Examples of Supporting Documentation for Natural Resource Inventory Stormwater Management Plan (SWMP)

The following documents are examples of information that could be collected as part of preparing a Natural Resource Inventory, the completion of which is part of a Better Site Design process.

Information of this type can be collected from various GIS databases and other Internet resources.

The goal of the Natural Resource Inventory is to do a rapid assessment of conditions early in the design process, so these conditions can be considered before most design work has been started.

In this way, this information can be used to influence the design process.

Exhibits of this type could be used to share information between design team members, for discussion at pre-application conferences or submitted as part of a Stormwater Management Plan (SWMP) or a Stormwater Pollution Prevention Plan (SWPPP), as applicable.

Each example includes notes about the included information and the source of the data shown.

Examples

Soil Maps Hydric Soil Conditions

National Cooperative Soil Survey

Conservation Service

Page 1 of 6

USDA

Г

Hydric Rating by Map Unit—Dallas County, Iowa

These ratings indicate the potential presence of hydric soils within a given soil map unit. See following pages for more information.

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
6	Okoboji silty clay loam, 0 to 1 percent slopes	100	3.3	0.1%
27B	Terril loam, 2 to 6 percent slopes	8	63.6	2.5%
135	Coland clay loam, 0 to 2 percent slopes, occasionally flooded	90	249.6	9.7%
138D2	Clarion loam, 9 to 14 percent slopes, moderately eroded	0	63.9	2.5%
201B	Coland-Terril complex, 2 to 5 percent slopes	60	35.6	1.4%
203	Cylinder loam, 0 to 2 percent slopes	15	10.1	0.4%
308	Wadena loam, 0 to 2 percent slopes	1	7.5	0.3%
829D2	Zenor-Storden complex, 9 to 14 percent slopes, moderately eroded	0	3.1	0.1%
5040	Orthents, loamy	0	1.4	0.1%
L55	Nicollet loam, 1 to 3 percent slopes	5	249.7	9.7%
L62C2	Storden loam, Bemis moraine, 6 to 10 percent slopes, moderately eroded	0	24.1	0.9%
L62D2	Storden loam, Bemis moraine, 10 to 16 percent slopes, moderately eroded	0	124.9	4.8%
L62E2	Storden loam, Bemis moraine, 10 to 22 percent slopes, moderately eroded	0	99.1	3.8%
L62F	Belview loam, Bemis moraine, 16 to 30 percent slopes	0	24.7	1.0%
L107	Webster clay loam, Bemis moraine, 0 to 2 percent slopes	95	175.8	6.8%
L138B	Clarion loam, Bemis moraine, 2 to 6 percent slopes	0	763.0	29.5%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
L138C	Clarion loam, Bemis moraine, 6 to 10 percent slopes	0	14.6	0.6%			
L138C2	Clarion loam, Bemis moraine, 6 to 10 percent slopes, moderately eroded	0	484.7	18.8%			
L507	Canisteo clay loam, Bemis moraine, 0 to 2 percent slopes	100	159.4	6.2%			
L638C2	Clarion-Storden complex, Bemis moraine, 6 to 10 percent slopes, moderately eroded	5	8.1	0.3%			
L956	Harps-Okoboji complex, Bemis moraine, 0 to 2 percent slopes	100	5.0	0.2%			
W	Water	0	13.2	0.5%			
Totals for Area of Inter	est	1	2,584.3	100.0%			

This rating indicates the percentage of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is rated based on its respective components and the percentage of each component within the map unit.

The thematic map is color coded based on the composition of hydric components. The five color classes are separated as 100 percent hydric components, 66 to 99 percent hydric components, 33 to 65 percent hydric components, 1 to 32 percent hydric components, and less than one percent hydric components.

In Web Soil Survey, the Summary by Map Unit table that is displayed below the map pane contains a column named 'Rating'. In this column the percentage of each map unit that is classified as hydric is displayed.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Rating Options

Aggregation Method: Percent Present Component Percent Cutoff: None Specified Tie-break Rule: Lower

Page 1 of 7

USDA

Hydric Rating by Map Unit

These ratings indicate the potential presence of hydric soils within a given soil map unit. See following pages for more information.

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8B	Judson silty clay loam, 2 to 5 percent slopes	0	1.5	0.1%
41A	Sparta loamy fine sand, 0 to 2 percent slopes	0	2.8	0.1%
41C	Sparta loamy fine sand, 5 to 9 percent slopes	0	7.7	0.3%
41D	Sparta loamy fine sand, 9 to 18 percent slopes	0	2.4	0.1%
83B	Kenyon loam, 2 to 5 percent slopes	0	115.6	4.9%
83C	Kenyon loam, 5 to 9 percent slopes	0	194.1	8.2%
83C2	Kenyon loam, 5 to 9 percent slopes, eroded	0	9.8	0.4%
84	Clyde silty clay loam, 0 to 3 percent slopes	95	233.4	9.8%
133	Colo silty clay loam, 0 to 2 percent slopes, occasionally flooded	95	3.5	0.1%
175C	Dickinson fine sandy loam, 5 to 9 percent slopes	0	0.3	0.0%
177A	Saude loam, 0 to 2 percent slopes	0	17.0	0.7%
177B	Saude loam, 2 to 5 percent slopes	0	47.8	2.0%
177C	Saude loam, 5 to 9 percent slopes	0	2.3	0.1%
178A	Waukee loam, 0 to 2 percent slopes	0	24.3	1.0%
178B	Waukee loam, 2 to 5 percent slopes	0	49.7	2.1%
184A	Klinger silty clay loam, 1 to 4 percent slopes	5	332.8	14.0%
198B	Floyd loam, 1 to 4 percent slopes	5	34.2	1.4%
284C	Flagler sandy loam, 5 to 9 percent slopes	0	2.5	0.1%
350A	Waukegan silt loam, 0 to 2 percent slopes	0	5.5	0.2%
351A	Atterberry silt loam, sandy substratum, 0 to 2 percent slopes	5	43.5	1.8%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
377B	Dinsdale silty clay loam, 2 to 5 percent slopes	0	208.3	8.8%
377C	Dinsdale silty clay loam, 5 to 9 percent slopes	0	3.0	0.1%
382	Maxfield silty clay loam, 0 to 2 percent slopes	90	147.6	6.2%
391B	Clyde-Floyd complex, 1 to 4 percent slopes	60	6.9	0.3%
393B	Sparta loamy fine sand, loamy substratum, 2 to 5 percent slopes	0	5.7	0.2%
393C	Sparta loamy fine sand, loamy substratum, 5 to 9 percent slopes	0	13.3	0.6%
394B	Ostrander loam, 2 to 5 percent slopes	0	13.5	0.6%
408C	Olin fine sandy loam, 5 to 9 percent slopes	0	11.9	0.5%
409B	Dickinson fine sandy loam, loam substratum, 2 to 5 percent slopes	0	22.8	1.0%
409C	Dickinson fine sandy loam, loam substratum, 5 to 9 percent slopes	0	58.5	2.5%
428B	Ely silty clay loam, 2 to 5 percent slopes	5	5.9	0.2%
484	Lawson silt loam, 0 to 2 percent slopes, occasionally flooded	5	18.4	0.8%
485	Spillville loam, 0 to 2 percent slopes, occasionally flooded	10	168.2	7.1%
626	Hayfield loam, 0 to 2 percent slopes, rarely flooded	10	14.8	0.6%
761A	Franklin silt loam, 0 to 2 percent slopes	5	73.3	3.1%
771B	Waubeek silt loam, 2 to 5 percent slopes	0	36.5	1.5%
777B	Wapsie loam, 2 to 5 percent slopes	0	35.9	1.5%
778A	Sattre loam, 0 to 2 percent slopes	0	0.0	0.0%
778B	Sattre loam, 2 to 5 percent slopes	0	2.7	0.1%
1152	Marshan clay loam, 0 to 2 percent slopes, rarely flooded	85	1.7	0.1%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1226	Lawler loam, 0 to 2 percent slopes, rarely flooded	10	57.3	2.4%
4083B	Kenyon-Urban land complex, 2 to 5 percent slopes	0	3.6	0.2%
4083C	Kenyon-Urban land complex, 5 to 9 percent slopes	0	7.6	0.3%
4377B	Dinsdale-Urban land complex, 2 to 5 percent slopes	0	0.2	0.0%
4946	Udorthents-Interstate highway complex, 0 to 5 percent slopes	0	39.4	1.7%
5080	Anthroportic Udorthents, sanitary landfill	0	269.1	11.3%
W	Water	0	20.4	0.9%
Totals for Area of Inter	rest		2,377.0	100.0%

This rating indicates the percentage of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is rated based on its respective components and the percentage of each component within the map unit.

The thematic map is color coded based on the composition of hydric components. The five color classes are separated as 100 percent hydric components, 66 to 99 percent hydric components, 33 to 65 percent hydric components, 1 to 32 percent hydric components, and less than one percent hydric components.

In Web Soil Survey, the Summary by Map Unit table that is displayed below the map pane contains a column named 'Rating'. In this column the percentage of each map unit that is classified as hydric is displayed.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Rating Options

Aggregation Method: Percent Present Component Percent Cutoff: None Specified Tie-break Rule: Lower

USDA

Hydric Rating by Map Unit

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
137	Haynie silt loam, deep loess, 0 to 2 percent slopes, rarely flooded	0	205.6	32.9%
156	Albaton silty clay, 0 to 2 percent slopes, rarely flooded	90	95.2	15.2%
237B	Sarpy loamy fine sand, 2 to 5 percent slopes, rarely flooded	0	30.8	4.9%
518	Morconick fine sandy loam, 0 to 2 percent slopes, rarely flooded	0	44.9	7.2%
750	Ticonic very fine sandy loam, 0 to 2 percent slopes, rarely flooded	0	100.8	16.1%
945	Albaton silty clay, depressional, drained, 0 to 1 percent slopes, frequently flooded	100	9.3	1.5%
3146	Onawa-Albaton complex, 0 to 2 percent slopes, rarely flooded	25	74.3	11.9%
3513	Grable-Morconick complex, 0 to 2 percent slopes, rarely flooded	0	9.7	1.5%
3549	Modale complex, 0 to 2 percent slopes, rarely flooded	10	17.3	2.8%
5010	Pits, sand and gravel	0	1.6	0.3%
5044	Fluvaquents, 0 to 2 percent slopes, frequently flooded	75	35.3	5.6%
Totals for Area of Inter	rest		624.5	100.0%

These ratings indicate the potential presence of hydric soils within a given soil map unit. See following pages for more information.

This rating indicates the percentage of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is rated based on its respective components and the percentage of each component within the map unit.

The thematic map is color coded based on the composition of hydric components. The five color classes are separated as 100 percent hydric components, 66 to 99 percent hydric components, 33 to 65 percent hydric components, 1 to 32 percent hydric components, and less than one percent hydric components.

In Web Soil Survey, the Summary by Map Unit table that is displayed below the map pane contains a column named 'Rating'. In this column the percentage of each map unit that is classified as hydric is displayed.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Rating Options

Aggregation Method: Percent Present Component Percent Cutoff: None Specified Tie-break Rule: Lower

Examples

Soil Maps Site Slopes and Hydrologic Soil Group (HSG) Conditions

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

...in addition a preliminary evaluation of steep slopes can be $made^{2/23/2021}_{add}$ this information. Site topographic surveys could be used to evaluate site slopes in greater detail.

This output can be used to
evaluate HSG categories at
the subject site

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
6	Okoboji silty clay loam, 0 to 1 percent slopes	C/D	3.3	0.1%
27B	Terril loam, 2 to 6 percent slopes	В	63.6	2.5%
135	Coland clay loam, 0 to 2 percent slopes, occasionally flooded	C/D	249.6	9.7%
138D2	Clarion loam, 9 to 14 percent slopes, moderately eroded	В	63.9	2.5%
201B	Coland-Terril complex, 2 to 5 percent slopes	C/D	35.6	1.4%
203	Cylinder loam, 0 to 2 percent slopes	B/D	10.1	0.4%
308	Wadena loam, 0 to 2 percent slopes	В	7.5	0.3%
829D2	Zenor-Storden complex, 9 to 14 percent slopes, moderately eroded	В	3.1	0.1%
5040	Orthents, loamy		1.4	0.1%
L55	Nicollet loam, 1 to 3 percent slopes	B/D	249.7	9.7%
L62C2	Storden loam, Bemis moraine, 6 to 10 percent slopes, moderately eroded	В	24.1	0.9%
L62D2	Storden loam, Bemis moraine, 10 to 16 percent slopes, moderately eroded	В	124.9	4.8%
L62E2	Storden loam, Bemis moraine, 10 to 22 percent slopes, moderately eroded	В	99.1	3.8%
L62F	Belview loam, Bemis moraine, 16 to 30 percent slopes	В	24.7	1.0%
L107	Webster clay loam, Bemis moraine, 0 to 2 percent slopes	C/D	175.8	6.8%
L138B	Clarion loam, Bemis moraine, 2 to 6 percent slopes	В	763.0	29.5%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
L138C	Clarion loam, Bemis moraine, 6 to 10 percent slopes	В	14.6	0.6%
L138C2	Clarion loam, Bemis moraine, 6 to 10 percent slopes, moderately eroded	В	484.7	18.8%
L507	Canisteo clay loam, Bemis moraine, 0 to 2 percent slopes	C/D	159.4	6.2%
L638C2	Clarion-Storden complex, Bemis moraine, 6 to 10 percent slopes, moderately eroded	В	8.1	0.3%
L956	Harps-Okoboji complex, Bemis moraine, 0 to 2 percent slopes	C/D	5.0	0.2%
W	Water		13.2	0.5%
Totals for Area of Inter	rest	1	2,584.3	100.0%

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

USDA

...in addition a preliminary evaluation of steep slopes can be m2223/2021n this information. Site topographic surveys could be used to evaluate site slopes in greater detail.

This output can be used to evaluate HSG categories at the subject site...

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8B	Judson silty clay loam, 2 to 5 percent slopes	C	1.5	0.1%
41A	Sparta loamy fine sand, 0 to 2 percent slopes	A	2.8	0.1%
41C	Sparta loamy fine sand, 5 to 9 percent slopes	А	7.7	0.3%
41D	Sparta loamy fine sand, 9 to 18 percent slopes	А	2.4	0.1%
83B	Kenyon loam, 2 to 5 percent slopes	С	115.6	4.9%
83C	Kenyon loam, 5 to 9 percent slopes	С	194.1	8.2%
83C2	Kenyon loam, 5 to 9 percent slopes, eroded	С	9.8	0.4%
84	Clyde silty clay loam, 0 to 3 percent slopes	C/D	233.4	9.8%
133	Colo silty clay loam, 0 to 2 percent slopes, occasionally flooded	C/D	3.5	0.1%
175C	Dickinson fine sandy loam, 5 to 9 percent slopes	A	0.3	0.0%
177A	Saude loam, 0 to 2 percent slopes	В	17.0	0.7%
177B	Saude loam, 2 to 5 percent slopes	В	47.8	2.0%
177C	Saude loam, 5 to 9 percent slopes	В	2.3	0.1%
178A	Waukee loam, 0 to 2 percent slopes	В	24.3	1.0%
178B	Waukee loam, 2 to 5 percent slopes	В	49.7	2.1%
184A	Klinger silty clay loam, 1 to 4 percent slopes	C/D	332.8	14.0%
198B	Floyd loam, 1 to 4	B/D	34.2	1.4%
284C	Flagler sandy loam, 5 to 9 percent slopes	A	2.5	0.1%
350A	Waukegan silt loam, 0 to 2 percent slopes	С	5.5	0.2%
351A	Atterberry silt loam, sandy substratum, 0 to 2 percent slopes	C/D	43.5	1.8%

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
377B	Dinsdale silty clay loam, 2 to 5 percent slopes	С	208.3	8.8%
377C	Dinsdale silty clay loam, 5 to 9 percent slopes	С	3.0	0.1%
382	Maxfield silty clay loam, 0 to 2 percent slopes	C/D	147.6	6.2%
391B	Clyde-Floyd complex, 1 to 4 percent slopes	C/D	6.9	0.3%
393B	Sparta loamy fine sand, loamy substratum, 2 to 5 percent slopes	A	5.7	0.2%
393C	Sparta loamy fine sand, loamy substratum, 5 to 9 percent slopes	A	13.3	0.6%
394B	Ostrander loam, 2 to 5 percent slopes	В	13.5	0.6%
408C	Olin fine sandy loam, 5 to 9 percent slopes	В	11.9	0.5%
409B	Dickinson fine sandy loam, loam substratum, 2 to 5 percent slopes	A	22.8	1.0%
409C	Dickinson fine sandy loam, loam substratum, 5 to 9 percent slopes	A	58.5	2.5%
428B	Ely silty clay loam, 2 to 5 percent slopes	C/D	5.9	0.2%
484	Lawson silt loam, 0 to 2 percent slopes, occasionally flooded	B/D	18.4	0.8%
485	Spillville loam, 0 to 2 percent slopes, occasionally flooded	B/D	168.2	7.1%
626	Hayfield loam, 0 to 2 percent slopes, rarely flooded	B/D	14.8	0.6%
761A	Franklin silt loam, 0 to 2 percent slopes	C/D	73.3	3.1%
771B	Waubeek silt loam, 2 to 5 percent slopes	С	36.5	1.5%
777B	Wapsie loam, 2 to 5 percent slopes	В	35.9	1.5%
778A	Sattre loam, 0 to 2 percent slopes	В	0.0	0.0%
778B	Sattre loam, 2 to 5 percent slopes	В	2.7	0.1%
1152	Marshan clay loam, 0 to 2 percent slopes, rarely flooded	C/D	1.7	0.1%

USDA

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1226	Lawler loam, 0 to 2 percent slopes, rarely flooded	B/D	57.3	2.4%
4083B	Kenyon-Urban land complex, 2 to 5 percent slopes	С	3.6	0.2%
4083C	Kenyon-Urban land complex, 5 to 9 percent slopes	С	7.6	0.3%
4377B	Dinsdale-Urban land complex, 2 to 5 percent slopes	С	0.2	0.0%
4946	Udorthents-Interstate highway complex, 0 to 5 percent slopes		39.4	1.7%
5080	Anthroportic Udorthents, sanitary landfill	D	269.1	11.3%
W	Water		20.4	0.9%
Totals for Area of Inter	Totals for Area of Interest			100.0%

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Example - Documentation of Site Soil Conditions

County, Iowa

Web Soil Survey National Cooperative Soil Survey

Soil Map Example

This output can be used to evaluate HSG categories at the subject site...

Hydrologic Soil Group

Map unit symbol Map unit name Rating Acres in AOI Percent of AOI				
	-			
137	Haynie silt loam, deep loess, 0 to 2 percent slopes, rarely flooded	В	196.3	32.3%
156	Albaton silty clay, 0 to 2 percent slopes, rarely flooded	D	95.7	15.7%
237B	Sarpy loamy fine sand, 2 to 5 percent slopes, rarely flooded	A	25.6	4.2%
518	Morconick fine sandy loam, 0 to 2 percent slopes, rarely flooded	В	45.7	7.5%
750	Ticonic very fine sandy loam, 0 to 2 percent slopes, rarely flooded	A	102.1	16.8%
945	Albaton silty clay, depressional, drained, 0 to 1 percent slopes, frequently flooded	D	7.3	1.2%
3146	Onawa-Albaton complex, 0 to 2 percent slopes, rarely flooded	D	73.1	12.0%
3513	Grable-Morconick complex, 0 to 2 percent slopes, rarely flooded	В	9.7	1.6%
3549	Modale complex, 0 to 2 percent slopes, rarely flooded	D	17.3	2.8%
5044	Fluvaquents, 0 to 2 percent slopes, frequently flooded		35.2	5.8%
Totals for Area of Interest			607.9	100.0%

...in addition a preliminary evaluation of steep slopes can be made from this information. Site topographic surveys could be used to evaluate site slopes in greater detail.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher
National Wetland Inventory (NWI) Maps

U.S. Fish and Wildlife Service **National Wetlands Inventory**

NWI Site Example

February 23, 2021

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

- Freshwater Forested/Shrub Wetland
 - Freshwater Pond

Freshwater Emergent Wetland

Lake

Other Riverine https://fws.gov/wetlands/data/Mapper.html

te that this information is intended to use for preliminary site screening or Esri, Maxar, GeoEye, Earthstar Geographics, CNES/Airpus DS-

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

U.S. Fish and Wildlife Service **National Wetlands Inventory**

NWI Site Example Example -

February 23, 2021

Wetlands

Estuarine and Marine Wetland

Estuarine and Marine Deepwater

Freshwater Pond

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

U.S. Fish and Wildlife Service **National Wetlands Inventory**

NWI Site Example

Example -

November 12, 2020

Wetlands

- Estuarine and Marine Wetland

Estuarine and Marine Deepwater

- **Freshwater Pond**

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

FEMA Flood Insurance Rate Map (FIRM) Information

Varboal Option of 1988

1 inch = 1,000 feet

260

0

1,000

2.000

500

VERSION NUMBER

19049C0240F

DECEMBER 7, 2018

1:12,000

Meters

1,000

4,000

Feet

2.3.3.2

MAP NUMBER

MAP REVISED

Example - Documentation of Flood Risk Map Information

Data source: https://msc.fema.gov/portal/home

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT HTTPS://MSC.FEMA.GOV Without Base Flood Elevation (BFE) With BFE or Depth Long AS. NO. 48, 15. SPECIAL FLOOD **Regulatory Floodway** HAZARD AREAS 0.2% Annual Chance Flood Hazard, Are of 1% annual chance flood with average depth less than one foot or with draina, areas of less than one square mile 200 Future Conditions 1% Annual Chance Flood Hazard Zore X OTHER AREAS OF Area with Reduced Flood Risk due to Le FLOOD HAZARD See Notes, zone A Areas Determined to be Outside the NO SCREEN 0.2% Annual Chance Floodplain zone OTHER AREAS Area of Undetermined Flood Hazard 20 Channel, Culvert, or Storn Sewer Accredited or Provisionally Accredited HURBORN CHINESE UN Levee, Dike, or Floodwall GENERAL Non-accredited Levee, Dike, or Floodw STRUCTURES 18.2 Cross Sections with 1% Annual Chance E 17.6 Water Surface Elevation (BFE) **Coastal Transect** Coastal Transect Baseline **Profile Baseline** Hydrographic Feature www. 513 mmm Base Flood Elevation Line (BFE) Limit of Study OTHER FEATURES Jurisdiction Boundary

Note that this site crosses jurisdictional boundaries, so it is necessary to review two map panels to get information for the entire site area.

VERSION NUMBER 2.2.2.1

MAP NUMBER 19153C0165F

FEBRUARY 1, 2019

Example - Documentation of Flood Risk Map Information

Data source: https://msc.fema.gov/portal/home

https://msc.fema.gov/portal/home

Example -**Documentation of Flood Risk Map Information**

Data source: https://msc.fema.gov/portal/home

MAP NUMBER 19193C0400D

EFFECTIVE DATE SEPTEMBER 29, 2011

Federal Emergency Management Agency

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

• M1.5

River Mile

	ZONE A	No Base Flood Elevations determined.
	ZONE AE	Base Flood Elevations determined.
	ZONE AH	Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.
	ZONE AO	Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.
	ZONE AR	Special Flood Hazard Area formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.
	ZONE A99	Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined.
	ZONE V	Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.
	ZONE VE	Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.
	1.1.1.	FLOODWAY AREAS IN ZONE AE
0		e channel of a stream plus any adjacent floodplain areas that must be kept free o that the 1% annual chance flood can be carried without substantial increases
		OTHER FLOOD AREAS

	OTHER	THER FLOOD AREAS		
ZONE X	averag	f 0.2% annual chance flood; areas of 1% annual chance flood with e depths of less than 1 foot or with drainage areas less than 1 mile; and areas protected by levees from 1% annual chance flood.		
	OTHER	AREAS		
ZONE X	Areas d	letermined to be outside the 0.2% annual chance floodplain.		
ZONE D	Areas in	n which flood hazards are undetermined, but possible.		
111	COASTA	L BARRIER RESOURCES SYSTEM (CBRS) AREAS		
111	OTHERV	VISE PROTECTED AREAS (OPAS)		
CBRS areas and	OPAs are nor	mally located within or adjacent to Special Flood Hazard Areas.		
1.00	-	1% annual chance floodplain boundary		
2		0.2% annual chance floodplain boundary		
		Floodway boundary		
		Zone D boundary		
********	*******	CBRS and OPA boundary		
		Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.		
51	3	Base Flood Elevation line and value; elevation in feet*		
(EL 987)		Base Flood Elevation value where uniform within zone; elevation in feet $\ensuremath{^{\ast}}$		
* Referenced to	the North Am	erican Vertical Datum of 1988		
(A)	(A)	Cross section line		
23	23)	Transect line		
87°07'45",	32°22'30"	Geographic coordinates referenced to the North American Datum of 1983 (NAD 83)		
4276 ⁰⁰	^{iom} E	1000-meter Universal Transverse Mercator grid values, zone 15		
60000	0 FT	5000-foot grid ticks: Iowa State Plane coordinate system, north zone (FIPSZONE 1401), Transverse Mercator projection		
DX55	10 x	Bench mark (see explanation in Notes to Users section of this FIRM panel)		

Potential For Historic Places Maps

Historic Sites Example

Historic Sites Sample Map

Sample Site

Cemeteries

More than 20

© OpenStreetMap (and) contributors, CC-BY-SA, http:// archaeology.uiowa.edu/i-sites

Potential for Natural Vegetation Maps

Example - Natural Vegetation Map

30

250th-St-

Data source: Google Earth

THE SET

hark Ln

A map like this could be used to identify the potential locat**loegen** woodlands, savannas or prairie remnants. In some cases, historic maps may also need to be reviewed.

The map(s) could be reviewed based on any local jurisdictional requirements to see if further investigation of such resources would be necessary.

Historic maps may be found at: http://ortho.gis.iastate.edu/

Northvie

260th-St

ookview-Dr-

lickory Dr

1 mi

Meredith Dr

© 2021 Google

Example - Natural Vegetation Map

4 Sect

mon Lab

Data source: Google Earth

A map like this could be used to identify the potential locations of woodlands, savannas or prairie remnants. In some cases, historic maps may also need to be reviewed.

The map(s) could be reviewed based on any local jurisdictional requirements to see if further investigation of such resources would be necessary.

Historic maps may be found at: http://ortho.gis.iastate.edu/

1. 1.0

S.F

K

N

1 mi

Google Earth 🛸

© 2021 Google

Example - Natural Vegetation Map

Data source: Google Earth A map like this could be used to identify the potential loca**tcegen** woodlands, savannas or prairie remnants. In some cases, historic maps may also need to be reviewed.

1.1.7

- II.

-

E

K25

o Highway K2

aner Ave

The map(s) could be reviewed based on any local jurisdictional requirements to see if further investigation of such resources would be necessary.

Historic maps may be found at: http://ortho.gis.iastate.edu/

Google Earth

© 2021 Google

29

Historic Stream Path Analysis Maps

Example - Historic Stream Path

Data source: http://ortho.gis.iastate.edu/ 1930s Black & White Aerial

0 20 5<u>0 10</u>0m 0 100 200 500ft.

Data source: http://ortho.gis.iastate.edu/ 1950s Black & White Aerial

1970s Black & White Aerial

Data source: http://ortho.gis.iastate.edu/ 1990s Black & White Aerial

Data source: http://ortho.gis.iastate.edu/ 2010 Infrared Color Aerial

Data source: http://ortho.gis.iastate.edu/ 2019 Infrared Color Aerial 0 20 50 100m 0 100 200 500ft.