

Terry E. Branstad, Governor Kim Reynolds, Lt. Governor

STATE OF IOWA

DEPARTMENT OF NATURAL RESOURCES CHUCK GIPP, DIRECTOR

April 11, 2016

City of Waukee, Iowa Attn: John Gibson, Public Works Director 230 West Hickman Road Waukee, IA 50263

RE: Bluestem Lift Station #14 Improvements Waukee, Iowa DNR Project No. S2015-0425

Subject: Variance Request from Iowa Wastewater Facilities Design Standards Section 13.4.3

Dear Mr. Gibson:

After careful and thorough consideration, the Department has <u>approved</u> your February 17, 2016 (as amended April 5, 2016) request for a variance from Iowa Administrative Code Subrule IAC 64.2(9a) and Chapter 13, 13.4.3 of the Iowa Wastewater Facilities Design Standards, which requires that lift station pumps, other than grinder pumps, have the capability to pass a 3-inch spherical solid.

Based on the documentation presented by your Engineer, it is the determination of this Department that satisfactory justification has been presented to warrant the granting of a variance for the installation of a lift station pump that has the capacity to pass a 1.4-inch spherical solid installed with a trash basket with 1.4-inch or smaller openings. The requested variance is deemed to be reasonable and necessary pursuant to the Iowa Code section 455B.181.

The facts presented for the project present unique circumstances and the variance is therefore justified to provide the narrowest exception possible to the provisions of the rule in accordance with Rule 561 IAC 10.5. Since the project planning and construction may last more than one year, the variance is considered to be of a permanent nature. The validity of this variance approval shall last for a period of one year from the date of the construction permit in accordance with Rule 561 IAC 10.5.

This decision is based on our review of justification presented to support the request. Our concurrence with the request is based on the Department's finding that the resulting project will provide substantially equivalent effectiveness as would be provided by technical compliance with the design standard on this issue.

502 EAST 9th STREET / DES MOINES, IOWA 50319-0034 PHONE 515-281-5918 FAX 515-281-8895 www.iowadnr.gov John Gibson, Public Works Director City of Waukee, Iowa April 11, 2016 Page 2 of 2

Please contact Marty Jacobs at 515-725-8419 or email <u>martin.jacobs@dnr.iowa.gov</u> if you have any questions.

Sincerely,

AX

Jon Tack Water Quality Bureau Chief

Cc: Curtis J. Kampman, P.E., McClure Engineering Company DNR FO 5 DNR Sewage File 6-25-73-0-01

[IFOT	·
		VARIANCE REQU		Iroop
1.	Date:	Iowa Department of Natur		A
2.	Reviewer/Engr.:	April 8, 2016	14a.	Decision: Apport Date: 4/11/16
Ζ.	Reviewen/Engr	Marty Jacobs		Expiration Date
3.	Date Received:	April 8, 2016	14b.	(if any):
4.	Facility Name:	City of Waukee	140.	(ii airy).
5.	Facility Number:	6-25-73-0-01		
6.	County Number:	25 (Dallas)	15.	Appealed:
7.	Program Area:	CP (Wastewater)	10.	Date:
8.	Facility Type:	C01 (Collection/Transport)		Date.
9.	Subject Area:	344 (Pump Clogging Protection)		
9. 10.	Rule Reference:			
	 Conservation and \$1000 to use \$1000 to \$20000000 	567-64.2(9)a		
11.	Design Std. Ref.:	13.4.3		
12.	Consulting Engr.:	McClure		
13.	Variance Rule:	567-64.2(9)c	,	
	Description of Varian		etowato	- Facilities Design Standards Chapter
		mping Stations and Force Mains – 13		
		ump that does not pass a 3-inch sph	•	
		g Engineer's Justification:	errear ee	
			o currer	t design standards, a trash basket will
				. The originally specified trash basket
for th	ne Lift Station had a	maximum clear opening of 1.5-inche	s. Howe	ver, given the clear opening of the
		ches, the City will specify a new tras		
				1.4-inches should be collected in the
		e potential for clogging from such ob		
		•		of its lift stations as part of a regular
		remove any built up deposition and	ensure t	he condition of the trash basket is
		form its intended function.	orion im	noller numps with tresh backets with
		sanitary lift stations throughout the c		peller pumps with trash baskets with
		bination, the City can attest that they		
	acity, ability, or flexib		Thave c	xperienced no reduction in pumping
	Department's Justific			
-	ommend variance ap			
			d with p	roduct data from Flygt). As discussed
				s is expected to provide an approvable
		proposed pump. The variance requ		
		inspection and maintenance of the tr		
-		to an installation meeting the require	ements o	f 13.4.3.
	Precedents Used:			
Tripo	oli - 6/13/00			2
20.	Staff Reviewer:	Interprete	Date	: 4-8-16 418/16
21.	Supervisor:	10 chempati	Date	: 4/u/16
22.	Authorized by:	nen	Date	e: 4/11/16

> 1740 Lininger Lane
 North Liberty, IA 52317
 P 319.626.9090
 F 319.626.9095

www.mecresults.com

April 5, 2016

Mr. Charles Gipp, Director of the Iowa DNR c/o Mr. Marty Jacobs, P.E., Environmental Engineer Iowa Department of Natural Resources – Wastewater Engineering Section Wallace Building 502 E. 9th Street Des Moines, IA 50319-0034

RE: Waukee Bluestem Lift Station #14 Improvements, Waukee, Iowa MEC 2214027-00 IDNR #S2015-0425

Dear Mr. Gipp and Mr. Jacobs:

Enclosed please find one (1) copy of the City of Waukee's amendment number 2 to the variance request for the job referenced above regarding Iowa Wastewater Facilities Design Standard 13.4.3, which states "unless grinder pumps are used, pumps shall be capable of passing spheres at least 3 inches in diameter."

If you have any questions, please call me at (515) 964-1229.

Very truly yours,

McCLURE ENGINEERING COMPANY

Kan

Curtis Kampman, P.E.

Enclosures

cc: Mr. John Gibson, City of Waukee File.

NORTHWEST IOWA | DES MOINES METRO | EASTERN IOWA | LAKE OZARK, MISSOURI

RECEIVED APR - 8 2016

CERTIFICATION FOR PETITION FOR VARIANCE

BLUESTEM LIFT STATION #14 IMPROVEMENTS WAUKEE, IOWA

MEC PROJECT NO. 2214027-00

FEBRUARY 2016

S. RECEIVED MAR 0 1 2016

CITY OF WAUKEE, IOWA 230 WEST HICKMAN RD. WAUKEE, IA 50263 (515) 978-7900

PETITION FOR VARIANCE

The Petitioner, pursuant to Iowa Code Section 17A.9A and Iowa Administrative Code 561 Chapter 10, requests a Variance from Iowa Wastewater Facilities Design Standard 13.4.3. Petitioner provides the following information pursuant to Iowa Administrative Code 561 Chapter 10.9(1) through 561 Chapter 10.9(10):

10.9 (1) The name, address, and telephone number of the entity or person for whom a waiver or variance is requested.

City of Waukee, Iowa 230 West Hickman Road Waukee, IA 50263 Telephone: (515) 978-7900

10.9 (2) A description and citation of the specific rule from which a waiver or variance is requested.

Iowa Wastewater Facilities Design Standard 13.4.3 (Pump Openings) as follows:

"Unless grinder pumps are used, pumps shall be capable of passing spheres at least 3 inches in diameter."

10.9 (3) The specific waiver or variance requested, including the precise scope and operative period that the waiver or variance will extend.

The petitioner requests a variance from the requirement that "pumps shall be capable of passing spheres at least 3 inches in diameter" as required by Iowa Wastewater Facilities Design Standard 13.4.3 (Pump Openings). The units of operation in question are the pumps used to convey raw wastewater at the Bluestem Lift Station #14 in Waukee, Iowa.

Two (2) pumps are scheduled to be installed in the Lift Station. Each pump is sized to individually convey flows of up to 0.619 million gallons per day (MGD), or 430 gallons per minute (GPM). The pumps are to remain in service indefinitely, until such time as the Lift Station is decommissioned or increased flows require larger pumps to be installed.

The pumps specified for installation in the Lift Station are Flygt NP 3153 HT3~464.

10.9 (4) The relevant facts that the petitioner believes would justify a waiver or variance. The factual statement is to include a signed statement from the petitioner attesting to the accuracy of the facts provided in the petition and a statement of reasons that the petitioner believes will justify a waiver or variance.

<u>Background</u>

The Flygt NP 3153 HT3~464 pump incorporates a specially designed semi-open channel impeller, which has been designated the "N-technology" impeller by the manufacturer. The N-technology impeller is utilized on an entire line of Flygt wastewater pump products from 0.1 to 23 MGD and is promoted by the manufacturer as being "self-cleaning." Per the manufacturer, the self-cleaning impeller design enables Flygt N-series pumps to sustain higher levels of efficiency throughout the life of the pump due to the absence of build-up on the impeller itself.

The Flygt NP 3153 HT3~464 pumps specified for installation in the Lift Station include the N-series impeller, which does not allow passage of a 3-inch sphere. However, the pumps specified do include an optional chopper ring insert for cutting long fibers or solids in raw wastewater.

City of Waukee Experience

The City of Waukee has substantial experience with Flygt N-series pumps in their sanitary lift stations. In the past 12 years, the City has installed at least twenty-four Flygt N-series pumps. In the course of operating these lift stations over the past 12 years, the City has been pleased with their performance and found the N-series impeller to demonstrate minimal issues with clogging. As will be discussed later, the level of satisfaction with the operation with the pumps has led the City to consolidate all lift stations to utilizing the N-series impeller.

Experience Across the State of Iowa

Additionally, across the state of Iowa, at least 1,187 Flygt N-series pumps have been installed in the past 15 years based on records obtained from Electric Pump of Des Moines, Iowa, who serves as manufacturer's representative for Flygt in the State of Iowa. The full list of installations is available upon request.

In discussions with wastewater operators across the state, McClure Engineering Company has found the N-series impeller has developed a very positive reputation for its non-clog performance despite not having a free passage of 3-inches. In some cases, a Flygt N-series pump was specifically installed in locations where other pumps had a history of clogging.

Conference presentations, industry seminars, and discussions with wastewater operators have indicated that long fibrous materials and "flushable" products have become a primary threat for pump down-time and clogging in recent years.

Consolidation of Spare Parts & Training

As a result of their own operating experience, as well as the reputation of the N-series impeller, the City of Waukee is in the process of standardizing its fleet of sanitary lift station pumps around Flygt N-series pumps due to their performance, efficiency, and non-clogging characteristics. By consolidating around a single manufacturer, the City is able to minimize the number of spare parts the City must maintain. Additionally, this also allows the City to standardize its pump maintenance training for operators, further reducing costs and operational challenges.

Trash Basket Provision

To offer an additional layer of protection, as well as conform to current design standards, a trash basket will be installed on the only influent line entering the wet well of the Lift Station. The specified trash basket for the Lift Station has a maximum clear opening of 1.5-inches. As a result, all solid objects larger than 3 inches should be collected in the trash basket, further reducing the potential for clogging from such objects.

Preferred Operating Range Evaluation

It is an industry standard recommendation for pump operation to be kept within the preferred operating range of 70% to 120% of the best efficiency pump discharge point (Q_{BEP}). Review of Table 1 indicates the specified pump has the highest Q/Q_{BEP} ratio among the pumps evaluated other than the Yeoman 9100-4103S. The remaining pumps evaluated from ABS Sulzer, Grundfos, and KSB all have Q/Q_{BEP} ratios less than or significantly less than the 70% minimum. Operating outside or along the edges of the preferred operating range can increase radial thrust, vibration, suction recirculation, and inlet surging, which can cause premature wear on pump components such as seals and bearings and increase maintenance costs.

Pump	Q (GPM)	TDH (FT)	Hydraulic Efficiency (%)	Total Efficiency	Est. Q _{BEP} (GPM)	Q:QBEP
Flygt NP3153 HT3 ~464	432	75.2	67.5%	59.6%	585	74%
ABS Sulzer XFP100G	438	75.9	60.8%	55.9%	675	65%
Grundfos SE1.30.A60	431	74.8	65.7%	58.2%	725	59%
KSB KRTE 100-251	455	79.2	68.3%	58.9%	790	58%
KSB KRTK 100-251	430	74.5	61.7%	53.7%	930	46%
Yeomans 9100-4103S	435	79.9	59.8%	52.6%	520	84%

<u>Table</u>	1 -	Selected	Character	<u>istics of</u>	Investic	ated Pumps	

Efficiency Evaluation

Review of the remaining available pumps (Flygt & Yeomans) with an acceptable Q/Q_{BEP} ratio indicate the specified pump is the most efficient of the possible selections, both in terms of hydraulic efficiency of the pump, as well as total efficiency. The total efficiency advantage of the specified Flygt pump is 7.0%. Further detail on the investigated pumps is included in Appendix A.

The criteria for a waiver or variance of a rule are contained in Iowa Administrative Code 561 Chapter 10.4:

"Upon petition of any person and at the sole discretion of the department, the department may issue a waiver or variance from the requirements of a rule is the director or the department in a contested case proceeding finds, based on clear and convincing evidence, all of the following:

10.4(1) The application of the rule would pose an undue hardship on the person for the waiver or variance is requested.

As stated previously, the installation of pumps with the ability to pass a 3-inch sphere was evaluated and deemed undesirable to install based on their lower efficiency and/or due to their respective operating points being outside of the preferred operating range.

Additionally, the City's own operating experience with the non-clogging performance of the N-series impeller, along with the City's standardization to Flygt N-series pumps have allowed the City to reduce operating expenses, spare parts, and training requirements. Forcing the City to move away from the Flygt N-series pumps to meet the regulatory requirements of the Iowa Wastewater Facilities Design Standard 13.4.3 would begin to unravel the efficiencies the City has worked to obtain in its operation and maintenance of the City's lift stations.

10.4(2) The waiver or variance from the requirements of a rule in the specific case would not prejudice the substantial legal rights of any person.

The proposed variance has no impact or prejudice to the substantial legal rights of any person.

10.4(3) The provisions of a rule subject to a petition for a waiver or variance are not specifically mandated by statue or another provision of law.

The provision required for "Unless grinder pumps are used, pumps shall be capable of passing spheres at least 3 inches in diameter" is only found in Iowa Wastewater Facilities Design Standard 13.4.3 (Pump Openings).

10.4(4) Substantially equal protection of public health, safety, and welfare will be afforded by a means other than that prescribed in the particular rule for which the waiver or variance is requested.

As described previously, the proposed pump provides conveyance of wastewater following passage through a trash basket with a 1.5 inch clear opening which meets the intent of Design Standard 13.4.3. Additionally, the City's own operating experience indicates no reduction in pumping capacity, ability, or flexibility would occur with the approval of the variance.

10.9 (5) A history and any prior contacts between the department and the petitioner for the past five years, including a description of each affected permit held by the petitioner, and any notices of violation, Administrative Orders, contested case proceedings, and lawsuits involving the Department and the petitioner.

The City is under a compliance schedule as listed in Iowa NPDES Permit #2573001, issued August 1, 2014 and expiring July 31, 2019 for achieving compliance with E.coli effluent limits at the WWTP, as well as the Nutrient Reduction Strategy, by connecting to the Des Moines Metropolitan Wastewater Reclamation Authority (WRA) by January 1, 2019.

This variance request will have no impact on the above compliance schedule.

10.9 (6) Any information known to the petitioner regarding the Department's treatment of similar cases.

While the exact circumstances regarding the installation of other Flygt N-series pumps is not known, it is noted that over 1,187 Flygt N-series impeller pumps have been installed across the State of Iowa in the past 15 years per records obtained from Electric Pump of Des Moines, Iowa, who serves as a manufacturer's representative for Flygt. The full list of installations is available upon request.

10.9 (7) The name, address, and telephone number of any public agency or political subdivision of the state or federal government which also regulates the activity in question, or which might be affected by the granting of a waiver or variance.

The petitioner states that no public agency or political subdivision of the state or federal government would be affected by granting a waiver or variance.

10.9 (8) The name, address, and telephone number of any person or entity that would be adversely affected by the granting of a petition.

The petitioner states that no person or entity would be adversely affected by the granting of the petition.

10.9 (9) The name, address, and telephone number of any person with knowledge of relevant facts relating to the proposed waiver or variance.

Mr. Curtis Kampman, P.E. McClure Engineering Company 1360 NW 121st Street, Suite A Clive, Iowa 50325 (515) 964-1229

Mr. John Gibson City of Waukee 230 West Hickman Road Waukee, IA 50263 (515) 978-7900

Mr. Marty Jacobs, P.E. IDNR Wastewater Engineering Section 502 East 9th Street Des Moines, IA 50319-0034 (515) 725-8419

10.9 (10) Signed releases authorizing persons with factual knowledge concerning the request to furnish the Department with information relevant to the waiver or variance. (Variances must be signed by the petitioner or authorized representative and a professional engineer licensed in Iowa preparing the engineering and technical justification of the petition.)

See verification below,

WHEREFORE, the Petitioner respectfully requests the department grant it a variance of "Unless grinder pumps are used, pumps shall be capable of passing spheres at least 3 inches in diameter" required by Iowa Wastewater Facilities Design Standards section 13.4.3 (Pump Openings) so that the department may issue the construction permit, the application for which was submitted on October 22, 2015.

Dated this 25th day of _ February , 2016.

Curtis J. Kampman, P.E. (P.E. No. 21994) McClure Engineering Company 50325 <u>ckampman@mecresults.com</u>

John Gibson

Public Works Directory City of Waukee, Clive, Iowa APPENDIX A

NP 3153 HT 3~ 464 **Technical specification**

FLYGT

Note: Picture might not correspond to the current configuration.

General Patented self cleaning semi-open channel impeller, ideal for pumping in waste water applications. Possible to be upgraded with Guide-pin® for even better clogging resistance. Modular based design with high adaptation grade.

m.]	Impeller Impeller material Discharge Flange Diameter Inlet diameter Impeller diameter Number of blades	Grey cast iron 3 15/16 inch 3 15/16 inch 253 mm 2
	Motor	
	Motor #	N3153.181 21-15-4AA-W 15hp
	Stator variant	1
	Frequency	60 Hz
	Rated voltage	460 V
	Number of poles	4
	Phases	3~
	Rated power	15 hp 19 A
	Rated current	19 A 112 A
	Starting current Rated speed	1755 rpm
	Power factor	1766 ipin
	1/1 Load	0.84
	3/4 Load	0.78
	1/2 Load	0.67
	Efficiency	
	1/1 Load	87.0 %
	3/4 Load	88.5 %
	1/2 Load	88.0 %

Configuration

Project	Project ID	Created by	Created on	Last update
			2015-10-17	

NP 3153 HT 3~ 464 Performance curve

liame	lange Diameter ter umeter olades	3 15/16 inch 100 mm 9 ^{15/16} " 2	Stator v Frequer Rated v Number Phases Rated p Rated o	e ariant roy roltage r of poles power current g current		N3153. 1 60 Hz 460 V 4 3~ 15 hp 19 A 112 A 1755 rp		5-4AA-W 1	5hp	Powe 1/1 L 3/4 L 1/2 L Effici 1/1 L 3/4 L 1/2 L	oad oad ency oad oad	0.84 0.78 0.67 87.0 % 88.5 % 88.0 %
	Head											
115	< l						-	-				
110 105												
100-												
95					******							
90-												-
85-												
80- 75-				<hr/>								75.2
70-												15.2
65												
60					70.1%							
55												-
50-								-	-			
45- 40-												
35									\searrow			
30-												
25												
20-											464 253	3mm
15- 10-												
5-												
0											<u> </u>	67.5
[%]	Efficiency Total efficiency											
50	rotar eniciency								\sim	\sim		59.6
40											464 253	3mm
30-											464 253	smm
20-				-								
10- 0-	/											
[hn] -	Shaft power P2										4 253m	m (54)
14-	Power input P1										54 253m	13.8 m (r 2)
12-												12.2
10-												12.2
8												
6												
4- [ft]-	NPSH-values						-	1			464 253	3mm
35-												
30												
25-												
20												
15			400		-							13
10			432	US g.p.m		*****						

Project	Project ID	Created by	Created on	Last update
			2015-10-17	

NP 3153 HT 3~ 464 Duty Analysis

NP 3153 HT 3~ 464 VFD Curve

NP 3153 HT 3~ 464

Project	Project ID	Created by	Created on	Last update
			2015-10-17	

FLYGT

NP 3153 HT 3~ 464 Dimensional drawing

Project	Project ID	Created by	Created on	Last update
			2015-10-17	

XFP100G CB1 60HZ

Sulzer reserves the right to change any data and dimensions without prior notice and can not be held responsible for the use of information contained in this software.

and can not be held responsible for the use of information contained in this software.

Data version Sep-2015

Frequency 60 Hz

Motor performance curve

PE130/4-G-60HZ

and can not be held responsible for the use of information contained in this software.

Version 2015/11/27 Data version Sep-2015 Frequency 60 Hz

Specific energy

XFP100G CB1 60HZ

Sulzer reserves the right to change any data and dimensions without prior notice and can not be held responsible for the use of information contained in this software.

Version 2015/11/27 Data version Sep-2015

XFP100G CB1 60HZ

Sulzer reserves the right to change any data and dimensions without prior notice and can not be held responsible for the use of information contained in this software.

Version 2015/11/27

GRUNDFOS

Submittal Data

PROJECT:	UNIT TAG:	QUANTITY:	
	 TYPE OF SERVICE:		
REPRESENTATIVE:	 SUBMITTED BY:	 DATE:	
ENGINEER:	APPROVED BY:	 DATE:	
CONTRACTOR:	 ORDER NO .:	 DATE:	

Sewage pumps

SE1.30.A60.175.4.52H.C.N.61P

Product photo could vary from the actual product

Conditions of Service		Pump Data	Motor Data		
Flow:	431 US gpm	Liquid temperature range:	32 104 °F	Rated voltage:	208-230/440-480 V
Head:	74.77 ft	Maximum ambient temperature:	104 °F	Main frequency:	60 Hz
Efficiency:	58.2 %	Flange standard:	ANSI	Number of poles:	4
Liquid:	any viscous fluid	Product number:	98735238	Enclosure class:	IP68
Temperature:	68 °F			Insulation class:	н
NPSH required:	12.57 ft			Motor protection:	KLIXON
Viscosity:	1 cSt			Motor_efficiency:	90 %
Specific Gravity:	1.002				

GRUNDFOS

Submittal Data

Materials:

Pump housing: Impeller: Material: Motor: Cast iron EN-GJL250 Cast iron EN-GJL250 Whole pump in cast iron Cast iron EN-GJL250

Printed from Grundfos Product Center [2015.09.024]

GRUN	DFOS	X
------	------	---

Company name: Created by: Phone:

Description	Value	
General information:	•	-
Product name:	SE1.30.A60.175.4.52H.C.N.61P	
Product No.:	98735238	100
EAN:	5712600684218	alan.
Technical:		
Actual calculated flow:	431 US gpm	
Max flow:	1010 US gpm	
Resulting head of the pump:	74.77 ft	
Head max:	78.74 ft	
Type of impeller:	S-TUBE	
Maximum particle size:	3.35 in	
Primary shaft seal:	SIC-SIC	
Secondary shaft seal:	SIC-CARBON	
Curve tolerance:	ANSI/HI11.6:2012 3B	
Cooling jacket:	with cooling jacket	
Materials:		
Pump housing:	Cast iron	w
Fump housing.	EN-GJL250	-
Impellen		
Impeller:	Cast iron	a se far
NA-4	EN-GJL250	-
Material:	Whole pump in cast iron	
Motor:	Cast iron	
	EN-GJL250	
Installation:		A44-
Maximum ambient temperature:	104 °F	100
Flange standard:	ANSI	nev.
Pump inlet:	DN150	
Pump outlet:	DN150	***
Maximum installation depth:	65.62 ft	
Installation:	С	-
Inst dry/wet:	D/S	
Installation:	vertical	
Auto-coupling:	97699099	24
Inst vertical:	96308238	ENC.
Base stand:	97632372	
Frame range:	52	
Liquid:		
Pumped liquid:	any viscous fluid	
Liquid temperature range:	32 104 °F	
Liquid temp:	68 °F	
Density:	62.4 lb/ft ³	
Kinematic viscosity:	1 cSt	~~~
Electrical data:		
Number of poles:	4	-
Power input - P1:	14 kW	
Rated power - P2:	17.5 HP	
Main frequency:	60 Hz	
Rated voltage:	3 x 208-230/440-480 V	
Voltage tolerance:	+10/-10 %	
Start. method:	star/delta	
Max starts per. hour:	20	
Rated current:	50-45/24-22 A	-
Maximum current consumption:	45 A	
Starting current:	478 A	

Printed from Grundfos Product Center [2015.09.024]

Company name: Created by: Phone:

2/19/2016

Description Value Rated current at no load: 22.2 A Rated speed: 1785 rpm Motor efficiency at full load: 90 % Motor efficiency at 3/4 load: 89 % Motor efficiency at 1/2 load: 86 % Enclosure class (IEC 34-5): IP68 Insulation class (IEC 85): Н Explosion proof: no KLIXON Motor protection: Length of cable: 49.22 ft Cable type: S1BN8-F Cable size: 7X4+ 5X1,5 Cable resist.: 4,95 mOhm/m Winding resistance 0,123 Ohm Cos phi 1/1: 0,81 Cos phi 1/2: 0,64 Cos phi 3/4: 0,75 Controls: Moisture sensor: with moisture sensors Water-in-air_sensor: Ν Others: 778 lb Net weight: Sales region: Namreg

Printed from Grundfos Product Center [2015.09.024]

Data sheet

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTE 100-251/164UG-S

Operating data

Requested flow rate Requested developed head Pumped medium

Ambient air temperature Fluid temperature Fluid density

Fluid viscosity Static head

Design

Design Orientation Suction flange pump according to(DN1) Discharge flange pump according to(DN2) Shaft seal

Manufacturer Type

Driver, accessories

Driver type Model (make) Motor const. type NEMA code letter Frequency Rated voltage Rated power P2 Available reserve Rated current Starting current ratio Insulation class Motor enclosure Cos phi at 4/4 load Motor efficiency at 4/4 load Motor service factor

Materials G

Pump casing (101) Discharge cover (163) Shaft (210)

Impeller (230) O-Ring (412) 430.00 US GPM 74.50 ft Wastewater, municipal untreated Not containing chemical and mechanical substances which affect the materials 68.0 °F 68.0 °F 64.300840 lb/ft³

0.0015 in²/s 34.50 ft

Close-coupled submersible Vertical unmachined

EN 1092-2 / DN 100 / PN 16

2 mech. seals in tandem arrangement with oil reservoir KSB MG

Electric motor KSB KSB Sub. motor K 60 Hz 460 V 19.99 HP 45.50 % 29.0 A 7.6 F to IEC 34-1 IP68 0.73 88.0 % 1.15

Cast iron A 48 Class 35 B Cast iron A 48 Class 35 B Chrome steel A 276 Type 410 T Cast iron A 48 Class 35 B Nitrile rubber NBR Casing wear ring (502.1) Motor housing (811) Motor cable (824) Screw (900) 454.74 US GPM 79.24 ft 68.3 % 13.74 HP 1768 rpm 18.49 HP 105.48 ft Single system 1 x 100 %

No Tolerances to ISO 9906 Class 3B; below 10 kW acc. to paragraph 4.4.2

SIC/SIC/NBR Single vane, radial flow (E) Casing wear ring 9.65 in 3.54 in Clockwise Ultramarine blue (RAL 5002) KSB-blue

Bimetal switch 2x 460 V 4 Direct-on-line starting Delta Surface cooling U

Rubber hose Sealed along entire length AWG 11-7+15-5 1 With

32.81 ft

Cast iron A 48 Class 35 B Cast iron A 48 Class 35 B Chloroprene rubber Stainless steel A 193 B8M

Number: ES 4167306 Item no.: 100 Date: 25/02/2016 Page: 1 / 8

Version no.: 1

Actual flow rate

Power absorbed

Performance test

Material code

Impeller type

Impeller diameter

Free passage size

Temperature sensor

Motor winding

Starting mode

Motor version Cable design

Cable entry

Power cable

Cable length

Moisture sensor

Number of poles

Connection mode

Motor cooling method

Number of power cables

Direction of rotation from drive

Wear ring

Color

Shutoff head

Desian

Efficiency

Actual developed head

Pump speed of rotation

Max. power on curve

Data sheet

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTE 100-251/164UG-S

Nameplates

Nameplates language

Installation parts

Installation type Scope of supply Installation depth Material concept

Duckfoot bend

Size Flange design Duckfoot bend size (DN2 / DN3) Material Mounting type Foundation rail

Claw

Design Size

Lifting chain / -rope

Stationary with guide wire Pump with installation parts 14.76 ft G

International

DN 100 ASME DN 100 Drilled according to ASME Cast iron A 48 Class 35 B Composite anchor bolts Without

straight DN 100 KSB **b**.

Number: ES 4167306 Item no.: 100 Date: 25/02/2016 Page: 2 / 8

With

Version no.: 1

Duplicate nameplate

Type Material Length Max. load

Chain CrNiMo steel 1.4404 16.40 ft 882 lbm

Compact data sheet

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTE 100-251/164UG-S

Number: ES 4167306 Item no.:100 Date: 25/02/2016 Page: 3 / 8

Version no.: 1

Compact data sheet

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTE 100-251/164UG-S

Version no.: 1

Number: ES 4167306

Item no.:100

Date: 25/02/2016 Page: 4 / 8

Lifting chain / -rope	Chain
Material	CrNiMo steel 1.4404
Length / Max. load	16.40 ft / 882 lbm

Performance curve

Number: ES 4167306 Item no.:100 Date: 25/02/2016 Page: 5 / 8

KRTE 100-251/164UG-S

Version no.: 1

Curve data

Speed of rotation1768 rpFluid density64.3008Viscosity0.0015 iFlow rate454.74 lRequested flow rate430.00 lTotal developed head79.24 ftRequested developed head74.50 ft

1768 rpm 64.300840 lb/ft³ 0.0015 in²/s 454.74 US GPM 430.00 US GPM 79.24 ft 74.50 ft Efficiency Power absorbed NPSH required Curve number Effective impeller diameter Acceptance standard 68.3 % 13.74 HP 15.16 ft K42580s 9.65 in Tolerances to ISO 9906 Class 3B; below 10 kW acc. to paragraph 4.4.2

Motor data sheet

KRTE 100-251/164UG-S

KSB **b.**

Number: ES 4167306 Item no.:100 Date: 25/02/2016 Page: 6 / 8

Version no.: 1

Motor data

Motor manufacturer Motor size Motor construction type Motor material Efficiency class Rated voltage Frequency Motor power Rated current Curve data	KSB 16 KSB Sub. motor Grey cast iron EN-GJL-250 not classified 460 V 60 Hz 19.99 HP 29.0 A	Rated speed Starting current ratio Starting mode Power cable Number of power cables Power cable Ø min. Power cable Ø max. Cable standard Switching frequency	1765 rpm 7.6 Direct-on-line startin AWG 11-7+15-5 1 0.83 in 0.91 in NEC 10.00 1/h	g				
	arantee point within the meanir	a of IEC 60034						
Load 0.0 %	25.0 %	50.0 % 75.1 %	100.0 %					
P2 0.00 HP		10.00 HP 15.01 HP						
n 1800 rpr P1 1.48 HP		1783 rpm1774 rpm11.88 HP17.23 HP						
I 16.4 A	17.6 A	20.4 A 24.3 A	29.0 A					
Eta 0.0 %	75.3 %	84.2 % 87.0 %	88.0 %					
cos phi 0.08	0.35	0.55 0.66	0.73					
1800 -								
[rpm]								
1760			n					
0 2 [HP] 4	4 6 8 10	12 14 16	18 20					
100								
180 -	eta							
	Cia							
160 - 80 -				-0.8 -80				
140 -								
120 - 60				-0.6 -60				
	cos phi							
100 -								
80 - 40				-0.4 -40				
60 - [HP]				[1] [%]				
40 - 20			P1	-0.2 -20				
[A]								
20 -								
0 - 0 	<u> </u>	12 14 16	18 20	-0.0 -0				
mechanical power P2								

Installation plan

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTE 100-251/164UG-S

KSB **b.** Number: ES 4167306 Item no.:100 Date: 25/02/2016

Page: 7 / 8 Version no.: 1

Drawing is not to scale

UG1134933

Dimensions in in

Installation plan

Customer item no .: Communication dated: Doc. no.: Quantity: 1

KRTE 100-251/164UG-S

Motor

Motor manufacturer Motor size Motor power Number of poles Speed of rotation

Connect pipes without stress or strain!

Connection dimensions for pumps:

Dimensional tolerances for shaft axis height:

Dimensions without tolerances - welded parts: Dimensions without tolerances - gray cast iron parts:

Dimensions without tolerances, middle tolerances to:

KSB 16 19.99 HP 4 1765 rpm

Suction flange pump according to(DN1) Duckfoot bend size (DN2 / DN3)

Weight net Pump, Motor, Cable Claw / Foot Total

> DIN 747 ISO 2768-m EN735 ISO 13920-B ISO 8062-CT9

DN 100 Drilled according to ASME

417 lbm 32 lbm 449 lbm For auxiliary connections see separate drawing.

Number: ES 4167306 Item no.:100 Date: 25/02/2016 Page: 8 / 8

Version no.: 1

Connections

Data sheet

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTK 100-251/114UG-S

Operating data

Requested flow rate Requested developed head Pumped medium

Ambient air temperature Fluid temperature Fluid density

Fluid viscosity Static head

Design

Design Orientation Suction flange pump according to(DN1) Discharge flange pump according to(DN2) Shaft seal

Manufacturer Type

Driver, accessories

Driver type Model (make) Motor const. type NEMA code letter Frequency Rated voltage Rated power P2 Available reserve Rated current Starting current ratio Insulation class Motor enclosure Cos phi at 4/4 load Motor efficiency at 4/4 load Motor service factor

Materials G

Pump casing (101) Discharge cover (163) Shaft (210)

Impeller (230) O-Ring (412) 430.00 US GPM 74.50 ft Wastewater, municipal untreated Not containing chemical and mechanical substances which affect the materials 68.0 °F 68.0 °F 64.300840 lb/ft³

0.0015 in²/s 34.50 ft

Close-coupled submersible Vertical unmachined

EN 1092-2 / DN 100 / PN 16

2 mech. seals in tandem arrangement with oil reservoir KSB MG

Electric motor KSB KSB Sub. motor K 60 Hz 460 V 15.01 HP 10.80 % 22.0 A 7 F to IEC 34-1 IP68 0.73 87.7 % 1.15

Cast iron A 48 Class 35 B

Cast iron A 48 Class 35 B

Cast iron A 48 Class 35 B

Nitrile rubber NBR

Chrome steel A 276 Type 410

Temperature sensor Motor winding Number of poles Starting mode Connection mode Motor cooling method Motor version Cable design Cable entry Power cable Number of power cables Moisture sensor

Cable length

Casing wear ring (502.1) Motor housing (811) Motor cable (824) Screw (900) 430.00 US GPM 74.50 ft 61.7 % 13.54 HP 1768 rpm 22.51 HP 97.13 ft Single system 1 x 100 %

No Tolerances to ISO 9906 Class 3B; below 10 kW acc. to paragraph 4.4.2

SIC/SIC/NBR Multivane radial flow impeller (K) Casing wear ring 9.29 in 2.99 in Clockwise Ultramarine blue (RAL 5002) KSB-blue

Bimetal switch 2x 460 V 4 Direct-on-line starting Delta Surface cooling U Rubber hose Sealed along entire length AWG 13-12 1 With

32.81 ft

Cast iron A 48 Class 35 B Cast iron A 48 Class 35 B Chloroprene rubber Stainless steel A 193 B8M

Number: ES 4167306 Item no.: 200 Date: 25/02/2016 Page: 1 / 9

Version no.: 1

Actual flow rate

Power absorbed

Performance test

Material code

impeller type

Impeller diameter Free passage size

Direction of rotation from drive

Wear ring

Color

Shutoff head

Design

Efficiency

Actual developed head

Pump speed of rotation

Max. power on curve

Data sheet

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTK 100-251/114UG-S

Nameplates

Nameplates language

Installation parts

Installation type Scope of supply Installation depth Material concept

Duckfoot bend

Size Flange design Duckfoot bend size (DN2 / DN3) Material Mounting type Foundation rail

Claw

Design Size

Lifting chain / -rope

Stationary with guide wire Pump with installation parts 14.76 ft G

International

DN 100 ASME DN 100 Drilled according to ASME Cast iron A 48 Class 35 B Composite anchor bolts Without

straight DN 100 Type Material Length Max. load

Duplicate nameplate

Chain CrNiMo steel 1.4404 16.40 ft 441 lbm

Number: ES 4167306 Item no.: 200

ltem no.: 200 Date: 25/02/2016 Page: 2 / 9

With

Version no.: 1

KSB **b**.
Compact data sheet

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTK 100-251/114UG-S

11.11

Number: ES 4167306 Item no.:200 Date: 25/02/2016 Page: 3 / 9

Version no.: 1

		Materials G	
		Pump casing (101)	Cast iron A 48 Class 35 B
Qmin L 100 Qmin Qmax		Discharge cover (163)	Cast iron A 48 Class 35 B
		Shaft (210)	Chrome steel A 276 Type
Production of the second secon			410 T
a [ft] Qmin	250.0	impeller (230)	Cast iron A 48 Class 35 B
175.0		Operating data	
0 +		Pumped medium	Wastewater, municipal
0 500 [US GPM] 1000	1500		untreated
35			Not containing chemical
<u>हूं</u> [ft]			and mechanical
			substances which affect the
			materials
10		Ambient air temperature	68.0 °F
0 500 [US GPM] 1000	1500	Fluid temperature	68.0 °F
80		Actual flow rate	430.00 US GPM
		Actual developed head	74.50 ft
[%]		Efficiency	61.7 %
K Z		Power absorbed	13.54 HP
		Pump speed of rotation	1768 rpm
0 500 [US GPM] 1000	1500	Static head	34.50 ft
		Design	Single system 1 x 100 %
1 20			
		Driver, accessories	
		Driver type	Electric motor
		NEMA code letter	K
0 500 [US GPM] 1000	1500	Frequency	60 Hz
Flow		Rated voltage	460 V
		Rated power P2	15.01 HP
Design		Available reserve	10.80 %
	ed submersible	Rated current	22.0 A
Orientation Vertical		Starting current ratio	7
Suction flange pump unmachined		Insulation class	F to IEC 34-1
according to(DN1)		Motor enclosure	IP68
	/ DN 100 / PN	Temperature sensor	Bimetal switch 2x
according to(DN2) 16 Shaft seal 2 mech. sea	ls in tandem	Motor winding	460 V
		Starting mode	Direct-on-line starting
arrangemer		Cable design	Rubber hose
reservoir Type MG		Cable length	32.81 ft
Type MG Material code SIC/SIC/NB	ь I		
		Installation parts	
		Installation type	Stationary with guide wire
impeller (K)		Scope of supply	Pump with installation parts
Impeller diameter 9.29 in		Installation depth	14.76 ft
Free passage size 2.99 in		Material concept	G
Direction of rotation from Clockwise		Duckfoot bend	
drive		Duckfoot bend size (DN2 /	DN 100 Drilled according
		DN3)	to ASME
		Size / Material	DN 100/Cast iron A 48
			Class 35 B
		Mounting type	Composite anchor bolts
		Claw	straight
		Claw	DN 100
		Size	DN 100

Compact data sheet

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTK 100-251/114UG-S

Number: ES 4167306 Item no.:200 Date: 25/02/2016 Page: 4 / 9

Version no.: 1

Material CrNiMo steel 1.4404 Length / Max. load 16.40 ft / 441 lbm	Lifting chain / -rope	Chain
Length / Max. load 16.40 ft / 441 lbm	Material	CrNiMo steel 1.4404
	Length / Max. load	16.40 ft / 441 lbm

Performance curve

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTK 100-251/114UG-S

Number: ES 4167306 Item no.:200 Date: 25/02/2016 Page: 5 / 9

Version no.: 1

Curve data

Speed of rotation1768 rpFluid density64.3008Viscosity0.0015 iFlow rate430.00 tRequested flow rate430.00 tTotal developed head74.50 ftRequested developed head74.50 ft

1768 rpm 64.300840 lb/ft³ 0.0015 in²/s 430.00 US GPM 430.00 US GPM 74.50 ft 74.50 ft Efficiency Power absorbed NPSH required Curve number Effective impeller diameter Acceptance standard 61.7 % 13.54 HP 15.55 ft K42595s 9.29 in Tolerances to ISO 9906 Class 3B; below 10 kW acc. to paragraph 4.4.2

Speed curve

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTK 100-251/114UG-S

Number: ES 4167306 Item no.:200 Date: 25/02/2016

Page: 6 / 9 Version no.: 1

Curve data

Fluid density Viscosity Flow rate Requested flow rate 64.300840 lb/ft³ 0.0015 in²/s 430.00 US GPM 430.00 US GPM Total developed head74.50 ftRequested developed head74.50 ftEffective impeller diameter9.29 in

Motor data sheet

KRTK 100-251/114UG-S

KSB 6

Number: ES 4167306 Item no.:200 Date: 25/02/2016 Page: 7 / 9

Version no.: 1

Motor data

Motor siz	nstruction type terial class tage sy wer rrent	KSB 11 KSB Sub. motor Grey cast iron EN-GJL-25 not classified 460 V 60 Hz 15.01 HP 22.0 A	Rated speed Starting current ra Starting mode O Power cable Number of power Power cable Ø m Power cable Ø m Cable standard Switching frequer	cables in. ax.	1765 rpm 7 Direct-on-line starting AWG 13-12 1 0.73 in 0.77 in NEC 10.00 1/h			
The no-loa Load P2 n P1 I Eta cos phi	ad point is not a gu 0.0 % 0.00 HP 1800 rpr 1.34 HP 12.0 A 0.0 % 0.10	m 1791 rpm	aning of IEC 60034 50.0 % 7.50 HP 1783 rpm 8.97 HP 15.2 A 83.6 % 0.55	75.0 % 11.25 HP 1774 rpm 12.99 HP 18.1 A 86.6 % 0.67	15.0 176	7 %		
1800 -								
[rpm] 1760	0 2 [HI	P] 4 6	8 10	12	n	16		
T	·							
180 -								
100 -								
160 - 80 -		eta				0.8	80	
140 -								
140 - 120 - 60 - 100 -		cos phi				0.6	60	
80 - 40 -						0.4	40	
60 - [HP]						[1]	[%]	
40 - 20 -							20	
40 - 20 -					P1	0.2	20	
[A]	X							
20 -	1							
0 - 0 -							0	
	0 2 [HI		8 10 anical power P2	12	14	16		

Installation plan

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTK 100-251/114UG-S

кsв **б.**

Number: ES 4167306 Item no.:200 Date: 25/02/2016 Page: 8 / 9

Version no.: 1

Drawing is not to scale

Dimensions in in

Installation plan

Customer item no.: Communication dated: Doc. no.: Quantity: 1

KRTK 100-251/114UG-S

Motor

Motor manufacturer	KSB
Motor size	11
Motor power	15.01 HP
Number of poles	4
Speed of rotation	1765 rpm

Connect pipes without stress or strain! Dimensional tolerances for shaft axis height: Dimensions without tolerances, middle tolerances to: Connection dimensions for pumps: Dimensions without tolerances - welded parts:

Dimensions without tolerances - gray cast iron parts:

Connections Suction flange pump according to(DN1) Duckfoot bend size (DN2 /

unmachined

Number: ES 4167306

Item no.:200 Date: 25/02/2016

Page: 9 / 9 Version no.: 1

> DN 100 Drilled according to ASME

392 lbm 32 lbm 424 lbm For auxiliary connections see separate drawing.

13 - 13 MA

Weight net Pump, Motor, Cable Claw / Foot Total

DN3)

DIN 747 ISO 2768-m EN735 ISO 13920-B ISO 8062-CT9

US gpm Default motor size is based upon max. power on the design curve plus a margin factor to allow for impeller trim variances that may occur to meet H.I. TDH requirements. Efficiencies and data are typical. Please contact the factory for guaranteed values. FOR TEMP. ABOVE 104 DEG. F (40 DEG C) REFER TO FACTORY FOR ASSISTANCE.

Г	enumance Evalua		and the second state of th			
	Flow US gpm	Speed rpm	Head ft	Efficiency %	Power hp	NPSHr ft
	516	1750	70.2	61	15	
	430	1750	75.7	60	13.7	
	344	1750	80.2	55.8	12.4	
	258	1750	85.1	49.3	11.2	
	172	1750	90.6	39.5	9.98	

Selected from catalog: YP_9100.60 Vers: 1

Series 9100 **Motor Data** 1750 RPM - 3 Phase

Totally enclosed, non-ventilated, hermetically sealed submersible type. Features include 416 stainless steel shaft, tandem mechanical seals (one inside an oil chamber and one outside); automatic reset N.C. series connected thermal overload protection, two moisture sensing probes, pre-lubricated shaft bearings class H insulation (Class F on 140 frame). *Efficiencies include all mechanical losses including mechanical seals.

H.P.	Full H.P. Load		Nomi	Nominal Eff % @ *			ninal Po actor %	wer		6 @ 460V	KVA Code	Full Load Torque	% Full Tor		Pow	er Cable	Cor	ntrol Cable
	RPM	Size	Full	3/4	1/2	Full	3/4	1/2	Full	Locked	Letter	(Ft-Lbs)	Locked	Break-	AWG			O.D. ** (in.)
0.5	1732	140	Load 55.7	Load 50.1	Load 41.1	Load	Load	Load	Load	Rotor		4 5	Rotor	down	Size	(in.)	Size	. ,
	1733					75.6	69.3	61.2	1.1	6.1		1.5	313	368	#16	0.57		A
0.75		140	63.9	58.9	50.3	76.8	70.4	61.8	1.4	8.5	K	2.3	302	356	#16	0.57		Applicable -
	1739	140	68.3	63.7	55.4	75.6	68.8	59.5	1.8	11.5	L	3.0	308	371	#16	0.57	Single	e Cable Used
1.5	1737	140	72.3	68.5	61.1	76.7	69.8	58.9	2.5	15.4	K	4.5	268	332	#16	0.57		
2	1744	140	74.9	72.7	66.6	75.7	67.4	55.2	3.3	19.8	J	6.0	267	319	#12	0.65	#18	0.45
3	1733	140	77.7	76.2	71.0	79.9	73.1	61.6	4.5	26.8	J	9.0	199	288	#12	0.65	#18	0.45
5	1733	140	80.6	79.4	74.6	81.1	74.7	63.6	7.1	45.1	J	15.0	244	301	#12 0.65		#18	0.45
7.5	1737	180	85.9	87.4	87.0	83.7	78.0	67.1	9.8	64.3	Н	22.7	232	310			#14	0.59
10	1735	180	84.0	86.7	86.1	80.6	73.3	60.4	13.8	84.0	Н	30.3	238	313		l l		0.59
15	1747	210	86.7	88.6	88.6	81.4	76.4	66.1	19.9	104.8	F	45.1	192	239			#14	0.59
20	1741	210	86.4	88.9	89.6	82.4	78.6	69.6	26.3	131.1	F	60.3	183	223			#14	0.59
25	1761	250	88.8	90.3	90.2	83.8	80.6	72.2	31.4	172.1	F	74.6	192	236			#14	0.59
30	1765	250	90.2	91.6	91.3	85.2	82.3	74.4	37.0	218.0	G	89.4	210	263	1		#14	0.59
40	1760	250	89.5	91.0	91.0	84.8	81.2	72.3	49.0	298.0	G	119.3	212	265	See Po	wer Cable	#14	0.59
50	1771	320	89.3	89.4	87.6	82.1	77.6	67.7	64.0	345.0	F	148.3	175	252	Siz	e Chart	#14	0.59
60	1767	320	90.3	90.9	90.0	87.9	86.8	82.1	71.0	378.0	F	178.3	167	229			#14	0.59
75	1770	320	93.0	93.7	93.3	87.8	85.8	79.7	86.0	560.0	G	222.2	208	266			#14	0.59
100	1785	360	92.4	92.6	91.0	86.9	85.2	79.5	117.0	777.2	G	294.4	197	238			#14	0.59
125	1782	360	93.2	93.2	92.0	86.9	85.4	80.1	145.0	901.0	G	368.5	178	263			#14	0.59
150	1782	360	93.6	93.8	92.8	88.5	87.2	83.0	169.0	1108.0	G	442.1	186	268			#14	0.59
200	1780	L360	94.6	95.1	94.8	88.1	88.7	86.8	225.0	1297.0	۴	590.0	165	234			#14	0.59

Typical motor data for Submersible 3 phase, 60 hertz, NEMA design B, 40 °C ambient, normal torque motors. Amperes shown for 460 volt connection. If other connections are available, the amperes will vary inversely with rated voltage. All values nominal. All motors have 1.15 S.F. at 40 °C ambient temperature. ** Above cable data for standard motors only, with cable length of 30'. Data is applicable through lengths of 100'. 140 frame motors with #16 AWG cord utilize single cable, (8) conductor, with power and control leads. Control cables must be run in a separate conduit. Not certified for construction. Cable size and dimensions may vary. Confirm with factory before final design or construction.

Date 9/1/07

PAGE 9191

SERIES 9100 SOLIDS-HANDLING SUBMERSIBLE WASTEWATER **BARE PUMP**

	l ic.		EQUI			IDNI	C٢								Submersible Pump Asso		<u> </u>	NE DWG	#	1116	<u>. / (</u>
	LIJ	I UF	EQUI	FIVIEI		JUNI	5								SW		S.O.				·
															MEN	1BFR	JOB:				
P	ated f	or		GI	PM at			Ft.TI	DH.						Laiden		ISSUE	REV	ISION	C	DAT
		HP,		F	RPM, .		_v	olts									1	I		Ι	
	Ph	ase,	Н	z		^	No	tor Fr	ame												
	Tot	ally En	closed	d Non-	Venti	lated	w/														
	The	rmal F	rotect	tion &	Moist	ure D	ete	ectior	۱												
				DIM	ENS	ION	С	HAF	RT							. · · ·	M	OTOR FR	AME CH	ART	
PUMP								-		Γ,	MOTOR			APPROX.		MOTOR		REE PHASE D HERTZ		SINGLE 60 HE	
MODEL	A	с	D	Е	G	н	1	к	Р]7	FRAME	м	N MAX	UNIT		HP					<u>Т</u>
					<u> </u>					+	140	21 3/8	37	WT.# 220		1	1750	1160	875	1750	+-
3062	15	9	12 1/4	6 1/2	5 5/8	2 3/8	3	2 1/8	3 1/4	F	180	22 3/8	38 5/8	405		1 1 1/2		140	140		
4072 {1	15 1/4	91/2	10 7/8	5 3/4	(1)	(1)	4	2 1/2	2 11/16		140	24 1/4	29 3/4	250		2 3	140		180	140	
4072.5	15 1/2	9 1/2	11 3/4	6 1/4	6	3		3	3	\square	140	22 3/8	37 5/8	250		5 7 1/2		180	210	l	₽
4073	15 1/2	91/2	11 5/4	01/4	l °	3	4	3	3		180		40 3/8	475		10	180	210	250	1\ ,	/ \
											140	23	29 3/4	287		15 20	210	250	250	{\ /	
4083 ⁽¹	19 3/16	12	14 3/4	7 7/8	{1}	(1)	4	4	3 7/8		180	24	31 1/4	390		25 30	250		320	$ \rangle /$	
											210	30	38	537		40		320		ΙV	
											140	23 3/8	38 5/8	280		50 60	320			$ \land $	
4092.5	17	10 1/2	13 1/2	7 1/4	6 1/2	2 1/2	4	3	4	L.	180	24 1/2	40 5/8	400		75 100			360	$ / \rangle$	
ļ						ļ		ļ		-	210	29 3/4	51 1/4	450		125	360	360		۱/ ۱	\mathbf{J}
4103S							-			⊢	140		39 1/8	280		150 200	360L	360L	\sim	/	V
<u> </u>	21	13	16 1/4	8 3/4	7 1/4	3	4	4	4 1/4	⊢	180	25	41 1/8	465							
4103L											210 250	29	50 1/2 57	515							
4103SV										+	210	33 1/2 29	50 1/2	865 515							
4113SV 4123SV	21 21	13	16 1/4	8 3/4	7 1/4	3	4	4	4 1/4	⊢	-					т					
4133SV					(2)	(2)					250	33 1/2	57	865		I	Î E	1	$\overline{1}$	\mathcal{A}	
											180	24 1/4	39 3/8	470			Ì	///		$\mathbb{N} \nearrow$	1
4123	23	13 1/2	19 1/2	10 1/2	7 1/4	3	4	4	4 1/4	L	210	29	50 1/2	520		Þ	<u>+</u>	<u> </u>		≞))	#
										L	250	33 1/2	57	870				$\langle \rangle \rangle \langle \rangle$		$// \square$	
					<u> </u>					-	320		61	1345 465		ĺ			_		
412 5251	20 21 1 /4	13.1/2	17.7/4	9 1/16	4.1/2	1/0			4.7/0	┝	180 210	25 29 3/4	45 3/4 50 1/2	515		Ł			\downarrow		
412.53SV (-) Z1 1/4	12 1/2	17 3/4	91/16	4 1/2	1/8	4	4	4 3/8	⊢	210	34 1/4	55	865					_	— c ——	-
							┢			┢──	210	34 1/2	56	720					—— A ——		-
						_				⊢	250		61 1/8	1070							
4153	29 1/8	17 3/4	22 3/4	11 3/4	7 3/4	3	4	4	4 3/4	┢	320	39 5/8	64 5/8	1545	-						
										F	360	46 1/2	73 5/8	2035							
				1	1						250	34	44 1/4	1070				ſ.			
4153L ⁽¹	28 3/4	18	22 1/4	12	(1)	(1)	4	6	5 1/4		320	36	48 1/4	1545							
											360	42 3/4	53 3/4	2035	N (M	AX.)		──			
											180	27 1/8	43 1/4	640							
											210	31 7/8	53 3/8	690		M					
6123	28 5/8	17 3/4	21 3/4	12	8	3	6	6	5		250	35	58 1/2	1040		Ϊ		Ę		l	
							L				320	37	62	1515							Л
(1) THE SUP	SE MODI PORT FF	ELS AVAI	LABLE V	VITH "EL'	TYPE			LY ANE ABI F F	DO NO	TC TAT							Ł	$\int_{-\infty}^{-\infty}$		71	
WITI	HOUT OI	PTIONAL	SUPPO	RT PEDE	STAL A	ND DIS	CHA	RGE FL	ANGE	ADA	APTER.R	EFER					Р	YF			1
(2) THE:	SE MOD	ELS DO I	NOT HAV	/E SUPPO	ORT FEE	T.THEY	' AR	ENOT	FREE ST	ANI	DING O	R			-	I I	+ -	±Ŀ,		<u>†₩</u>	U
SUIT	ABLE FC	K PORT	ABLE US	E WITHC	DUT OP		SUF	PORT	PEDEST	AL.	REFER						к —			I	

(3) SUITABLE FOR PORTABLE USE WITH OPTIONAL SUPPORT PEDESTAL REFER TO FACTORY FOR ADDITIONAL INFORMATION. ADD 5" TO G & H DIMS. WHEN SUPPLIED WITH OPTIONAL SUPPORT PEDESTAL. FREE STANDING INSTALLATION DRAWING ON PAGE 9182

NOT CERTIFIED FOR CONSTRUCTION PURPOSES. REFER TO FACTORY FOR CERTIFIED INSTALLATION DRAWINGS

- Date 11/1/08 -

M = RECOMMENDED SUBMERGENCE ALL DIMENSIONS IN INCHES +/- 1/8

PAGE 9181A-

1740 Lininger Lane
North Liberty, IA 52317
P 319.626.9090
F 319.626.9095

www.mecresults.com

February 26, 2016

Mr. Charles Gipp, Director of the Iowa DNR c/o Mr. Marty Jacobs, P.E., Environmental Engineer Iowa Department of Natural Resources – Wastewater Engineering Section Wallace Building 502 E. 9th Street Des Moines, IA 50319-0034

RE: Waukee Bluestem Lift Station #14 Improvements, Waukee, Iowa MEC 2214027-00 IDNR #S2015-0425

Dear Mr. Gipp and Mr. Jacobs:

Enclosed please find one (1) copy of the City of Waukee's variance request for the job referenced above regarding Iowa Wastewater Facilities Design Standard 13.4.3, which states "unless grinder pumps are used, pumps shall be capable of passing spheres at least 3 inches in diameter."

If you have any questions, please call me at (515) 964-1229.

Very truly yours,

McCLURE ENGINEERING COMPANY

unter Kange

Curtis Kampman, P.E.

Enclosures

CC:

Mr. John Gibson, City of Waukee File.

 705 First Avenue North Fort Dodge, IA 50501
P 515.576.7155
F 515.576.4235

www.mecresults.com

February 17, 2016

Mr. Marty Jacobs, P.E. Iowa Department of Natural Resources – Wastewater Engineering Section Wallace Building 502 E. 9th Street Des Moines, IA 50319-0034

RE: Waukee Bluestem Lift Station #14 Improvements, Waukee, Iowa MEC 2214027-00 IDNR #S2015-0425

Dear Marty,

The City of Waukee is requesting a variance for the above referenced project on the 3-inch sphere requirement as specified in the State of Iowa's Wastewater Design Standards chapter 13.4.3, which states "pumps shall be capable of passing spheres at least 3 inches in diameter."

The pumps specified as the basis of design in the proposed project (Flygt NP 3153 submersible pumps) contain an impeller which does not meet the regulatory requirement of being able to pass a 3-inch sphere.

The City of Waukee is aware Flygt's N-series impeller does not meet this regulatory requirement. However, the City has multiple N-series impellers installed throughout their existing sanitary collection system and is satisfied with their performance. Additionally, per discussions with the local manufacturer's representative, Electric Pump of Des Moines, Iowa, there are currently over 800 N-series impellers installed across the state of Iowa.

Please find enclosed a revised Schedule E denoting the inability of the proposed pumps to pass a 3-inch solid. If any additional information is required prior to granting the requested variance, please let me know.

FEB 1 9 2016

Sincerely,

McCLURE ENGINEERING COMPANY

Cuntum Kanp

Curtis J. Kampman, PE Project Engineer

Enclosures

cc: Mr. John Gibson, City of Waukee File

ECEIVED

44541 FEB19'16 AM11:29

Iowa Department of Natural Resources Wastewater Section Construction Permit Application SCHEDULE E, Wastewater Pump Station

	TE PREF 20-15	PARED	PROJECT I Waukee Blu	DENTITY Jestem Lift S	Station #	14 Improve	ements	-	PRO	DNR U DJECT NO.	JSE	
DA	TE REVI		Waukee, Iov			·				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
2-1 ⁻	7-16								PER	MIT NO.		
1.				Design B	asis		Initial	Desig	n Year (20	35)	
			Residential				0 -> 16	72	`	1	<u></u>	
			Population			0 -> 160	720					
			PHDW Fl	ow, MGD		0 -> 0.024	0.108					
			Industrial A	rea, Acres		0 -> 0 0						
	PHDW Flow, MGD 0 -> 0 0											
			Other Sch	ool / Comm	ercia, A	0 -> 37 / 0	37 / 9					
			PHDW Fl	ow, MGD			0 -> 0.029 / 0	0.058	0.067			
			Peak Hourly	/ Infiltration,	MGD		0 ->	0				
			Peak Hourly	/ Inflow, MG	D		0 -> 0.083	0.275				
			Total PHDV	V Flow, MGI)		0 -> 0.053	0.233				
			Total PHW	W Flow, MG	D		0 -> 0.136	0.508				
2.	Provide	pump info	ormation									
	Pump			Opening		Capacity	TDH	(ft.)	Operat	ing Level		
	No.		Гуре NP 3153	(in)	HP	GPM	Computed	Rated	On	Off		
	1	Flygt	NP 3153	4	15	430	75	75	985.92	985.00		
	2	Flygt	NP 3153	4	15	430	75	75	986.92	985.00		
	3										_	
	4										_	
	5					····						
	Sump					<u> </u>						
							eter spheres? Y			gt N-Series	Pump	
2							of service? Y tion time: Initia					
э.	wei-wei	enective		ganon	s. Maxi	imum reten		$1 \text{ flow} = \frac{20}{9}$				
1	Is forced	oir vontil	ation provide	d? No			Desig	n now	minut	les.		
ч.			well <u>-</u>		<u>-</u>	Intermitt	ent: wet-well	c	In wall	_		
	Continue	dru-u	vell -	air_change	s/hour	·	dry-well	- 2	ir changes/	hour		
	Are sparl		aterials speci:				diy-well	(ui changes/	noui		
5			ofile of force				٦					
0.	Size 6.0						DW design flo	w 0.6	hours.			
			C (AWWA C				int Internal joi			w/gaskets		
			5.0 ft.				fps				-	
			oints 1.0				l?Yes 🗌 N					
			olocks provide			cation(s)						
	Is pressu	re test spe	cified? Yes	X No			conform to AW	WA C600?	Yes 🗙	No 🗌	-	
	If no, exp											
6.	Are valve	es provide	ed on the suct	ion & discha	ge lines?	Yes 🗙	No 🗌					
			6" Plug Va				Suction Subr					
7.			provided?				gh & low level			all system	_	
							SCADA syster		ervice		_	
							well level; Bacl	kup floats				
9.	Are the p	umps pro	tected from c	logging? Y	es 🔀 1		d hy romand f		المعامة المرابع	a		
							d by removal fr			e water	-	
10			emoval Porta				g hook/arms pro	ovided? re	>		-	
10.			ergency pipin			provided?	Yes			n	-	
			ower supply a			t ninina 1.	umaga ata) Et	andby diese	lanarata	*	-	
11			peration in an pump station				· · · · —	anuby diese	generator		-	
11.			ear flood (MS		iooupiain		ation of 25 year	flood (MSI)	N/A			
	Lievanon	. or 100 y		····) ·····			anon of 25 year				-	

DNR form 28E (Nov 00)

S RECEIVED FEB 1 9 2016 44542 FEB19'16 AM11:29

542-3098

CERTIFICATION FOR AMENDMENT NO. 2 FOR PETITION FOR VARIANCE

BLUESTEM LIFT STATION #14 IMPROVEMENTS WAUKEE, IOWA

MEC PROJECT NO. 2214027-00 IDNR S2015-0425

APRIL 2016

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Iowa.

mate Kung Curtis J. Kampman, P.E. Reg. No. 21994

4-5-16 (Date)

My license renewal date is December 31, 2017.

<u>Pages or sheets covered by this Seal</u>: Amendment No. 2 for Petition for Variance, Bluestem Lift Station #14 Improvements, Waukee, IA, April, 2016.

BEFORE THE IOWA DEPARTMENT OF NATURAL RESOURCES DES MOINES, IOWA

CITY OF WAUKEE, IOWA 230 WEST HICKMAN RD. WAUKEE, IA 50263 (515) 978-7900

AMENDMENT No. 2 for PETITION FOR VARIANCE

The Petitioner, pursuant to Iowa Code Section 17A.9A and Iowa Administrative Code 561 Chapter 10, requests a Variance from Iowa Wastewater Facilities Design Standard 13.4.3. Petitioner provides the following information pursuant to Iowa Administrative Code 561 Chapter 10.9(1) through 561 Chapter 10.9(10):

This Amendment No. 2 shall be attached to and become part of the Petition for Variance for the "BLUESTEM LIFT STATION #14 IMPROVEMENTS" project. The Petition for Variance shall be modified as follows:

Change #1

10.9 (4) The relevant facts that the petitioner believes would justify a waiver or variance. The factual statement is to include a signed statement from the petitioner attesting to the accuracy of the facts provided in the petition and a statement of reasons that the petitioner believes will justify a waiver or variance.

Please DELETE the fifth response subsection entitled "Trash Basket Provision" of this section in its entirety and insert the following:

<u> "Trash Basket Provision</u>

To offer an additional layer of protection, as well as conform to current design standards, a trash basket will be installed on the only influent line entering the wet well of the Lift Station. The originally specified trash basket for the Lift Station had a maximum clear opening of 1.5-inches. However, given the clear opening of the proposed pump is 1.4-inches, the City will specify a new trash basket with a maximum clear opening equivalent to or less than 1.4-inches. As a result, objects larger than 1.4-inches should be collected in the trash basket, reducing the potential for clogging from such objects.

The City of Waukee actively inspects and maintains the trash baskets of its lift stations as part of a regular maintenance program to remove any built up deposition and ensure the condition of the trash basket is adequate in order to perform its intended function. Additional discussion on this topic is available in Section 10.4 (4) of this Petition for Variance."

Change #2

10.4 (4) Substantially equal protection of public health, safety, and welfare will be afforded by a means other than that prescribed in the particular rule for which the waiver or variance is requested.

Please DELETE the response for this section in its entirety and insert the following:

"Per the pump manufacturer's representative, Electric Pump of Des Moines, Iowa, the minimum free passage inside the proposed Flygt NP 3153 HT3~464 pump is 1.4 inches.

As described previously, the originally specified trash basket for the Lift Station has a maximum clear opening of 1.5-inches. Given the clear opening of the proposed pump is 1.4-inches, the City will specify a new trash basket with a clear opening equivalent to or less than 1.4-inches. With the maximum clear opening of the trash basket equivalent to or less than 1.4-inches. With the proposed pump, any objects which could potentially clog the pump due to the object's size being greater than the free passage of the pump should be captured by the trash basket. As a result, the provided trash basket should effectively provide a substantially equivalent level of protection against clogging for debris between the pump's free passage size through and beyond 3.0 inches as is intended in the Iowa Wastewater Facilities Design Standard 13.4.3, which requires that "pump shall be capable of passing spheres at least 3 inches in diameter."

Additionally, the City of Waukee has multiple similar combinations of Flygt N-series impeller pumps with trash baskets with similar clear openings in sanitary lift stations throughout the community. With 12 years of operating experience with this combination, the City can attest that they have experienced no reduction in pumping capacity, ability, or flexibility."

Signed releases authorizing persons with factual knowledge concerning the request to furnish the Department with information relevant to the waiver or variance. (Variances must be signed by the petitioner or authorized representative and a professional engineer licensed in Iowa preparing the engineering and technical justification of the petition.)

See verification below,

WHEREFORE, the Petitioner respectfully requests the department grant it a variance of "Unless grinder pumps are used, pumps shall be capable of passing spheres at least 3 inches in diameter" required by Iowa Wastewater Facilities Design Standards section 13.4.3 (Pump Openings) so that the department may issue the construction permit, the application for which was submitted on October 22, 2015.

Dated this <u>5</u> day of <u>April</u>, 2016. John Gibson Curtis J. Kampman, P.E.

Curtis J. Kampman, P.E. (P.E. No. 21994) McClure Engineering Company Public Works Director City of Waukee, Clive, Iowa

52015-0425

> 1740 Lininger Lane
North Liberty, IA 52317
P 319.626.9090
F 319.626.9095

www.mecresults.com

March 22, 2016

Mr. Charles Gipp, Director of the Iowa DNR c/o Mr. Marty Jacobs, P.E., Environmental Engineer Iowa Department of Natural Resources – Wastewater Engineering Section Wallace Building 502 E. 9th Street Des Moines, IA 50319-0034

RE: Waukee Bluestem Lift Station #14 Improvements, Waukee, Iowa MEC 2214027-00 IDNR #S2015-0425

Dear Mr. Gipp and Mr. Jacobs:

Enclosed please find one (1) copy of the City of Waukee's amendment number 1 to the variance request for the job referenced above regarding Iowa Wastewater Facilities Design Standard 13.4.3, which states "unless grinder pumps are used, pumps shall be capable of passing spheres at least 3 inches in diameter."

If you have any questions, please call me at (515) 964-1229.

Very truly yours,

McCLURE ENGINEERING COMPANY

- unter Kniger

Curtis Kampman, P.E.

Enclosures •

cc: Mr. John Gibson, City of Waukee File.

RECEIVED MAR 2 5 2016

CERTIFICATION FOR AMENDMENT NO. 1 FOR PETITION FOR VARIANCE

BLUESTEM LIFT STATION #14 IMPROVEMENTS WAUKEE, IOWA

MEC PROJECT NO. 2214027-00 IDNR S2015-0425

MARCH 2016

CITY OF WAUKEE, IOWA 230 WEST HICKMAN RD. WAUKEE, IA 50263 (515) 978-7900

AMENDMENT No. 1 for PETITION FOR VARIANCE

The Petitioner, pursuant to Iowa Code Section 17A.9A and Iowa Administrative Code 561 Chapter 10, requests a Variance from Iowa Wastewater Facilities Design Standard 13.4.3. Petitioner provides the following information pursuant to Iowa Administrative Code 561 Chapter 10.9(1) through 561 Chapter 10.9(10):

This Amendment No. 1 shall be attached to and become part of the Petition for Variance for the "BLUESTEM LIFT STATION #14 IMPROVEMENTS" project. The Petition for Variance shall be modified as follows:

Change #1

10.9 (4) The relevant facts that the petitioner believes would justify a waiver or variance. The factual statement is to include a signed statement from the petitioner attesting to the accuracy of the facts provided in the petition and a statement of reasons that the petitioner believes will justify a waiver or variance.

Please DELETE the fifth response subsection entitled "Trash Basket Provision" of this section in its entirety and insert the following:

<u> "Trash Basket Provision</u>

To offer an additional layer of protection, as well as conform to current design standards, a trash basket will be installed on the only influent line entering the wet well of the Lift Station. The specified trash basket for the Lift Station has a maximum clear opening of 1.5-inches. As a result, objects larger than 1.5-inches should be collected in the trash basket, reducing the potential for clogging from such objects.

The City of Waukee actively inspects and maintains the trash baskets of its lift stations as part of a regular maintenance program to remove any built up deposition and ensure the condition of the trash basket is adequate in order to perform its intended function. Additional discussion on this topic is available in Section 10.4 (4) of this Petition for Variance."

Change #2

10.4 (4) Substantially equal protection of public health, safety, and welfare will be afforded by a means other than that prescribed in the particular rule for which the waiver or variance is requested.

Please DELETE the response for this section in its entirety and insert the following:

"Per the pump manufacturer's representative, Electric Pump of Des Moines, Iowa, the minimum free passage inside the proposed Flygt NP 3153 HT3~464 pump is 1.4 inches.

As described previously, the trash basket for the Lift Station has a maximum clear opening of 1.5inches. Given the maximum clear opening of the trash basket is effectively equivalent to the minimum free passage of the proposed pump, virtually any objects which could potentially clog the pump due to the object's size being greater than the free passage of the pump should be captured by the trash basket. As a result, the provided trash basket should effectively provide a substantially equivalent level of protection against clogging for debris between the pump's free passage size through and beyond 3.0 inches as is intended in the lowa Wastewater Facilities Design Standard 13.4.3, which requires that "pump shall be capable of passing spheres at least 3 inches in diameter."

As evidence to the above, the City of Waukee as multiple similar combinations of Flygt N-series impeller pumps with trash baskets with similar clear openings (1.5 inches or greater) in sanitary lift stations throughout the community. With 12 years of operating experience with this combination, the City can attest that they have experienced no reduction in pumping capacity, ability, or flexibility."

Signed releases authorizing persons with factual knowledge concerning the request to furnish the Department with information relevant to the waiver or variance. (Variances must be signed by the petitioner or authorized representative and a professional engineer licensed in Iowa preparing the engineering and technical justification of the petition.)

See verification below,

WHEREFORE, the Petitioner respectfully requests the department grant it a variance of "Unless grinder pumps are used, pumps shall be capable of passing spheres at least 3 inches in diameter" required by Iowa Wastewater Facilities Design Standards section 13.4.3 (Pump Openings) so that the department may issue the construction permit, the application for which was submitted on October 22, 2015.

Dated this <u>22</u> day of <u>March</u>

Curtis J. Kampman, P.E.

Curtis J. Kampman, P.E. (P.E. No. 21994) McClure Engineering Company

_____, 2016. John Gibson

Public Works Director City of Waukee, Clive, Iowa