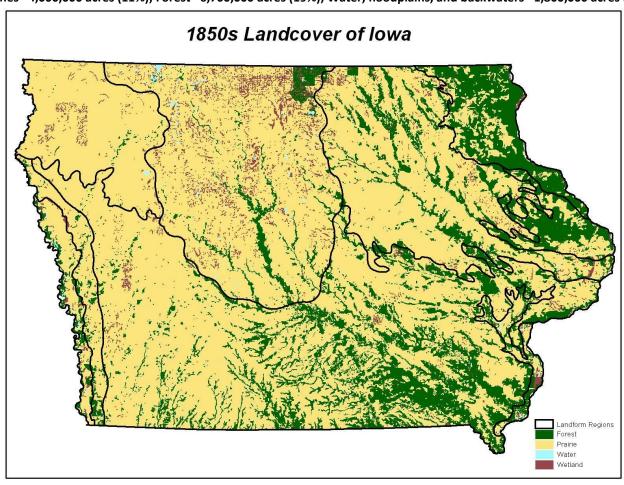
Historic Plant Communities

Pre-settlement Iowa lay at a biological crossroads. Hardwood forests dominated the cooler and more humid lands east of the Mississippi River. The warmer, drier mixed grass prairie and prairie potholes of the northern Great Plains lay to the west. To the north, great maple-basswood and pine forests covered the Great Lakes region. To the south, oak savannas gradually gave way to the vast oak-hickory forests of the Missouri Ozarks. These different ecological regions blended together in Iowa to produce a unique landscape of great biological diversity (Map 2-2).

Roughly two-thirds of the state (an estimated 23 million acres) was dominated by lush prairies. Most was tallgrass prairie, although short grasses were present on hot, dry sites. Nearly 7 million acres of forest or forest-prairie savanna covered much of the eastern third of Iowa and followed the river valleys into the prairies to the north and west. Around 4 million acres of prairie pothole marshes dotted recently-glaciated and poorly-drained northcentral and northwest Iowa where larger wetlands and lakes protected oak savannah from prairie fires. Another million acres of backwaters, sloughs and flooded oxbows were found in the floodplains of the Mississippi, Missouri and larger inland rivers.

Prairies

The prairie was more than just a monolithic sea of grass. Prairie plants are adapted to subtle changes in moisture and soils that occur along a gradient from lowlands to drier prairie ridges. Poorly drained wetlands and wetland margins supported rank growths of sedges, cord grass, bluejoint, prairie muhly grass, and panic grass, with common forbs such as gayfeather, prairie dock, Turk's-cap lily and New England aster. Better-drained loamy soils on slopes and broad ridges were covered with more moderate stands of switchgrass, big bluestem, Indian grass and forbs like compass plant, rattlesnake master, smooth aster, wild indigo and goldenrod. Drier sites on gravel and sand ridges or steep slopes supported shorter and more open stands of little bluestem, side-oats



grama, and needlegrass, with forbs like pasque flower, silky aster, yellow pucoon and common milkweed.

Forests

Closed-canopy mature forests as we know them today existed only on the floodplains where fire could not routinely penetrate. Silver maple, American elm, and swamp white oak dominated the wettest sites, with hickories, hackberry, black walnut, white ash, red oak, basswood and slippery elm on lower slopes. Shrubs were not abundant and were primarily young silver maples and hackberry with catbriar, poison ivy and grape.

Map 2-2. Landcover of Iowa in the 1850s (from Government Land Office original public land survey of Iowa). Prairie ~23,300,000 acres (65%); Wetlands/ prairie pothole marshes ~4,000,000 acres (11%); Forest ~6,700,000 acres (19%); Water, floodplains, and backwaters ~1,800,000 acres (5%).

Forests on drier slopes and uplands were primarily oak openings or savannas - scattered old oak trees or small clumps of oaks with an understory of prairie or mixed prairie-forest shrubs and herbs. Burr oak, with its thick, fire-retardant bark dominated with some red and white oaks on moister sites. The understory was primarily prairie grasses and forbs but hazel, coralberry, sumac and grape occurred where fire was less common.

The heaviest concentrations of timber were in the cooler and moister eastern third of the state. In the west only the floodplains and the coolest sites on north and east facing slopes in the deepest river valleys were timbered. Because of the many river systems that penetrated the prairies to the north and west at least some timber and shrub lands were found across most of the state.

Fire and grazing

Drought, fire and grazing combined to make Iowa's prairie-wetland-forest communities dynamic ecosystems. In wet years, water levels were high, and multiple years of high-water levels caused wetland vegetation to gradually die out, and marshes began to look like ponds or small lakes. But dry weather runs in approximately 10 to 15-year cycles on the prairies, with severe drought at roughly 20-year intervals. Drought caused wetland basins to temporarily de-water. Seeds buried in moist wetland soils were able to germinate once again and dense stands of emergent vegetation were reestablished and accumulated plant material decomposed in the aerobic sediments liberating nutrients. Thus, regenerated wetlands awaited only the end of drought to return them to their former productive condition.

In wet years fire was less prevalent on the prairie. Without burning the dead stems and leaves of grasses and forbs accumulated on the ground and this litter created a cooler, moister environment. In some cases sun tolerant trees, and coralberry and other shrubs were able to survive and spread from forest edges farther into the grasslands. During drought, fire burned off large areas of prairie and forest, killed invading shrubs and trees, eliminated the litter, returned nutrients to the soil and allowed grasses to regain their dominance. Thus, the boundary between forest and prairie ecosystems was a dynamic back and forth movement. Fire also allowed annual plants like ragweed, fleabane, thistle and primrose to take a temporary foothold before the longer-lived grasses and forbs recovered and choked them out.

Although fires were common, it is impossible to say how much and how frequently the prairies burned. Weather is seldom in complete synchrony over all of Iowa. Local dry spells undoubtedly created mini-droughts that lowered wetlands and produced frequent fires, while just a few miles away precipitation was normal. Even in normal years a dry late summer could result in a partial drawdown of marshes and occasional fires. The network of wetlands, creeks and rivers probably stopped smaller fires from expanding too greatly.

Grazers and browsers like bison, wapiti and deer relied on this mosaic of habitat condition and also contributed to it. They suppressed trees and shrubs and slowed the growth of tall grasses where they fed intensively. Wapiti and bison created wallows - sandy areas where they rolled in the loose earth to remove hair and dislodge insects. Prairie dogs, though not common in lowa, kept the vegetation around their towns clipped short. Even plains pocket gophers created small openings over their mounds where annual plants could gain a foothold.

The result of all this variety in soils, topography, weather, fire and animal activity was a great patchwork of plant communities in both time and space. On some sites 250 species of plants could be found. Not only were prairies, forest and wetlands in close proximity, but at any given location plant communities were in a state of growth, retrenchment or suppression depending on their local history.

Historic Wildlife Communities

The great diversity of plant communities that covered pre-settlement lowa also supported a variety and abundance of wildlife that was foreign to settlers from the East. Iowa native Aldo Leopold, writing in 1931 in his Game Survey of the North Central States, said, "...no region in the world was originally more richly endowed with game than this one, quantity and quality both considered. Contrary to common belief, the cream of its game country was the prairie type..." Prairie animals like wapiti were common, and bison, pronghorn, prairie chickens and sharp-tailed grouse penetrated the tallgrass prairies from the west. White-tailed deer, wild turkeys, passenger pigeons, northern bobwhite quail, ruffed grouse and woodcock followed the deciduous woodlands and river valleys into the prairie from the East.

Waterbirds

The prairie pothole and riverine wetlands provided excellent nesting habitat and attractive resting and feeding stops for millions of migrating waterfowl between their nesting and wintering grounds. Giant Canada geese, trumpeter swans and over a dozen species of ducks nested in Iowa, mainly blue-winged teal, mallards, redheads, and wood ducks. Between 3-4 million ducks may have been raised annually.

Other waterbirds were also plentiful. White pelicans migrated along corridors of major rivers and lakes and used some large marshes and lakes for breeding. Sandhill cranes were abundant during migration and nested here occasionally. Whooping cranes were less numerous, but nested frequently in the marshes of northcentral and northwest lowa. More than 30 species of shorebirds migrated through lowa. Of these, long-billed curlew, marbled godwit and upland sandpiper nested here, and the American goldenplover, Eskimo curlew and common snipe were abundant during migration. Sora was an extremely common marsh rail.

Furbearers

Beaver, muskrat and river otters were found throughout lowa, associated entirely with marshes, streams and rivers. Muskrat were most abundant in the prairie marshes of northcentral lowa and maintained very high numbers. Beaver and river otters were associated more with riparian habitats. Mink, badger, and striped skunks were not highly sought after, but each must have been abundant. Many farm boys made pocket change by trapping highly abundant spotted skunks, locally known as civet cats and until recently thought to be extirpated from the state. Raccoon and opossum, two of the most abundant furbearers today, may have spread westward onto the prairie in association with the spread of agriculture and farmsteads.

Canids and other Large Predators

Carnivorous and omnivorous furbearers fed on the diversity of small mammals, birds and their nests and other prey. Although descriptions of canid communities are often confusing and varied over time as settlement progressed, it seems that two subspecies of gray wolves occurred in lowa - the smaller Great Plains wolf that followed the bison and wapiti herds and was most common in the western two-thirds of the state, and the eastern timber wolf, a slightly larger and often darker subspecies, inhabited the forested eastern third, mostly in the northeast corner of the state. Coyotes were found statewide, living between wolf packs and perhaps becoming more common as wolves were extirpated. Red foxes were found in the prairies and at the prairie-forest border in northern lowa. Since in some parts of their range red foxes are actively excluded, even killed by coyotes, they may have become common after wolves were exterminated and predator control began to focus on coyotes. The gray fox, more omnivorous than other canids, seemed to occupy a niche that enabled it to co-exist with them and was found primarily in the eastern third of the state, perhaps because of its tendency to climb trees for fruit and bird eggs. Bobcats were numerous, occurring statewide in a variety of forested and shrubby habitats. Mountain lions, or cougars, were scattered across the state, but reports are few, perhaps because of their secretive nature. The lynx, a larger version of the bobcat which principally inhabited the coniferous forests of the Great Lakes states and Canada, was at least occasionally found here.

The Black Bear was the largest predator in pre-settlement Iowa. Although their preferred habitat was woodlands, they occasionally wandered into the prairies, usually along river corridors. Reports of Black Bears originate from 48 counties fairly uniformly scattered across the state but they were almost certainly most common in eastern Iowa.

Fish and Mussels

The historical baseline for Iowa fishes is based on the work conducted in the middle and late 1880s by Seth Meek for the United States Fish Commission while he was a professor at Coe College in Cedar Rapids. Meek surveyed streams and natural lakes in most major river basins in Iowa, and his survey was published in 1892. Even though his surveys were conducted approximately 50 years after urban and agricultural development of the state began, Meek's surveys suggest an exceptionally diverse pre-settlement fish community in Iowa's streams, rivers, and natural lakes and suggest considerably different and higher quality aquatic ecosystems than exist today.

Roughly 145 fish species are considered native to Iowa, with five of these species now considered extirpated. In the 2012 version of this Plan, 49% of fish species were listed as SGCN, comprising 24% of all Iowa SGCN. The most significant declines appear to be in fish species that require vegetated backwater habitat in which to spawn. In addition, lowered levels of water quality and decline of aquatic habitat quality has either eliminated or caused reductions in the Iowa distributions of some Iowa fishes.

Historically, lowa's rivers and streams hosted huge mussel beds. Burial mounds along the Mississippi River provided evidence that the Mississippi River provided abundant food supplies of freshwater fishes and mussels to pre-historic Native American tribes (Harlan et al. 1987).

Today, 54 mussel species are considered native to Iowa (including 3 that are now considered extirpated from Iowa). In the 2012 version of this Plan, 53% of mussel species were listed as SGCN, comprising 9% of all Iowa SGCN.

Nongame Species

Records of the un-hunted fauna that inhabited Iowa are largely nonexistent. The early explorers and settlers were concerned mostly with wildlife as a source of food, hides or feathers, or as perceived threats to livestock and crops. But of 440 species of birds and mammals that resided here or migrated through Iowa, less than 15 percent were ever hunted or trapped. Serious scientific efforts to describe Iowa's wildlife did not begin until nearly 40 years after settlement and by then significant changes had already occurred.

Birds

In all, more than 180 species of birds nested in Iowa. Abundant wetlands were habitat for countless yellow-headed blackbirds, marsh wrens, American and least bitterns, black and Forster's terns, black-crowned night-herons, rails and dozens of other species. Wetland-prairie margins were nesting sites for song sparrows, sedge wrens and northern harriers. Wooded wetlands and floodplain forests were the favored habitat of colonies of nesting herons and egrets as well as Carolina parakeets, an abundant species that flocked in the hundreds. Native parakeets were extinct in Iowa by the 1870s due to deforestation, hunting for feathers to adorn women's hats and possibly due to

competition with introduced European honey bees that competed for tree cavity nest sites. To see one today would indeed make our remaining most colorful species look drab by comparison.

Where shrubby, early successional stages of forest pushed into the prairies cardinals, yellowthroats, spotted towhees and rose-breasted grosbeaks and other forest edge species were abundant, as well as ruffed grouse. Larger stands of mature forests provided nesting sites for interior forest species like cerulean warblers, ovenbirds, scarlet tanagers, wood thrushes, pileated woodpeckers, and passenger pigeons. Riparian woodlands would have been habitat for black-billed cuckoos, red-headed woodpeckers, belted kingfishers and northern flickers. Red-headed woodpeckers would have been especially abundant in oak savannah. Each forest type had its own unique assemblage of small mammals as well.

Grasshopper and vesper sparrows would have nested in recently burned prairies. A year or two after burning or intensive grazing, regenerating prairie would have provided nesting cover for bobolinks and dickcissels. Henslow's sparrows, savanna sparrows and upland sandpipers would have nested in oldest and rankest prairies with dense ground litter. Loggerhead shrikes and mourning doves would have sought out grasslands with a shrub component.

Reptiles, Amphibians, and Invertebrates

Even less is known of the historic reptiles, amphibians and invertebrates of lowa. More than 60 species of reptiles and amphibians were eventually found in lowa. Prairie and prairie potholes, riverine wetlands, prairies and woodlands provided homes for a diversity of lizards like the great plains skink and six-lined racerunner, common turtles like the ornate box and painted turtles, snakes like the timber and massasauga rattlesnakes and frogs like the green and gray tree frogs and leopard frogs which erupted in incredible numbers in wet prairie during wet years.

Impacts of Settlement

Settlement in Iowa progressed roughly southeast to northwest. Most of the south half of the state had been inhabited by the end of the 1840s; northcentral and northwest Iowa were settled in the 1850s; Lyon County in extreme northwest Iowa was the last to be settled, receiving its first homestead family in 1866.

Human population growth was slow at first. By 1840 only 43,000 settlers had braved the prairies. Pressure for cheap land increased after the Civil War, however, and massive land grants were made to railroad builders to stimulate completion of a trans-continental railroad network. By 1870, lowa's population had increased to nearly 650,000; by 1900 it had skyrocketed to 2 million.

At the same time lowa was being settled, a revolution was overhauling industry and agriculture. The advent of improved farm implements, coupled with a rapidly expanding population base devoted mostly to agriculture, had a devastating and permanent impact on lowa's native plant communities.

Forests

Woodlands were the first to go. Early pioneers, emerging from the eastern deciduous forest, often likened tallgrass prairie to an ocean of grass, with scattered savanna or woodlands along streams like a distant shoreline on the horizon. Some found the light and openness of the prairie invigorating, others found it oppressive, accustomed as they were to woodlands, where trees were a symbol of soil fertility. Some early settlers preferred farming woodlands rather than open prairie, fearing that land too poor to grow trees would not grow crops either. While experience would quickly prove that wrong, forests felt the bite of the pioneer's axe early in our history.

Early farmers tended to settle close to timber for building materials and fuel. By 1875 when most of the lowa prairie had been settled, woodland acres sold for \$35/ac while prairie land, thought to be less fertile, went for \$5/acre (ac). As late as 1867, in Marshall County Iowa, good timbered land was selling for up to \$50/ac while prairie brought a paltry \$3/ac (Madson 1995).

Most of the initial forest clearing in Iowa was done to allow conversion of the land to agriculture. Iowa's native hardwoods did not prove valuable as building materials. Most of the lumber that eventually built the farm homes, barns and livestock dwellings that dotted the countryside came from the great pineries of Minnesota and Wisconsin. Starting in the 1850s, however, railroad expansion and the discovery of coal in southern Iowa fueled a demand for oak ties and mine timbers that would last into the early 20th century. By 1875, just one-third of the original 6.7 million acres of primitive forest remained, most on rough land or in floodplains either too steep or too wet to plow.

Prairies

The effect on our extensive prairies and prairie-wetland complexes was even more devastating. When pulled by up to 5 teams of horses or yokes of oxen a steel *breaking plow* could shear through and break up 2 acres a day of the foot-thick sod with its intricately intertwined root systems. On the open prairie, huge breaking plows and teams of oxen were required to prepare the land for farming, requiring a major capital investment. If a farmer lacked such equipment he had to hire it done for as much as \$600/quarter section, a staggering sum. The newly exposed soil was so fertile that a crop, first wheat and later corn, was planted directly on the overturned furrows. The next year a second plowing would complete the conversion of prairie to a field tillable by conventional methods. Starting in the 1850s, lowa lost nearly 2 percent of its 25 million acres of native prairie a year, 3 million acres a decade, until less than 30,000 acres (0.1%) remained after 80 years.

Wetlands

The vast prairie-pothole wetlands of northcentral and northwest lowa took longer to impact. Through the first 20 years of settlement there was plenty of good land available without trying to drain and farm wetlands. In 1850, Congress passed the SwampLand Act. It directed each county to survey all wetlands and sell them at auction for 5 cents an acre, the first of what would become a century-long succession of government-subsidized efforts to drain wetlands. County drainage commissions and drainage districts were soon organized. Eventually pothole soils were discovered to be some of the most productive when dry, further accelerating the demand for drainage.

The first drainage attempts were with hand-dug, open ditches that drained small, shallow wetlands. This reasonably ineffective approach was quickly replaced by massive teams of oxen pulling breaking plows that created furrows through and beyond a wetland to a stream that received the water. Steam dredges did not replace manual labor until nearly 1900 and this was the era of draining lakes and large marshes into excavated ditches (bull ditches) that led to streams. Underground ceramic tiles were developed to drain smaller potholes into ditches as early as 1858. By 1917 modern clay tiles were used to drain seasonally wet fields into extensive, inter-connected drainage systems that had eliminated all but the largest wetlands. By 1906 just 25 percent of the original 4 million acres of pothole wetlands remained. By 1970 less than 1% of lowa's historic wetlands remained.

Rivers

Even in the late 1800s, Meek noticed and reported impacts to the state's streams and fish communities:

The prairie was originally covered with a dense growth of prairie grass and herbaceous plants, which tended to produce a stiff sod. During heavy rains this sod absorbed the water, preventing its direct flow into the rivers, and it reached the latter chiefly by slowly filtering through the soil. The streams were thus relieved from overflow, and were kept from drying up during the summers. I have been informed that many streams, formerly deep and narrow, and abounding in pickerel, bass, and catfishes, have since grown wide and shallow, while the volume of water in them varies greatly in the different seasons, and they are now inhabited only by bullheads, suckers, and a few minnows. The breaking of the native sod for agricultural purposes has especially affected the smaller streams in this respect, while the construction of ditches and the practice of underdraining have had their effects upon the larger ones. Moreover, the constant loosening of the soil, in farming, tends to reduce it to that condition in which it is readily transported by the heavy rains to produce muddy currents.

Border Rivers - Engineering began on the Mississippi River starting in 1824. Initially, this consisted mainly of snag removal. An act of Congress in 1907 approved creation of a 6-foot navigation channel from the Missouri River northward to Minneapolis. In 1935, further legislation provided for a 9-foot navigational channel maintained through a system of locks and dams as well as dredging. Navigation locks and dams result in a series of pools within the river, leading to a change in the fish community within the river towards those preferring more slow-moving water. (Harlan et al. 1987).

Engineering along the Missouri River for flood control and navigation drastically altered the river system. Between 1923 and 1976, the Missouri was corralled from a wide, braided, dynamic river to a single narrow channel. The channel area was reduced by 80%, with ~35,000 acres of this reduction being in Iowa. By the 1980s, sport and commercial fisheries along the Missouri had dwindled to a tiny fraction of their former abundance.

Interior Rivers - Because Iowa has productive, and therefore intensively cultivated, soils, the rivers which run through and drain these areas are subjected to large and sometimes sudden fluctuations. Draining heavily cultivated lands also results in silt loads, leading to sedimentation. This has changed the fish community assemblage, especially in lower, more turbid reaches of streams where the remaining species tend to be tolerant of lower water quality.

Additionally, many low-head dams were constructed across the state, usually for milling or water supply uses. By 1870, more than 1000 low-head dams dotted the state's interior rivers, restricting seasonal movement of fish species, as well as mussel species dependent upon their fish-hosts for dispersal.

Wildlife

lowa's original wildlife populations suffered a similar fate as its native habitats and plant communities. Species that competed with humans for space, or were particularly useful for food or fiber, or required very specific habitats that were eliminated or drastically reduced did not survive. Others of less importance to humans held on in low numbers wherever suitable habitat remained. Those species that could adapt to or favored agricultural environments thrived, at least until agriculture became too pervasive.

By 1900 the large game animals and the predators that lived on them were gone (bison, black bear, bobcats, gray wolves, mountain lions, wapiti, and white-tailed deer). Smaller predators like coyotes and red and gray fox were more adaptable, fed on a wider range of smaller prey animals, and were able to survive in lowa into the 20th century. Economically important furbearers like river otter and beaver were also essentially gone by 1900.

Wild turkeys, passenger pigeons, prairie chickens and waterfowl all fed occasionally on settler's crops and were considered pests, and all were valuable as table fare or to sell at local and big city

markets like Chicago. The spread of railroads into the Midwest in the 1860s and 1870s allowed hunters to reach the best hunting grounds and permitted shipping frozen game to markets in Chicago, Milwaukee and as far as New York City. Game was served as a delicacy in many eastern restaurants in the late 19th century. As city dwellers developed more leisure time in the 1880s, hunting for sport or recreation also became more popular.

The take of game birds was enormous. A single net could capture 1,500 passenger pigeons. Entire flocks of turkeys could be pot shot from the roost on cold winter nights. Hunters could occasionally take 100 or more prairie chickens in a day (seasonal takes of 900 or more chickens were recorded). Sport hunters were able to take up to 100 ducks in a single day. The best market hunters could take up to 3,000 ducks in a season. One group of 7 hunters shipped 14,000 ducks east in a single year. A careful hunter willing to pick his shots could take a half dozen mallards or 8 or 9 prairie chickens with a single shot. Avid woodcock hunters could take 40 birds a day; one market hunter took up to 3,000 woodcock a year in northeast Iowa. A hunter could easily take several ruffed grouse in a day but apparently few were ever sold at market. A variety of shorebirds - snipe, long-billed and Eskimo curlews, marbled godwits, upland and golden plovers were frequently hunted and at least some sold at market. Whooping and sandhill cranes were also hunted for the table and because they were a pest in grain fields.

But as hunting pressure increased in the 1870s and 1880s, habitat loss was also accelerating. Iowa was becoming settled. Nearly every square mile of land had several farm families living on it. New farmers looked to more ways to create tillable land. Much of the forested land that remained into the 1870s was turned into pasture. Cattle, sheep and hogs destroyed the undergrowth and competed with wildlife for acorns and other native food. A variety of species that so far had been able to withstand the hunting pressure alone began to be affected by the increasing fragmentation and elimination of their habitats. Whatever the reason - unregulated hunting, habitat loss, or more likely a combination of both - much of the wildlife that had existed here for centuries was in severe decline by the late 1870s.

Ever smaller flights of passenger pigeons continued into the mid-1870s, dwindled more into the 1880s and 90s and were gone by 1900. Wild turkeys were gone from northeast lowa by 1854, from most of central lowa by the 1870s, and disappeared from southern lowa by 1910. Ruffed grouse were able to hold on into the 20th century only in the most heavily forested counties of northeast lowa.

Prairie chickens and bobwhite quail fared somewhat better. Opening the prairies to grain farming provided an alternate winter food supply in grain stubble. More reliable foods allowed their numbers to increase and their range to expand as long as there was enough prairie remaining for nesting and winter cover. Prairie chicken numbers may have peaked in the 1870s. After that prairie chickens and quail began declining as too much prairie was converted to crop fields. Both hung on at lower numbers well into the 20th century.

Waterfowl and shorebirds continued to migrate in large numbers through lowa until the end of the 19th century. Fewer were produced here as prairies were turned over and wetlands drained, but spectacular migrations from the breeding grounds on the prairies to the north undoubtedly softened the blow of local habitat loss. By the 1890s, however, the loss of wetlands was taking a toll and by 1900 market hunting was a thing of the past. The last Sandhill and Whooping crane nests were found in Hancock County in 1894, the last long-billed curlew nest in 1890, and the last giant Canada goose nest in 1910.

Clearing of forests, conversion of native prairies to farm fields and the draining of wetlands eliminated many species of songbirds, reptiles and amphibians. Most of the loss went unnoticed by settlers, and by the time the first naturalists began studying the flora and fauna of lowa, much change had already occurred and went unrecorded.

Species	Suspected Extirpated from Iowa
Species	Suspected Extripated from lowa
American Bison	1870
Black Bear	1876
Bobcat	About 1900
Carolina Parakeet	1870s
Eskimo Curlew	1901
Giant Canada Goose	1930s

Greater Prairie-chicken 1955
Long-billed Curlew 1890
Mountain Lion 1867
Passenger Pigeon 1896
Sandhill Crane 1894
Trumpeter Swan 1883
Wapiti (Elk) 1871

White-tailed deer Prior to 1885

Whooping Crane 1894 Wild Turkey 1913

Wolf Prior to 1910

Laws enacted to protect declining species generally addressed harvest levels but did not provide mechanisms for preventing habitat loss. For most of lowa's early history harvest activity was totally unregulated. Seasons, bag limits, shooting hours and restrictions on weapons effectively did not exist or were not enforced. Settlers shot game for the table year around as they could find it. Sport and market hunters were active primarily in fall and spring to exploit concentrations of migratory birds. By the 1870s market hunters were building freezers to prolong their ability to market their products. Nesting birds suffered the additional indignity of having their eggs collected for food or by egg collectors, a common hobby in the later 1800s. There seemed to be no need for regulation - the game seemed limitless, far more than anyone could possibly use.

Fish

Since the time of settlement by Europeans in the early to mid-19th century, the natural resources of the state of lowa have undergone extensive changes. The development of lowa for the agricultural, industrial, and urban-residential uses that exist today has caused several types of changes to the aquatic resources of lowa. Extensive agricultural use of the landscape increased the levels of sediment and the turbidity in lowa's lakes and flowing waters. The straightening of once-meandered stream and river channels reduced both the amount and quality of the habitats available for lowa's aquatic life. The more rapid movement of water from the altered landscape increased the magnitude of flood flows in lowa streams and rivers, thus causing erosion of stream banks and lowering (degradation) of the channels of streams and rivers. As part of channel straightening, the natural vegetation bordering stream channels, including trees, was removed. An additional threat to lowa's native fishes is the introduction of non-native invasive fishes. Such impacts began almost 140 years ago with the intentional introduction of the Common Carp to lowa waters in the early 1880s. Invasive species continue to be a concern such as the late 20th century arrival of the Bighead Carp and Silver Carp in the state's waters.

The types of aquatic life that inhabit a stream, river, or lake reflect the physical and chemical quality of the aquatic environment. Changes in distributions of lowa's fishes closely reflect the changes that have occurred over the approximately 180 years of agricultural, industrial, and municipal development in the state. Several fish species that were unable to adapt to the changed aquatic environments have been eliminated from the state's waters. Another group of fishes continues to exist in the state but occur in an increasingly smaller number of areas with some limited to a single stream segment. The status of several species remains poorly-known. The majority of lowa fishes, however, appears to have adapted to the changed conditions in the aquatic habitats and continue to thrive in the state.

Freshwater mussels

Mussels were a seemingly inexhaustible resource in lowa's rivers and streams. Freshwater mussels were collected for use in a variety of industries, but primarily for use in the manufacture of pearl buttons. Use of freshwater mussels for the pearl button industry began in 1891. In three years alone (1912-14), it is estimated that 672 tons of mussels were taken from lowa's interior rivers (Coker 1919). As Coker (1919) described:

"It was the custom of the early shellers, as now, to gather the river-run of mussels and cook out the meats of all, but the shells of only two or three species were saved, while the others were thrown away as worthless. The shellers cooked out the entire lot of mussels in the hope of finding additional pearls and slugs. The shelling and the button industries, therefore, have a history similar to many other American industries in that the pioneers wasted large quantities of good material through lack of knowledge and experience and while secure in the thought that the supply was inexhaustible."

Shell button factories in Mississippi River towns began with the first big pearl strike on the lowa reach of the Mississippi in 1889 and the beginning of the pearl button industry in 1891. Between 1898 and 1916 there were 300 professional "clammers" working the Mississippi between Burlington and Clinton, Iowa. However, in response to over- harvesting and pollution, large-scale clamming with dredges was outlawed in Wisconsin in 1915, and by 1946 it was outlawed altogether below Muscatine, Iowa.

It may be that the entire historic mussel community in Iowa will remain unknown. What is known is that Iowa's rivers and lakes have changed radically over the last 150 years. The Big Sioux River in northwest Iowa was once known as the "Silvery Sioux" for its clear water flowing over a gravel bottom. Iowa's rivers today have been altered by channelization and levees that isolate them from their floodplains, sediment accumulation from uplands and incised banks covering their historic gravel beds, nutrient enrichment leading to low oxygen levels, higher high flows due to drainage in their watersheds, lower summer flows due to lowered water tables, dams that obstruct fish passage and a host of other factors related to fish and mussel habitat.

Change Continues in the 20th Century

In less than a century the landscape of Iowa was changed more by settlement than that of any other state. In 1900, most of Iowa's 2 million residents lived on small, nearly self-sufficient farms of 100 acres or less. They subsisted on corn, wheat, oats, hay and a variety of livestock. Iowa had been converted from a seemingly limitless prairie-forest-wetland mosaic into a domesticated landscape of small farms, grain fields and pastures. There were still undrained sloughs and wet pastures on many farms and tracts of prairie could still be found to remind farmers of vintage Iowa, but these native areas were scattered and becoming ever smaller. In the early 20th century they were still looked on as waste areas needing conversion to a more productive use. Most of Iowa's native wildlife was either gone or reduced to such low numbers that rabbits, squirrels, quail and the occasional prairie chicken were the only game animals available to most hunters.

The changes in Iowa's landscape in the 20th century were less dramatic but in some ways more devastating. Wildlife and its habitats were impacted by constant improvements in farming technology and the effects of government agricultural policy on farmers' decisions about how their land would be used.

Improved farming technology

Change was slow at first. Much of northern lowa was too wet to permit iron-wheeled tractors to function so gasoline-powered equipment did not replace horses on a large scale until rubber balloon tires became available in the late 1930s. Hybrid seed corn was introduced in the 1930s to improve yields; for the first time more crops could consistently be raised than was needed for use on the farm. Farming ever so gradually became less a way of life and more of a business.

Industrial technology developed during World War II rapidly accelerated the pace of change. By mid-century mechanical planters, harvesters (hay balers, corn pickers and grain combines) and grain handling equipment were reducing the need for hand labor. Repeated field cultivation for weed control was the norm, but control in cultivated fields was a constant and frequently unsuccessful battle for farmers. Inefficient harvesting equipment often left a substantial part of the crop in the field.

Labor saving devices permitted farmers to handle ever-larger farming operations. In the 1950s the average northern lowa farm had grown to 250 acres but was still a diverse operation of livestock, small grains, hay and corn. Foxtail-choked cornfields with plenty of waste grain were a pheasant hunter's delight and a source of food and cover for a variety of other game and nongame wildlife.

The last half of the century brought even more change. Modern tiling machines could mechanically dig and insert underground perforated field tiles to drain even the wettest areas. The use of agricultural chemicals - herbicides, pesticides, and fertilizers - became the norm and weeds and insects were, if not conquered, at least minimized as a threat to crop yields. The first pesticides were organochlorines -DDT and its derivatives- that had devastating long-term effects on bird populations that led to the ban on their use in the 1970s. Soybeans were introduced as a cash crop and genetically modified crops with built-in pesticide resistance were developed. Livestock operations shifted from on-thefarm to confinement operations and the need for extensive livestock forage (hay and small grains) was reduced. Crop rotations eventually were simplified to continuous corn or soybeans or corn-soybean rotations over most of the state. Planting and harvesting equipment and the tractors to pull them became ever larger. Modern grain combines became so efficient that little waste grain or crop residue was left in the fields for wildlife food or cover.

By 2000, the average farm had increased to more than 340 acres (Figure 2-1). The number of farms in Iowa decreased from 203,000 in 1950 to just 93,000 in 2007 (USDA and Census Bureau - Census of Agriculture). In 2024, the National Agricultural Statistical Survey estimated there were 86,700 farms operating 30,000,000 acres of farmland and averaging 346 acres/farm. Nearly every rural county in Iowa is experiencing a continuous outmigration, primarily by young people seeking jobs no longer available as farm size and mechanization has increased. Iowa is trending toward a more urban populace. By 2020, the population of Iowa was 62% urban, up from 25.6% in 1900 (U.S. Census Bureau), and 51% in 1980 (U.S.D.A. Economic Research Service). In 2020, Iowa's population was about 3.2 million.

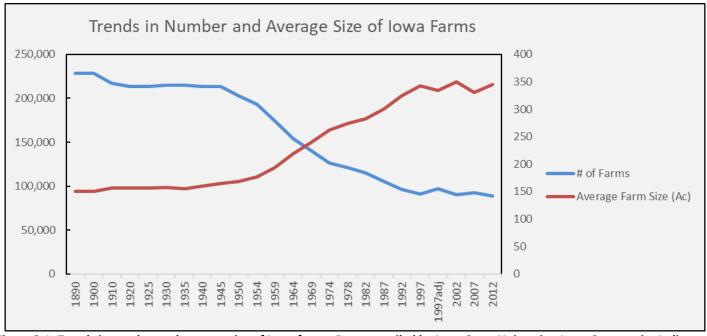


Figure 2-1. Trends in number and average size of Iowa farms. Data compiled by Iowa State University, Iowa Community Indicators Program, from various sources: 1900-1950: National Historical Geographic Information System: Pre-release Version 0.1. Minneapolis, MN: University of Minnesota 2004; 1954-1974: "Number of farms by County, years 1940 to 1997," originated by Chris Kahle, Iowa Department of Natural Resources, Iowa Geological Survey, compiled February 2003; 1978-1992: USA Counties, U.S. Census Bureau; 1997-2012: Census of Agriculture, National Agricultural Statistics Service, U.S. Department of Agriculture

US Department of Agriculture (USDA) farm policies

Government farm policy also played a role in accelerating these changes. Congress passed the first of several programs to retire crop land and spur agricultural income in the depth of the depression in the 1930s. Farm policy shifted to allout production during World War II. By the mid-1950s farm prices were again depressed and a second, 10-year land retirement program (the Soil Bank) was implemented. Pheasants, bobolinks and other grassland birds responded to the increased habitat until the program ended in 1965.

For the next 20 years USDA required farmers to set aside up to 10 percent of their crop land in order to participate in subsidy programs. These set-aside acres were rotated annually and never developed permanent wildlife cover. Their

value to wildlife was limited - some biologists claimed they had a net negative effect on pheasants and other groundnesting birds because set-aside acres had to be mowed for weed control just at the time birds were nesting.

In the early 1970s grain export quotas were removed to open up international markets. Row crops in Iowa grew by more than 3 million acres at the expense of hay and pasture (Figure 2-2), most in the southern third of Iowa. The distribution of the ring-necked pheasant nearly reversed itself as a result. The new croplands in southern Iowa allowed pheasants to flourish where the bobwhite quail had been the dominant game bird. The added pressure to raise row crops eliminated most of the remaining wildlife habitat in northern Iowa, however, and pheasant populations there plummeted.

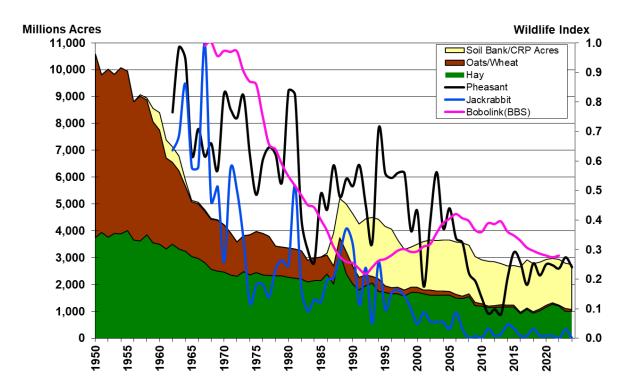
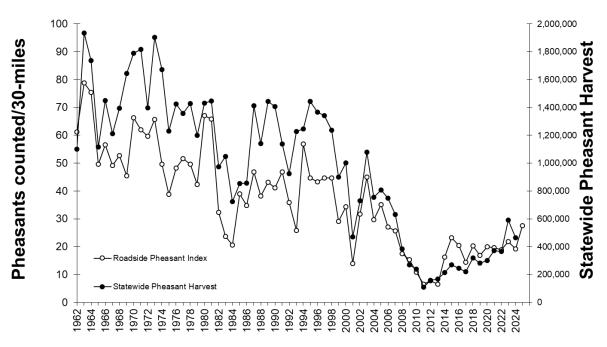



Figure 2-2. Changes in Cropping Patterns and Representative Grassland Wildlife.

The increased row crop acreage also put added pressure on lowa's remnant forests. Pasture that was converted to row crops had to be replaced, so bulldozing timber to create new pasture became a popular practice. Iowa's forestlands hit their all-time low - 1.5 million acres - during the U.S. Forest Service's 1974 inventory of forestlands.

In the midst of another farm economic crisis in the 1980s a third 10-year land retirement program - the Conservation Reserve Program (CRP) - was introduced to supplement farm income. CRP fields were mostly planted to cool season grasses like smooth brome that provided valuable nesting cover for grassland wildlife. Iowa's pheasant populations and harvest, both in the midst of a 20-year decline, rebounded quickly (Figure 2-3). In northern Iowa, pheasant numbers increased wherever CRP fields were planted and increases were also recorded in the southern half of the state. But, as the initial 10-year contracts matured, the benefits to game birds in southern Iowa declined. Brome developed a thick sod and annual weeds (important foods for birds) were eliminated. Southern Iowa counties that had the maximum of 25 percent of their cropland enrolled in CRP saw declines in pheasants and quail.

Statewide Pheasant Trends

Mean number of pheasants counted on 30-mile August roadside survey routes, statewide, 1962-present compared to total statewide pheasant harvest.

Figure 2-3. Mean number of pheasants counted in 30-mile August roadside survey routes, statewide, 1962-2024, compared to statewide pheasant harvest.

DNR-sponsored research would eventually find that some nongame birds like Henslow's sparrows that nested in mature grasslands would respond to the habitat provided by older CRP fields. Small mammals and the avian and mammalian predators that fed on them would increase also. The return of the bobcat to Iowa is at least partly explained by the prey provided in CRP fields.

When it was established by the Food Security Act of 1985, the CRP program was intended to enroll 40 million acres nationwide. At the end of fiscal year (FY) 1986, lowa had enrolled 76,469 acres into CRP. As of 2023, the national acreage cap is set at 27 million acres. At the end of FY24, lowa had 1,674,236 acres enrolled in the program. Over time, subsequent Farm Bills have included a number of other permanent and short-term programs designed to provide soil and wildlife conservation benefits as well as subsidize the production of commodity crops. The Continuous CRP (buffer strips), Wetland Reserve Easements (WRE), Conservation Stewardship Program (CSP), Environmental Quality Incentives Program (EQIP), and others have been beneficial. These programs change with different iterations of the farm bill. As a result, conservation agencies must be aware of changes and be flexible in order to ensure that wildlife benefit from these programs.

Summary

The result of improved agricultural technology, economic drivers for agricultural producers, and decades of everchanging and sometimes-conflicting farm policy has been a gradual and long-term decline in wildlife habitat on private agricultural lands and a decline in rural communities. Farm operations have shifted from diversified agriculture to corn and soybean monocultures. Between 1926 and 2024 in lowa, corn and soybean acres planted increased from 11.2 million acres to 22.9 million acres (NASS, 2025). Small grain acreage decreased as well. For example, acres of oats planted in lowa decreased from 6.1 million acres in 1929 to 225,000 acres in 2024 (NASS, 2025). Larger farms and field sizes have eliminated fencerows, windbreaks, waterways and other on-farm habitat. The nearly exclusive use of farm chemicals for weed and insect control has eliminated food and cover for songbirds and other wildlife. Conservation practices subsidized by various titles of farm legislation have helped slow this trend, but the funding available to implement them has never been comparable to the amount USDA has spent subsidizing commodity crops, which encourages increased production.

The impact of these trends on wildlife that utilize agricultural lands has been slowly devastating. The loss of grasslands to row crop agriculture has resulted in substantial declines in most native grassland wildlife, e.g., bobolinks and white-tailed jackrabbits (Figure 2-2). Even the popular ring-necked pheasant has experienced declines, although the population has recently been climbing (Figure 2-3). Other examples can be found in *Trends in Iowa Wildlife Populations and Harvest* (2022 and earlier years) published by DNR and available for download on the DNR website.

These landscape changes have impacted aquatic wildlife as well, although they are not as well documented. Advertisements to attract settlers to lowa in the 1850s stressed the vast acreages of fertile soils, abundant wildlife and sparking clean waters teeming with game fish.

By the early 20th century, however, conservationists Aldo Leopold and Jay N. "Ding" Darling were decrying the excessive erosion of soils that had been denuded of their vegetative cover and the excessive siltation of lowa's waters that resulted. Loss of vegetative cover, excessive grazing, channelization of streams, and shoreline alterations led to accelerated siltation and the transport of pesticides and fertilizers into aquatic systems from agricultural fields. Heavy silt loads altered water turbidity and temperature regimes. Streambed degradation and the loss of submersed and emergent plants frequently followed. As the silt settles it can cover existing bottom substrates and alter the entire natural community.

All of these alterations to native habitats, aquatic plant communities and wildlife increase the opportunities for invasive exotic species to supplant native wildlife. Alien species like carp further increased water turbidity and in many cases made smaller water bodies unsuitable for native fish.

Wildlife Conservation

Wildlife Restoration

Not all wildlife trends of the past half-century have been negative. The creation of the lowa State Conservation Commission (now the lowa Department of Natural Resources or DNR) in 1935, the gradual development of wildlife science and management as professions after World War II, and the formation of DNR's Wildlife Diversity Program in 1981 have returned a portion of Iowa's native wildlife to the state. White-tailed deer, wild turkeys and giant Canada geese are now more abundant than at any time since the late 1800s. Other restoration programs have returned river otters to the state's streams, and peregrine falcons, ospreys and trumpeter swans nest again in Iowa. Bald eagles, bobcats and Sandhill cranes have reappeared as a result of successful conservation programs here and elsewhere. Details of these and other wildlife restoration programs are explained in *Trends in Iowa Wildlife Populations and Harvest - 2021-2022*.

Land acquisition

DNR has also pursued land acquisition programs to permanently protect and enhance wildlife habitat. Since 1972 lowa waterfowlers have been required to purchase an lowa Migratory Game Bird Stamp in addition to the Federal Migratory Bird Hunting and Conservation Stamp ("Duck Stamp"). Since 1979 all hunters have been required to purchase an lowa Habitat Stamp along with their hunting license. Proceeds from these stamps are dedicated to habitat protection and management. Funds from the State Habitat Stamp are shared equally with lowa's 99 County Conservation Boards.

DNR has doggedly sought funds for habitat protection through the North American Wetlands Conservation Act, Wildlife Restoration and Sportfish Restoration funds, Cooperative Endangered Species Conservation Program grants, State Wildlife Grants, Iowa County Conservation Boards and others. DNR also partners with NGOs to extend the reach of state and Federal funds. The Iowa Natural Heritage Foundation, Ducks Unlimited, Pheasants Forever, the National Wild Turkey Federation, and The Nature Conservancy have been major cooperators with DNR's habitat protection programs. Numerous other NGOs and individual private contributors have helped as well.

In spite of consistent efforts to protect wildlife habitat, Iowa remains one of the states with the highest proportion of privately held land (Map 2-3). In 2004 as the IWAP was first being developed, public conservation lands accounted for just over 600,000 acres, or just 1.7% of the land area of the state. In 2015 when the last version of the Plan was being written, public conservation lands were estimated at 895,907, or 2.48% of land area of the state. Some of this increase

was due to land protection, however, most of that increase is attributable to an improved estimate due to technological improvements which allow for increased data sharing between cities, counties, state, and federal entities. In 2025, the public conservation lands are estimated to be 916,213 acres, or 2.5% of the total land area of the state.

The DNR owns nearly half of the public conservation lands (406,857 acres), including wildlife management areas, state parks, and state forests. Federal land ownership accounts for 288,383 acres (0.80% of lowa's land area). Primary federal land management agencies in lowa include the Army Corps of Engineers, with 38,206 acres in four flood control reservoirs, and the US Fish and Wildlife Service with its 5 national wildlife refuges in the State. DNR has land management agreements on portions of the reservoirs but little control over water levels. County Conservation Boards own 181,328 acres. (This accounting does not include the Road Rights of Way owned and managed by the U.S. or lowa Departments of Transportation.)

Unlike most other states across the Midwest and West, Iowa does not have a significant presence of lands owned by the US Forest Service, Bureau of Land Management, or the National Park Service (Table 2-5). Therefore, unlike other states which have significantly higher federal land bases, a relatively high proportion of Iowa's habitat base is managed by the Iowa DNR, County Conservation Boards, and of course, private landowners.

Table 2-5. Estimates of federal land area for eight Midwest states. lowa Data from Iowa DNR, Other State Data from Congressional Research Service (CRS) 2020.

State	Total Surface Area (acres)	Federal Land	Proportion Federal
Iowa	35,860,480	288,383	0.80%
Illinois	35,795,200	423,782	1.20%
Kansas	52,510,720	253,919	0.50%
Minnesota	51,205,760	3,503,977	6.80%
Missouri	44,248,320	1,702,983	3.80%
Nebraska	49,031,680	546,852	1.10%
South Dakota	48,881,920	2,640,005	5.40%
Wisconsin	35,011,200	1,854,085	5.30%

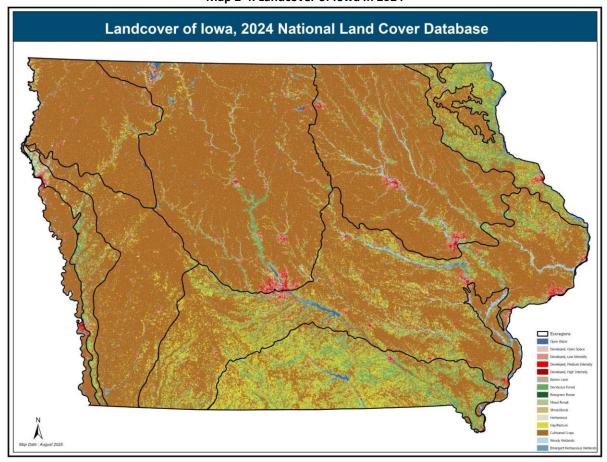
Habitat on private lands

Wildlife habitat on private lands has also received attention from DNR programs. Farm Game Habitat crews roamed the state in the 1950s and 1960s helping landowners establish habitat on their property. In 1971 the number of DNR wildlife management biologists was doubled and they were housed in USDA farm service center offices to promote contacts with private landowners. In the 1980s farmstead shelterbelts and switchgrass cost-sharing programs were introduced to promote these practices on private land. For the past 20 years DNR biologists have actively promoted USDA farm bill practices (e.g. CRP, WRP) that provide landowners funds to assist with developing wildlife habitat.

Publicly-owned Conservation Lands in Iowa City - 24,962 a ounty - 181,328 acre

Map 2-3. Publicly-owned Conservation Lands in Iowa

The Wildlife Bureau's Private Lands Program (PLP) was formed in 2002 to take better advantage of wildlife-friendly USDA farm programs of that era like the Landowner Incentive Program (LIP) and Wildlife Habitat Incentive Program (WHIP). In 2017, the program was restructured to also include private lands (District) Foresters. Now in its 24th year, the Private Lands Program is successful in Iowa because of its many partnerships including Natural Resources Conservation Service, Farm Service Agency, Pheasants Forever, Fish and Wildlife Service, Soil and Water Conservation Districts, Wildlife Management Institute, and most importantly, Iowa's landowners. The PLP uses this Plan and the Iowa Forest Action Plan as strategic guidance, working with any interested landowners but also trying to direct staff and resources to highest priority conservation issues. PLP biologists and foresters work with hundreds of landowners annually, providing technical assistance and ensuring that conservation programs provide benefits to lowa's forest, fish, and wildlife resources.


Other - 14,276 acres

This map depicts a total of 916,213 acres, which is 2.5% of the total 36,002,848 acres in lowar Acreages are derived from the "Conservation and Recreation Lands in Iowa" dataset.

Iowa's Natural Communities Today

The result of a century and a half of change as a result of human intervention on lowa's landscape has been a shift in the composition of lowa's plant communities and the wildlife that inhabits them. Few undisturbed natural plant or wildlife communities exist today. Approximately 0.2% of Iowa's native prairies (47,000 acres including remnant, restored and reconstructed prairies), 7.4% of its wetlands (294,081 acres of herbaceous wetlands estimated in 2024 NLCD), and 38% of its forests (2,568,270 acres of forest estimated in 2024 NLCD) remain.

Map 2-4 shows the land cover in Iowa in the year 2024. The majority of the state is covered with rowcrops, primarily corn and soybeans. Most of the remainder of the state is in grassland, often conservation reserve, road ditches or pasture, with lesser acreages of timber and other habitat types. More details on the current status of lowa's wildlife are provided in Chapter 3, and the status of wildlife habitats in Chapter 4.

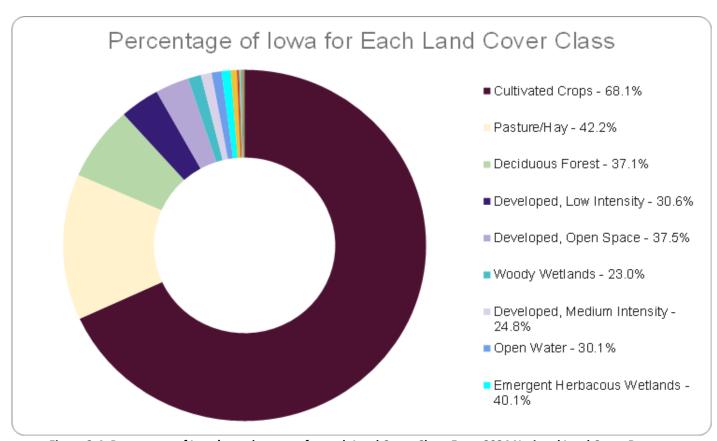


Figure 2-4. Percentage of Iowa's total acreage for each Land Cover Class. From 2024 National Land Cover Dataset.

References Cited in Chapter Two

- Chapman, SS, JM Omernik, GE Griffith, WA Schroeder, TA Nigh, and TF Wilton, 2002. Ecoregions of Iowa and Missouri (color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, US Geological Survey (map scale 1:1,800,000).
- Congressional Research Service [CRS]. 2020. Federal Land Ownership: Overview and Data. https://www.congress.gov/crs-product/R42346. Accessed September 24th, 2025.
- Coker, RE 1919. Fresh-water mussels and mussel industries of the United States. US Bureau of Fisheries. Government Printing Office, Washington, DC.
- Harlan, JR, EB Speaker, and J Mayhew. 1987. Iowa fish and fishing. Iowa Department of Natural Resources, Des Moines, Iowa.
- Leopold, A. 1931. Game Survey of the North Central States. American Game Association, Washington D.C.
- Madson, J 1995. Where the sky began. University of Iowa Press, Iowa City, Iowa.
- Meek, SE 1892. Report upon the fishes of lowa, based upon observations and collections made during 1889, 1890, and 1891. Bulletin of the US Fish Commission, 10(1890): 217-248.
- Midwestern Regional Climate Center. State and Division Climate Data. https://mrcc.purdue.edu/ accessed on 10/14/2025.
- National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information. (2025). *Climate at a Glance: Statewide Time Series, Mean Temperature (tavg), Iowa, 1895-2024*. National Oceanic and Atmospheric Agency. https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/statewide/time-series/13/tavg/1/0/1895-2024
- Prior, JC. 1991. Landforms of Iowa. University of Iowa Press, Iowa City, Iowa.
- Takle, ES 2011. Climate changes in Iowa, part 1. Agricultural Marketing Resource Center Newsletter, July 2011. http://www.agmrc.org/renewable_energy/climate_change_and_agriculture/climate-changes-in-iowa-part-1/accessed on 5/7/2015.
- US Department of Agriculture Economic Research Service. 2025. https://data.ers.usda.gov/reports.aspx?ID=4035&StateFIPS=19&StateName=lowa
- US Department of Agriculture Farm Service Agency. Conservation Reserve Program Statistics. Accessed at: https://www.fsa.usda.gov/tools/informational/reports/conservation-statistics/crp
- US Department of Agriculture National Agricultural Statistics Service. 2025. Accessed at: https://quickstats.nass.usda.gov/
- U.S. Geological Survey (USGS). 2024. Annual NLCD Collection 1 Science Products: U.S. Geological Survey data release, https://doi.org/10.5066/P94UXNTS