

TERRY E. BRANSTAD, GOVERNOR

DEPARTMENT OF NATURAL RESOURCES LARRY J. WILSON, DIRECTOR

July 10, 1998

City of Osage 806 Main P.O. Box 29 Osage, IA 50461

SUBJECT: Variance Request for Final Clarification Sizing Wastewater Treatment Facility Improvements Osage, Iowa

The lowa Department of Natural Resources in accordance with subrule 567--64.2(9)c of the lowa Administrative Code has approved the request from Yaggy Colby Associates for a variance from lowa Wastewater Facilities Design Standards 14.5.2.2.3 which pertains to reliability requirements for sizing of final clarifiers. Under this variance each of the two proposed final clarifiers can be designed based on 50% of the total design loading to that unit operation in lieu of the 75% total design loading required by our design standards.

The engineering justification submitted substantially demonstrates that this variance will result in at least equivalent effectiveness while significantly reducing costs.

Sincerely,

DARREL MCALLISTER BUREAU CHIEF WATER QUALITY BUREAU

(fme191.bp)

cc: Yaggy Colby Associates, Mason City, IA Field Office No. 2

-	
AB	9-11-06
City of Osage VARIANCE REQUI	EST
Iowa Department of Natura	al Resources
 Date: Marsh 24, 199 8 Review Engineer: Fred Evans Date Received: 2/2/98, 5/6/98 and 5/27/98 	13. Decision: Approved Date: 7/2/98
4. County Number: 66	14. Appeal:
6. Program Area: CP (Wastewater)	Date:
7. Facility Type: C05	
8. Subject Area: 321	
9. Rule Reference: 567-64.2(9)a	
10. Design Stds Ref. 14.5.2.2.3	
11. Consulting Engr: Yaggy Colby Associates	
12. Variance Rule: 567-64.2(9)c	
15. Description of Variance Request	
 The City of Osage is in the process of upgrading their addition of an oxidation ditch system. The proposed system two final clarifiers meeting all applicable Iowa Determined of final clarifier sizing. It has been determined that the treatment facility is reliability criteria. It has also been determined that the Class B. As such, the Iowa Standards require that eactors of the design flow. Yaggy Colby Associates is submitting this request Standard 14.5.2.2.3 regarding the need for 75% flow c of the City of Osage for wastewater treatment pladesigned. 	a Class I facility with respect to unit process reliability falls under th final clarifier be sized to handle for a variance from Iowa Design apacity for final clarifiers on behalf
 16. Consulting Engineer's Justifications 17. The Osage treatment facility includes a large polishing pond has a total volume of 1.91 million gallons and retention time regardless of the flow experienced. The integral portion of the treatment process and will consider the treatment process. 	d provides a significant hydraulic his polishing pond is currently an

2, Yaggy Colby Associates wishes to take advantage of this polishing pond and the related hydraulic retention provide by such. The firm is proposing that each one of the two proposed final clarifier be designed based on 50% of the design flow rather than the 75% set forth in the Iowa Standards. It is the firm's opinion that a significant cost savings could be realized by the City of Osage should this variance be granted and the environment would be not subjected to any additional risk due to a wash out of a clarifier. З, Here is some information on serpentine wiers to cut down weir loading rates and some information on stamford baffles. I couldn't find much on stamford baffles, but they are being used around the country and there are several "clarifier optimizing" companies that use them as well as other items to get better performance. We would strongly consider both in Osage if allowed to use the 50% PHWW clarifier loading criteria for design. 17. Department's Justifications Approval is recommended. 1. Rock excavation will be required for new final clarific 2. The proposal 38 ft diameter final clarifiers will each provide 75% reliability for PHINN flows of 1.512 MGD. Fo any PHWW flows in excess of 1.512 MGD, when only a single final clarifier is in operation, the additional solids removal through the existing 1.91 mg polishing po should provide for treatment equivalent or better than reliability requirements. 3. In a telephone conversation of 6/9/98 The designing engineer advised that Stanford baffles will be included in the design of the final clarifiers to increase solids rem 18. Precedents Used Iowa Falls - Denied. It was proposed to use two existing final clarifiers in the upgrading of the WWT. The smaller of the two final clarifiens would only 1. 1. 1.1 1 . 10

DEPARTMENT OF NATURAL RESOURCES LARRY J. WILSON, DIRECTOR

July 10, 1998

City of Osage 806 Main P.O. Box 29 Osage, IA 50461

SUBJECT: Variance Request for Final Clarification Sizing Wastewater Treatment Facility Improvements Osage, Iowa

The Iowa Department of Natural Resources in accordance with subrule 567--64.2(9)c of the Iowa Administrative Code has approved the request from Yaggy Colby Associates for a variance from Iowa Wastewater Facilities Design Standards 14.5.2.2.3 which pertains to reliability requirements for sizing of final clarifiers. Under this variance each of the two proposed final clarifiers can be designed based on 50% of the total design loading to that unit operation in lieu of the 75% total design loading required by our design standards.

The engineering justification submitted substantially demonstrates that this variance will result in at least equivalent effectiveness while significantly reducing costs.

Sincerely,

DARREL MCALLISTER BUREAU CHIEF WATER QUALITY BUREAU

(fme191.bp)

cc: Yaggy Colby Associates, Mason City, IA Field Office No. 2

City of Osage VARIANCE REQUI Iowa Department of Natura	
1.Date: $March 24, 1993$ 2.Review Engineer: $Fred Evans$ 3.Date Received: $2/2/98$, $5/6/98$ and $5/27/98$ 4.County Number: 66 6.Program Area:CP (Wastewater)7.Facility Type: $C05$ 8.Subject Area: 321 9.Rule Reference: $567-64.2(9)a$ 10.Design Stds Ref: $14.5.2.2.3$ 11.Consulting Engr: $Yagay$ Colby Associates12.Variance Rule: $567-64.2(9)c$	 13. Decision: Approved Date: 7/2/98 14. Appeal: Date:
 15. Description of Variance Request The City of Osage is in the process of upgrading their addition of an oxidation ditch system. The proposed syst two final clarifiers meeting all applicable Iowa Desexception of final clarifier sizing. It has been determined that the treatment facility is a reliability criteria. It has also been determined that the Class B. As such, the Iowa Standards require that each 75% of the design flow. Yaggy Colby Associates is submitting this request Standard 14.5.2.2.3 regarding the need for 75% flow ca of the City of Osage for wastewater treatment pla designed. 	tem will consist of two ditches and sign Standards with the possible a Class I facility with respect to unit process reliability falls under h final clarifier be sized to handle for a variance from Iowa Design
16. Consulting Engineer's Justifications	
 /. The Osage treatment facility includes a large polishing pond has a total volume of 1.91 million gallons and retention time regardless of the flow experienced. The integral portion of the treatment process and will cont proposed facility. Clarifier effluent will pass through chlorination and ultimate discharge to the receiving streat 	provides a significant hydraulic is polishing pond is currently an inue to be an integral part of the igh the polishing pond prior to

2, Yaggy Colby Associates wishes to take advantage of this polishing pond and the related hydraulic retention provide by such. The firm is proposing that each one of the two proposed final clarifier be designed based on 50% of the design flow rather than the 75% set forth in the Iowa Standards. It is the firm's opinion that a significant cost savings could be realized by the City of Osage should this variance be granted and the environment would be not subjected to any additional risk due to a wash out of a clarifier. 3. Here is some information on serpentine wiers to cut down weir loading rates and some information on stamford baffles. I couldn't find much on stamford baffles, but they are being used around the country and there are several "clarifier optimizing" companies that use them as well as other items to get better performance. We would strongly consider both in Osage if allowed to use the 50% PHWW clarifier loading criteria for design. Approval is recommended. 17. Department's Justifications 1. Rock excavation will be required for new final clarifiers 2. The proposed 38 ft diameter final clarifiers will each provide 75% reliability for PHINN flows of 1.512 MGD. For any PHNW flows in excess of 1.512 MGD, when only a single final clarifier is in operation, the additional solids removal through the existing 1,91 mg polishing pond should provide for treatment equivalent or better than reliability requirements. 3. In a telephone conversation of 6/9/98 the designing engineer advised that stanford baffles will be included in the design of the final clarifiers to increase solids removal 18. Precedents Used Iowa Falls - Denied. It was proposed to use two existing final clarifiers in the upgrading of the WWTP. The smaller of the two final clanifiens would only provide 36.6% reliability and there is no polishing pand following the final clarifiers. Frith Evena Date: 6/12/28 Date: 7/2/98 19. Staff Reviewer: Supervisor: Wayne Farrand 6 20. Authorized by: Darrell McAllist (Duelle March Date: 7/2/98 21.

January 30, 1998

Mr. Wayne Farrand Iowa Department of Natural Resources Wastewater Section Wallace State Office Building 900 East Grand Des Moines, Iowa 50319

RE: Variance Request for Final Clarification Sizing Wastewater Treatment Facility Improvements Osage, Iowa

Dear Mr. Farrand:

Yaggy Colby Associates is submitting this request for a variance from Iowa Design Standard 14.5.2.2.3 regarding the need for 75% flow capacity for final clarifiers on behalf of the City of Osage for wastewater treatment plant improvements presently being designed.

The City of Osage is in the process of upgrading their wastewater treatment plant by the addition of an oxidation ditch system. The proposed system will consist of two ditches and two final clarifiers meeting all applicable Iowa Design Standards with the possible exception of final clarifier sizing.

It has been determined that the treatment facility is a Class I facility with respect to reliability criteria. It has also been determined that the unit process reliability falls under Class B. As such, the Iowa Standards require that each final clarifier be sized to handle 75% of the design flow.

The Osage treatment facility includes a large polishing pond preceding disinfection. This pond has a total volume of 1.91 million gallons and provides a significant hydraulic retention time regardless of the flow experienced. This polishing pond is currently an integral portion of the treatment process and will continue to be an integral part of the proposed facility. Clarifier effluent will pass through the polishing pond prior to chlorination and ultimate discharge to the receiving stream.

Yaggy Colby Associates wishes to take advantage of this polishing pond and the related hydraulic retention provide by such. The firm is proposing that each one of the two proposed final clarifier be designed based on 50% of the design flow rather than the 75% set forth in the Iowa Standards. It is the firm's opinion that a significant cost savings could be realized by the City of Osage should this variance be granted and the environment would be not subjected to any additional risk due to a wash out of a clarifier.

LANDSCAPE ARCHITECTS

SURVEYORS

PLANNERS

MASON CITY OFFICE:

215 North Adams

Mason City, IA 50401

515-424-6344

Fax 515-424-0351

ROCHESTER OFFICE:

507-288-6464

Fax 507-288-5058

Mr. Wayne Farrand Iowa Department of Natural Resources January 30, 1998

Page 2

Yaggy Colby Associates and the City of Osage greatly appreciate your consideration of this variance request. Please call if you have any questions or require additional information pertaining to this matter.

Sincerely,

YAGGY COLBY ASSOCIATES

Craig R. Olson. P.E.

Project Manager

cc: Mr. Jerry Dunlay, Director of Public Works, Osage Mr. Al Tompkins, IDNR, Mason City

CRO/jmw-5812dn_3.doc

Reliability To provided by final clanitions

Proposed diameter of 38, A = 1134ft² PHWW flow = 2.163 MGD

Maximum loading to clarifier @ 1000 gpd/42 1134 × 1000 = 1.134 MGD

Toot Design PHWW flow 1.134 - 2.163 = 0.52 = 52%

Check PHWW flow which could be handled by a single final claritier at a PHWW flow of 1000 gpd 142 Flow = 1134 × 1000 = 1.134 MGD

For 75% of PHWW 1.134 - 0.75 = 1.512 MGD

From flow chart submitted the wettest hour determined by the engineer from past plant records was approximately 1.5 MGD in May 1996

YAGGY COLBY ASSOCIATES ENGINEERS • ARCHITECTS • SURVEYORS • PLANNERS LANDSCAPE ARCHITECTS 215 NORTH ADAMS MASON CITY, IOWA 50401

F	ACSIMILE TRANSMI	TTALHEAD	DER SHEE	T.	
NAME	OFFICE SYMBOL	OFFIC	CENO.	FAX	NO.
FROM:	Yaggy Colby Assoc	(515)		(515)	
Craig Olson		424-63	44	424-035	51
TO:	IDNR	515	,	515	
Fred Evang		281-8885		281-8895	
Wed May 6, 1998 3:58PM	NO. PAGES (including header)	7	Unclass	ASAP	

Fred,

Here is the much awaited information on Osage. Sorry it took so long. I guess we really wanted it to be right this time. For a change it seems like we have too much data. Nice problem.

I will be sending a letter to Ralph T. (I've already left him a voice mail message) that we will be revising the MWW and PHWW flows. The MWW of 1.3 MGD has a pretty decent basis in the existing flow data plus projected growth. The PHWW flow likewise is firmly rooted in the flow data. The attached circular chart shows our wettest hour we could find (approx. 1.5 MGD). By adding peaked growth to that number, we come up with the 2.163 MGD figure.

These numbers should be good. Fortunately, the primary design numbers for ADW and AWW have not changed at all.

The new PHWW flow changes the final clarifier diameters to:

38 feet to meet the 50% criteria, and;

46 feet to meet the 75% criteria. This is down from 40 and 50 respectively.

Regardless of clarifier diameter the basis of the variance requested is still valid, although the volume difference and corresponding cost difference of rock requiring excavation has been reduced somewhat.

If you have any further questions, please give me a call.

Craig

CONSTRUCTION PERMIT APPLICATION SCHEDULE G, Treatment Project Design Data

ATE PREPARED	PROJECT IDENTITY	{				Tylinet talletstepreining og state år oka	California and a second se	DNR	USE
4/28/98	City of Osage, Iowa PROJECT NO.								
ATE REVISED	Wastewater Treatment Facility Improvements								
5/20/98		PERMIT N					PERMIT NO)	
							A ACA 147 AN & 211	· ·	
. Project Descrip	tion: Conversion to	oxidation di	itch system w	rith expand	icd sludge	storage.			
Design Basis:	r								
lave Design Loading	-	ADIV	Present	1 (1) (1)		sian Year (20			
lant Design Loading	Population	ADW 3439	AWW	MWW	ADW 3783	AWW	MWW		
Residential	Flow, MGD	the second se	COLOR DISCONTINUES IN COLOR DISCONTINUES.	0.006	A LOW DOUGH DOWN DOWN	0.320	0.020		
Waste	BOD5, #/day	0.205	0.205	0.205	0.239	0.239	0.239		
	TKN, #/day	71.0	71.0	71.0	82.9	82.9	82.9		
Out of	Number		71.0	/1.0			04.9 22001/201/2		
Town	Flow, MGD	0	0	0	0	0	0		
Students	BODS, #/day	0	0	0	0	0	0		
aradema	TKN, #/day	0	0	0	0	0	0		
Industrial	Flow, MGD	0.146	0.146	0.146	0.278	0.278	0.278		
	Rated Flow, MGD	0:148	0.148	0,140	0.324	0.324	0.324		
	BOD5, #/day	425	425	425	809	809	809		
	TKN, #/day	8	8	8	15	15	15		
	Flow, MGD	0	0	0	0	0	0		
Other	Rated Flow, MGD	0	0	0	0	0	0		
(specify)	BODS, #/day	0	0	0	0	0	0		
(option))	TKN, #/day	0	0	0	0	0	0		
Infiltration, MGD		0	0.229	0.466	0	0.233	0,843		
Inflow, MGD		0	0	0	0	0	0		
	Flow, MGD	0.351	0.580	0.817	0.517	0.750	1.360		
	Rated Flow, MGD	0.367	0.596	0.\$33	0.563	0.796	1.406		
Total	BOD5, mg/l	552	334	237	510	352	194		
	BOD5, #/day	1616	1616	1616	2200	2200	2200		
	TKN, mg/l	27	16	12	40	21	19		
	TKN, #/day	79.0	79.0	79.0	98.1	98.1	98.1		
		infiltration #'s	derived from of	bserved flow	data - Indu	striel flow			
			1						
. Peak hourty	Dry Weather Flow	1.320	MGD + Per			0.843	MGD + Pea		
Inflow	0.000	MGD = Tc	ial Peak Hourly	Wet Weath	er Flow:	2.163	MGD (in de	esign year 2	020)
7.1									
Identify offluent li					1 - 1.1	1	19 XI		
	mitations:		5/day		ed Solida Max		3-N Mar		
•		Ave	Max	Ave	Max	NH Ave	3-N Max		
peration Permit	mgA	Ave 25	Max 40	Ave 30	Max 45				
operation Permit	mg/1 #/day	Ave 25 157	<u>Мах</u> 40 252	Ave 30 189	Max 45 283				
peration Permit filuent Limits esign Effluent**	mg/l #/day mg/l	Ave 25 157 25	Max 40 252 40	Ave 30 189 30	Max 45 283 45				
Operation Permit ffluent Limits Design Effluent** Quality	mg/l #/day mg/l #/day	Ave 25 157 25 157	Max 40 252 40 252	Ave 30 189	Max 45 283				
peration Permit ffluent Limits esign Effluent** tuality	mg/l #/day mg/l	Ave 25 157 25 157	Max 40 252 40 252	Ave 30 189 30	Max 45 283 45				
peration Permit filuent Limits esign Effluent** uality ** Assume second	mg/l #/day mg/l #/day	Ave 25 157 25 157 Dow wasteload	Max 40 252 40 252	Ave 30 189 30	Max 45 283 45				
pocration Permit filuent Limits lesign Effluent** buality ** Assume second	mg/l #/day mg/l #/day lary standards pending	Ave 25 157 25 157 Dow wasteload	Max 40 252 40 252	Ave 30 189 30	Max 45 283 45	Ave			
peration Permit ffluent Limits esign Effluent** uality ** Assume second	mg/l #/day mg/l #/day lary standards pending	Aye 25 157 25 157 new wisteload contributors:	Max 40 252 40 252	Ave 30 189 30 189	Max 45 283 45	Ave	Max	TKN	
peration Permit ffluent Limits esign Effluent** uality ** Assume second Identify significan	mg/l #/day mg/l #/day lary standards pending	Aye 25 157 25 157 new wisteload contributors:	Max 40 252 40 252 allocation.	Ave 30 189 30 189	Max 45 283 45 283	Ave	Max	TAN (#/day)	Oil/Greas (#/day)
peration Permit ffluent Limits esign Effluent** uality ** Assume second Identify significan	mg/l #/day mg/l #/day lary standards pending t industrial/commercial	Ave 25 157 25 157 Docw wastelood contributors: Open	Max 40 252 40 252 allocation.	Ave 30 189 30 189 Flow (Max 45 283 45 283 MGD)	Ave Design BOD5	Max Loadings SS		
peration Permit filuent Limits esign Effluent** tuality ** Assume second . Identify significan Vaste Contributors	mg/l #/day mg/l #/day lary standards pending t industrial/commercial	Ave 25 157 25 157 Docw wastelood contributors: Open	Max 40 252 40 252 allocation.	Ave 30 189 30 189 Flow (Max 45 283 45 283 MGD)	Ave Design BOD5 (#/day)	Max Loadings SS		
Decration Permit Effluent Limits Design Effluent** Quality ** Assume second I. Identify significan Waste Contributors A-Z Drying North	mg/l #/day mg/l #/day lary standards pending t industrial/commercial Pretreatment	Aye 25 157 25 157 new wisteload contributors: Open hrs/day	Max 40 252 40 252 allocation.	Ave 30 189 30 189 Flow (Total	Max 45 283 45 283 83 MGD) Rated	Ave Design BOD5 (#/day) 100 340	Max Loadings SS (#/day)		Oil/Grcas (#/day)
Decration Permit iffluent Limits Design Effluent** Quality ** Assume second I. Identify significant Waste Contributors A-Z Drying North A-Z Drying South	mg/l #/day mg/l #/day lary standards pending t industrial/commercial Pretreatment No	Aye 25 157 25 157 new wnsteload contributors: Open hrs/day 24	Max 40 252 40 252 allocation.	Ave 30 189 30 189 Flow (Total 0.02	Max 45 283 45 283 MGD) Rated 0.02 0.08 0.155	Ave Design BOD5 (#/day) 100 340 350	Max Loadings SS (#/day) 100	(#/day)	
Decration Permit Effluent Limits Design Effluent** Duality ** Assume second	mg/l #/day mg/l #/day lary standards pending t industrial/commercial Pretreatment No No	Aye 25 157 25 157 new wnsteload contributors: Open hrs/day 24 24	Max 40 252 40 252 allocation.	Ave 30 189 30 189 Flow (Total 0.02 0.08	Max 45 283 45 283 MGD) Rated 0.02 0.08	Ave Design BOD5 (#/day) 100 340	Max Loadings SS (#/day) 100 475		
Decration Permit ffluent Limits Design Effluent** Quality ** Assume second . Identify significan Waste Contributors A-Z Drying North A-Z Drying South Yox River Mills	mg/l #/day mg/l #/day lary standards pending t industrial/commercial Pretreatment No No No	Aye 25 157 25 157 new wnsteload contributors: Open hrs/day 24 24 24	Max 40 252 40 252 allocation.	Ave 30 189 30 189 Flow (Total 0.02 0.08 0.155	Max 45 283 45 283 MGD) Rated 0.02 0.08 0.155	Ave Design BOD5 (#/day) 100 340 350	Max Loadings SS (#/day) 100 475 200	(#/day)	
Decration Permit iffluent Limits Design Effluent** Quality ** Assume second . Identify significan Waste Contributors A-Z Drying North A-Z Drying South Yox River Mills	mg/l #/day mg/l #/day lary standards pending t industrial/commercial Pretreatment No No No	Aye 25 157 25 157 new wnsteload contributors: Open hrs/day 24 24 24	Max 40 252 40 252 allocation.	Ave 30 189 30 189 Flow (Total 0.02 0.08 0.155	Max 45 283 45 283 MGD) Rated 0.02 0.08 0.155	Ave Design BOD5 (#/day) 100 340 350	Max Loadings SS (#/day) 100 475 200	(#/day)	

