
Appendix H. Additional Interstate Consultation Documentation	

Johnson, Matthew <matthew.johnson@dnr.iowa.gov>

Re: Minnesota consultation regarding regional haze impairment

1 message

Johnson, Matthew <matthew.johnson@dnr.iowa.gov>

Wed, Jun 1, 2022 at 11:18 AM

To: "Palmer, Kari (MPCA)" <kari.palmer@state.mn.us>

Cc: "jessica.reesemcintyre@dnr.iowa.gov" <jessica.reesemcintyre@dnr.iowa.gov>, "deAlwis, Deepa (MPCA)" <deepa.dealwis@state.mn.us>, "Bouchareb, Hassan (MPCA)" <hassan.bouchareb@state.mn.us>, "Wenger, Maggie (MPCA)" <Maggie.Wenger@state.mn.us>, "Mcgraw, Jim" <jim.mcgraw@dnr.iowa.gov>, Peter Zayudis <peter.zayudis@dnr.iowa.gov>

Hello Ms. Palmer,

We would be happy to discuss regional haze and I will soon contact Hassan to begin the meeting coordination process. In the meantime, please use me as the lowa point of contact if any additional regional haze issues arise.

Thank you, Matthew Johnson matthew.johnson@dnr.iowa.gov 515-725-9554

Matthew Johnson | Environmental Specialist Senior Air Quality Bureau **Iowa Department of Natural Resources** P: 515-725-9554

502 E. 9th Street, Des Moines, IA 50319

On Wed, Jun 1, 2022 at 9:41 AM Palmer, Kari (MPCA) <kari.palmer@state.mn.us> wrote:

Dear Ms. McIntyre,

The Minnesota Pollution Control Agency (MPCA) is contacting you for the purpose of Regional Haze state-to-state consultation. Based on our modeling analysis, we believe lowa contributes to visibility impairment at the Boundary Waters Canoe Area Wilderness and Voyageurs National Park, Minnesota Class I areas. The MPCA is requesting a consultation call with your agency to discuss Minnesota's Regional Haze State Implementation Plan including our source selection process, the initial outcome of the four-factor analyses, and the results of our modeling analyses regarding those states that we believe are contributing to visibility impairment in Minnesota Class I areas.

Please contact Hassan Bouchareb of my staff at hassan.bouchareb@state.mn.us or 651-757-2653 to coordinate a time for discussion.

Thank you for your consideration and we hope to speak with you soon,

Sincerely,

Kari Palmer

Kari R.S. Palmer | Air Assessment Section Manager

Minnesota Pollution Control Agency (MPCA)

Environmental Analysis and Outcomes Division

520 Lafayette Rd N | St. Paul, MN | 55155

(w) 651-757-2635 (c) 651-235-5877

kari.palmer@state.mn.us | www.pca.state.mn.us

Pronouns: she/her/hers

Our mission is to protect and improve the environment and human health.

NOTICE: This email (including attachments) is covered by the Electronic Communications Privacy Act, 18 U.S.C. 2510-2521. This email may be confidential and may be legally privileged. If you are not the intended recipient, you are hereby notified that any retention, dissemination, distribution, or copying of this communication is strictly prohibited. Please reply back to the sender that you have received this message in error, then delete it. Thank you

Johnson, Matthew <matthew.johnson@dnr.iowa.gov>

Re: Regional Haze :: Minnesota & Iowa Consultation

1 message

Johnson, Matthew <matthew.johnson@dnr.iowa.gov>

Fri, Jul 1, 2022 at 7:40 AM

To: "Bouchareb, Hassan (MPCA)" < hassan.bouchareb@state.mn.us>

Cc: "jessica.reesemcintyre@dnr.iowa.gov" <jessica.reesemcintyre@dnr.iowa.gov>, "jim.mcgraw@dnr.iowa.gov" <jim.mcgraw@dnr.iowa.gov>, "peter.zayudis@dnr.iowa.gov" <peter.zayudis@dnr.iowa.gov>, "deAlwis, Deepa (MPCA)" <deepa.dealwis@state.mn.us>, "Wenger, Maggie (MPCA)" <Maggie.Wenger@state.mn.us>, "McCourtney, Margaret (MPCA)" <margaret.mccourtney@state.mn.us>, "Palmer, Kari (MPCA)" <kari.palmer@state.mn.us>, "Smith, Michael D (MPCA)" <michael.smith@state.mn.us>

Hello Hassan and All,

We appreciated the consultation opportunity and found the discussion productive. The modeling and technical analyses presented were clear, concise, logical, and informative. The conclusions we've developed through review of the LADCO PSAT modeling results are consistent with your findings.

As mentioned yesterday, we will require our two largest EGUs, Louisa Generating Station (LGS) and Walter Scott Jr. Energy Center (WSEC) - Unit 3, to make operational improvements to their existing dry scrubbers. These control measures will reduce their actual SO2 emissions by a combined 9,000 - 10,000 tons per year. The emission limits are still under development, but should be equivalent to ~0.10 lb/MMBtu. Summary information is provided in the tables below. Our SIP timeline will hopefully lag yours by no more than ~3 months.

Facility Name	DNR Facility ID	Source Type	County	Latitude	Longitude
Louisa Generating Station	58-07-001	Coal-fired EGU	Louisa	41.3181	-91.0933
Walter Scott Jr. Energy	78-01-026	Coal-fired EGU	Pottawattamie	41.1811	-95.8380
Center	78-01-020	Coal-lifed EGO	Pollawallanne		

Source	Baseline SO ₂ Emissions [2017-2019 Average]	SO ₂ Emissions after FGD Improvements	Change in Actual SO ₂ Emissions
	(tpy)	(tpy)	(tpy)
Louisa Generating	5,952	2,049	-3,903
Station (Unit 101)			
Walter Scott Jr. Energy	8,041	2,256	-5,785
Center - Unit 3			
Total	13,993	4,305	-9,688

LGS and WSEC were selected for 4-factor analysis based on our evaluation of CenSARA's Area of Influence (AOI) analysis. These were the only lowa sources that contributed to the majority of the combined sulfate and nitrate EWRT*Q/d metric at downwind Class I areas.

If you'd like any additional information, please let us know.

Thank you, Matthew

Matthew Johnson | Environmental Specialist Senior Air Quality Bureau

Iowa Department of Natural Resources P: 515-725-9554

502 E. 9th Street, Des Moines, IA 50319

On Thu, Jun 30, 2022 at 12:21 PM Bouchareb, Hassan (MPCA) hassan.bouchareb@state.mn.us wrote:

Good afternoon everyone,

Thanks again for meeting with us today to discuss various aspects of the Regional Haze program and participating in the consultation process required under the Regional Haze Rules. Generally, states are required to consult with other states that have emissions that are reasonably anticipated to contribute to visibility impairment in the same Class I area(s), in order to develop coordinated emission management strategies for making reasonable progress.

Attached is the presentation used in today's discussion that outlines what Minnesota plans to include in its Regional Haze SIP. This included the visibility contribution analysis that Minnesota used to determine which Class I areas are potentially impacted by Minnesota sources and which Class I areas in Minnesota are potentially impacted by sources in other states. As mentioned in our meeting, we are not making a formal "Ask" regarding any sources in particular and viewed this as more of an information sharing opportunity.

We would appreciate any information you can provide regarding the approach your state is taking regarding emission reduction measures contemplated for this regional haze implementation period. I'll be working to summarize our interactions within Minnesota's Regional Haze SIP and we'll provide you with an opportunity to review the summary and offer comments/clarifications.

For easy reference, we're currently in the middle of the formal FLM consultation period (May 11th - July 11th) and are hoping to go on public notice in late July or early August this year. If you would please provide any relevant information you would like to share at your earliest convenience, I'll attempt to include that in my write-up before sharing it with you for your review.

If you have any questions, please let me know.

Thank you!

Hassan M. Bouchareb | Engineer Minnesota Pollution Control Agency (MPCA)

Office: (651) 757-2653 | Fax: (651) 296-8324

Pronouns: he/him/his

Hassan.Bouchareb@state.mn.us | www.pca.state.mn.us

NOTICE: This email (including attachments) is covered by the Electronic Communications Privacy Act, 18 U.S.C. 2510-2521. This email may be confidential and may be legally privileged. If you are not the intended recipient, you are hereby notified that any retention, dissemination, distribution, or copying of this communication is strictly prohibited. Please reply back to the sender that you have received this message in error, then delete it. Thank you.

----Original Appointment----

From: Bouchareb, Hassan (MPCA) Sent: Thursday, June 2, 2022 9:29 AM

To: Bouchareb, Hassan (MPCA); deAlwis, Deepa (MPCA); Wenger, Maggie (MPCA); McCourtney, Margaret (MPCA); Palmer, Kari (MPCA); Smith, Michael D (MPCA); matthew.johnson@dnr.iowa.gov; jessica.reesemcintyre@dnr.iowa.gov

Cc: jim.mcgraw@dnr.iowa.gov; peter.zayudis@dnr.iowa.gov Subject: Regional Haze :: Minnesota & Iowa Consultation

When: Thursday, June 30, 2022 11:00 AM-12:00 PM (UTC-06:00) Central Time (US & Canada).

Where: Microsoft Teams Meeting

Hi everyone,

Matthew and I talked briefly regarding potential meeting times for consultation, and it looks like this time worked for everyone. Please hold this time and we look forward to speaking with you.

If you have any questions, please send them my way.

Thanks!

Microsoft Teams meeting

Join on your computer or mobile app

Click here to join the meeting

Join with a video conferencing device

mn@m.webex.com

Video Conference ID: 114 192 618 5

Alternate VTC instructions

Or call in (audio only)

+1 651-395-7448,,695610455# United States, St. Paul

Phone Conference ID: 695 610 455#

Find a local number | Reset PIN

Learn More | Meeting options

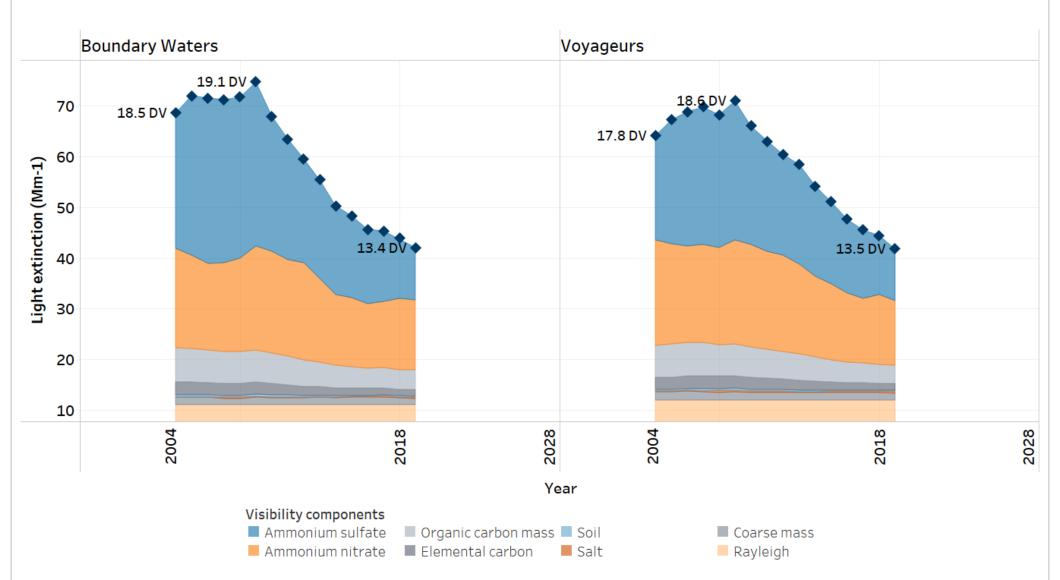
Regional Haze Update

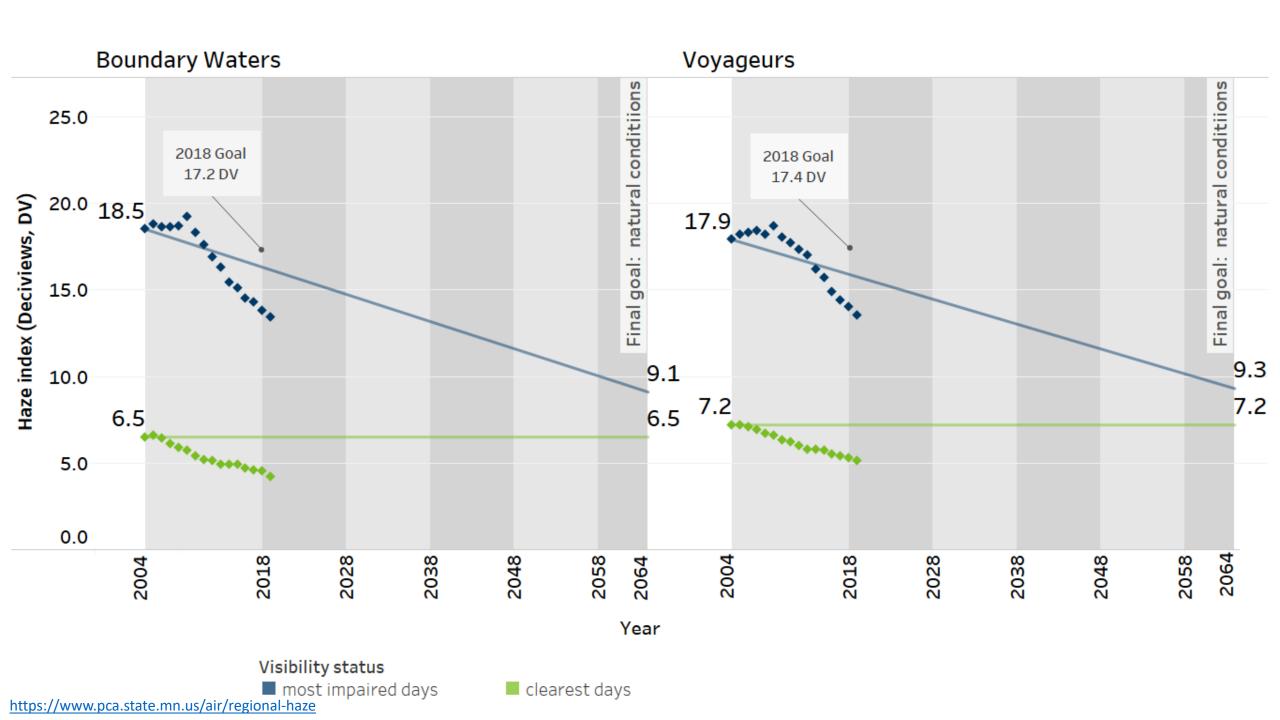
2nd Implementation Period

Introduction

Reach natural visibility conditions in Minnesota's national parks and wilderness areas

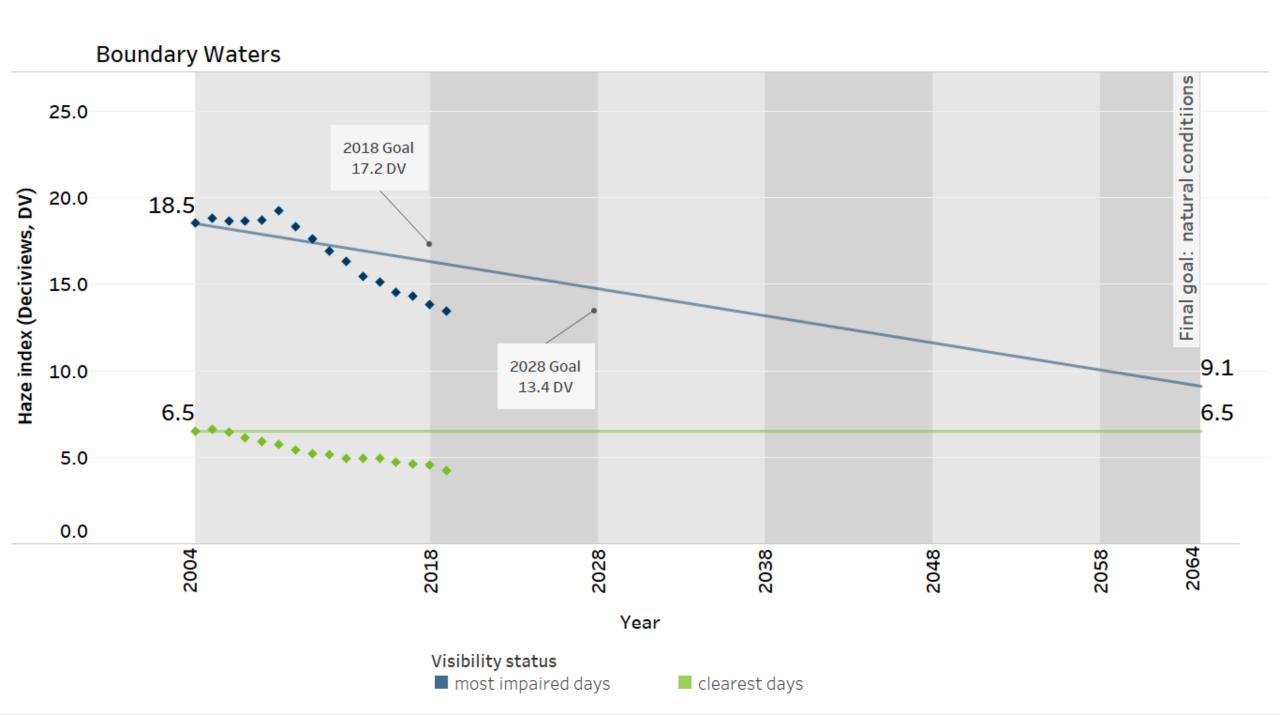
- Implementation of EPA's regional haze rules
- Comprehensive update for 2028 (2nd Implementation Period)
- Addressing regional haze is one of MPCA's long term goals
- Committed to making reasonable progress towards natural conditions

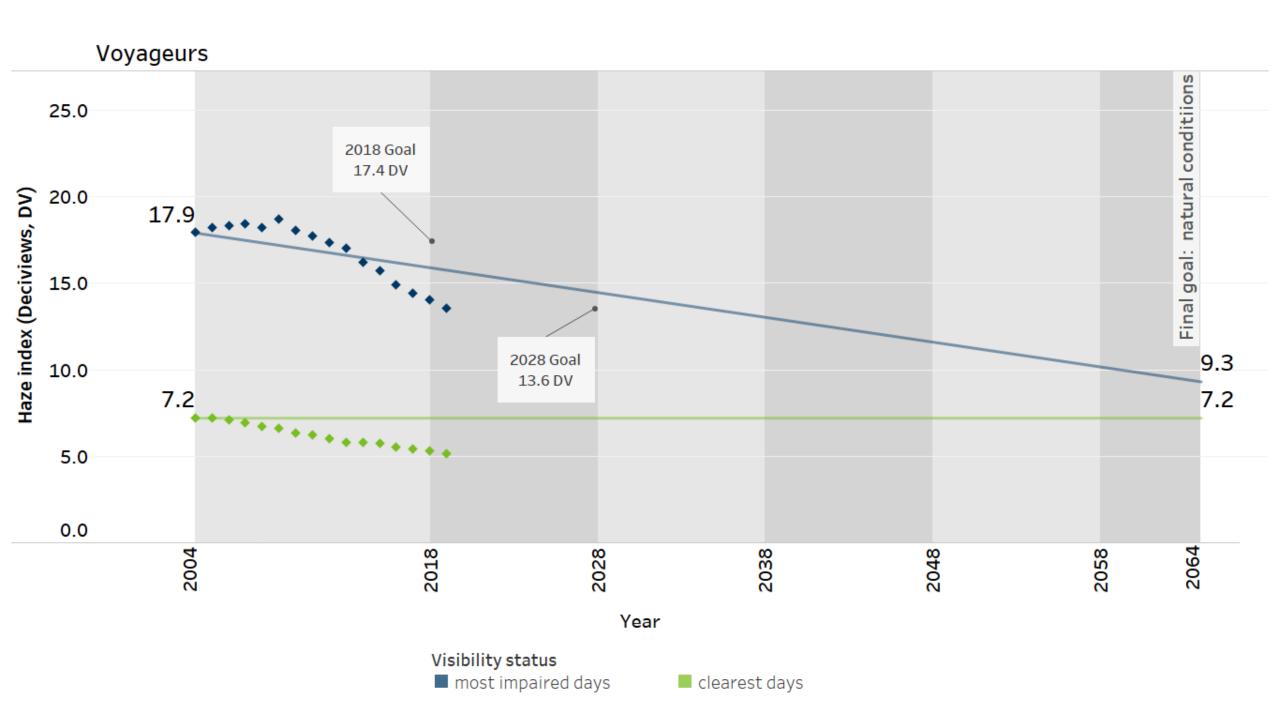

1st implementation period review


- Regional Haze State Implementation Plan (SIP)
 - Initial SIP submitted in 2009 (supplemented in 2012)
 - Best Available Retrofit Technology (BART) for Electric Generating Units (EGUs)
 - Federal Implementation Plan (FIP) for Taconite facilities
 - FIP for reasonably attributable visibility impairment (RAVI)
 - Five-Year Progress Report submitted in 2014
 - No significant revisions necessary to achieve 2018 reasonable progress goals

2nd implementation period update Overall updates

- Where are we now?
 - Decisions on four-factor analyses and available emission reduction strategies
 - Documentation & early review by EPA/FLMs/Tribes
 - Interstate consultation
 - Modeling performance evaluation
 - Modeling results review/interpretation
 - Geographic and sector contribution analyses


Components of visibility impairment As light extinction



2nd implementation period update Visibility modeling

- Uniform Rate of Progress (URP or glidepath) as a "Safe Harbor"
 - Not an acceptable reason to reject potential controls or emission reductions
- Modeling to forecast visibility conditions in 2028
 - Performed by MPCA (using LADCO v1b modeling platform)
 - MPCA conducting additional modeling similar to 1st implementation period
 - Focus on sector contribution to visibility impairment by geographic area
 - Use this modeling to establish our 2028 reasonable progress goal

2nd implementation period update Visibility modeling

Explore emissions inputs for modeling Minnesota 2028 interim visibility goals

This interactive tool shows the emissions input to the atmospheric chemistry model to develop our visibility goals at Minnesota Class I areas.

2nd implementation period update Visibility contribution analyses - Minnesota's impact on Class I areas

Minnesota contribution to 2028 Nitrate and Sulfate Extinction at select Class I areas

	Monitor site	Monitor location		Distance of monitor	Minnesota	
Class I area	abbreviation	Latitude	Longitude	from Minnesota boundary (km)	contribution to visibility (%)	
Boundary Waters Canoe Area Wilderness	BOWA1	47.9466	-91.4955	0	16.2	
Voyageurs National Park	VOYA2	48.4126	-92.8286	0	17.6	
Isle Royale National Park	ISLE1	47.4596	-88.1491	117	8.2	
Seney Wilderness Area	SENE1	46.2889	-85.9503	329	4.3	
Lostwood Wilderness	LOST1	48.6419	-102.4022	381	0.5	
Badlands Wilderness	BADL1	43.7435	-101.9412	442	1.2	
Theodore Roosevelt National Park	THRO1	46.8948	-103.3777	489	1.7	
Mingo Wilderness Area	MING1	36.9717	-90.1432	731	1.6	
Hercules-Glades Wilderness Area	HEGL1	36.6138	-92.9221	765	1.8	
Mammoth Cave National Park	MACA1	37.1318	-86.1479	828	2.6	

2nd implementation period update Visibility contribution analyses - Minnesota's impact on Class I areas

Minnesota sector contribution to 2028 Nitrate and Sulfate Extinction at Class I areas

Sector			sibility contribution (%) Pollutant contribution (%) ■ NH4NO3 ■ NH4SO4		2028 emissions (tons)	
Group	Boundary Waters	Voyageurs	Boundary Waters	Voyageurs	NOX	SO2
Industry	6.2	6.3	0	0	36,000	10,000
Vehicle	3.5	3.7	0	0	62,200	907
EGU	2.6	3.5	0	0	12,200	12,000
Area Oil/Gas RWC	2.9	2.7	0	0	28,040	4,312
Natural	1.0	1.4	0	0	42,500	
Total	16.2	17.6	0	0	180,940	27,219

2nd implementation period update Visibility contribution analyses - States impacting Minnesota Class I areas

Region contribution to 2028 Nitrate and Sulfate Extinction at Minnesota Class I areas

	Boundar	y Waters	Voyageurs		
Region name	Distance of region boundary to monitor (km)	Region contribution to visibility (%)	Distance of region boundary to monitor (km)	Region contribution to visibility (%)	
Boundary of model domain	432	37.7	385	40.2	
Minnesota	0	16.2	0	17.6	
Canada/Mexico	12 / 2,190	7.0	10 / 2,176	10.0	
North Dakota	404	4.8	314	5.9	
Central Midwest	934	4.6	955	3.7	
Iowa	494	4.3	546	4.1	
Nebraska	715	3.9	706	3.5	
West	446	3.9	395	3.0	
Wisconsin	113	3.6	194	1.5	

2nd implementation period update Visibility contribution analyses - States impacting Minnesota Class I areas

Region contribution to 2028 Nitrate and Sulfate Extinction at Minnesota Class I areas

	Boundar	y Waters	Voyageurs		
Region name	Distance of region boundary to monitor (km)	Region contribution to visibility (%)	Distance of region boundary to monitor (km)	Region contribution to visibility (%)	
Missouri	815	3.5	869	2.8	
Illinois	608	2.6	678	1.7	
Texas	1,451	1.5	1,447	1.3	
Indiana	760	1.0	853	0.9	
Southeast	1,118	1.0	1,216	0.8	
Northeast	872	0.9	977	1.1	
Michigan	170	0.4	274	0.8	
Water bodies	64	0.2	170	0.2	

Visibility contribution analyses - North Dakota's impact on Minnesota Class I areas

North Dakota sector contribution to 2028 Nitrate and Sulfate Extinction at Class I areas

Sector	Visibility con	Pollutant contribution (%) tribution (%) NH4NO3 NH4SO4		2028 emissions (tons)		
Group	Boundary Waters	Voyageurs	Boundary Waters	Voyageurs	NOX	SO2
EGU	2.4	2.5	0	0	33,600	38,000
Area Oil/Gas RWC	1.1	1.4	0	0	34,048	9,444
Vehicle	0.7	1.0	0	0	29,470	165
Natural	0.4	0.6	0	0	50,500	
Industry	0.2	0.3	0	0	3,610	2,020
Total	4.8	5.9	•	O	151,228	49,629

2nd implementation period update Visibility contribution analyses - Iowa's impact on Minnesota Class I areas

Iowa sector contribution to 2028 Nitrate and Sulfate Extinction at Minnesota Class I areas

Sector	Visibility contribution (%) NH4NO3 NH4SO4		2028 emissions (tons)			
Group	Boundary Waters	Voyageurs	Boundary Waters	Voyageurs	NOX	SO2
EGU	1.8	1.9	0	0	22,300	28,500
Vehicle	1.0	0.8	0	0	46,600	382
Natural	0.6	0.6	0	0	59,800	
Industry	0.5	0.4	0	0	13,600	6,680
Area Oil/Gas RWC	0.4	0.3	0	0	14,422	558
Total	4.3	4.1	0		156,722	36,120

Visibility contribution analyses - Nebraska's impact on Minnesota Class I areas

Nebraska sector contribution to 2028 Nitrate and Sulfate Extinction at Minnesota Class I areas

Sector	Visibility contribution (%)		Pollutant contribution (% NH4N03 NH4S04		2028 emiss	sions (tons)
Group	Boundary Waters	Voyageurs	Boundary Waters	Voyageurs	NOX	SO2
EGU	2.4	2.4	0	0	23,200	57,000
Vehicle	0.8	0.5	0	0	51,200	204
Industry	0.2	0.2	0	0	7,270	1,840
Natural	0.4	0.2	0	0	74,700	
Area Oil/Gas RWC	0.2	0.1	0	0	6,799	143
Total	3.9	3.5	O	0	163,169	59,187

Visibility contribution analyses - Wisconsin's impact on Minnesota Class I areas

Wisconsin sector contribution to 2028 Nitrate and Sulfate Extinction at Minnesota Class I areas

Sector	Visibility con	Pollutant contribution (%)			2028 emiss	ions (tons)
Group	Boundary Waters	Voyageurs	Boundary Waters	Voyageurs	NOX	SO2
Industry	1.2	0.6	•	0	22,800	19,400
Vehicle	1.2	0.4	0	0	47,700	496
Area Oil/Gas RWC	0.6	0.2	0	0	21,229	2,015
EGU	0.3	0.2	0	0	13,500	4,700
Natural	0.3	0.2	0	0	24,600	
Total	3.6	1.5	0	0	129,829	26,611

Visibility contribution analyses - Missouri's impact on Minnesota Class I areas

Missouri sector contribution to 2028 Nitrate and Sulfate Extinction at Minnesota Class I areas

Sector	Visibility con	Visibility contribution (%) NH4NO3 NH4SO4		2028 emiss	sions (tons)	
Group	Boundary Waters	Voyageurs	Boundary Waters	Voyageurs	NOX	SO2
EGU	1.6	1.3	O	O	33,200	95,600
Vehicle	0.9	0.7	0	0	75,600	848
Industry	0.4	0.3	•	•	21,000	12,200
Natural	0.3	0.3	0	0	55,400	
Area Oil/Gas RWC	0.3	0.2	0	0	19,331	899
Total	3.5	2.8	0	0	204,531	109,547

Four factor analysis :: source selection

- LADCO Regional Analysis Overview
 - Based on 2016 emissions (NO_x, SO₂, PM_{2.5}, NH₃, VOCs), with exceptions
 - Excluded facilities from further analysis if Q/d < 1
 - Facilities with Q/d > 4 were generally asked to conduct a Four Factor Analysis
 - Largest Minnesota contributors from Taconite, EGUs, and other ICI Boilers
- What does the Guidance say?
 - Draft 2016 guidance recommended states evaluate 80% of sources
 - Final guidance allows a "reasonable threshold" with appropriate justification

2nd implementation period update Four factor analysis :: control measure selection

MCPA review

- No evaluation of individual visibility impact from specific controls
- Focuses on evaluating the four factors to determine necessary controls
- Cost comparisons across regional haze SIPs and EPA's RBLC Clearinghouse
- Control selection overview
 - Started with 17 facilities and 44 emission units
 - 19 emission units were found to be effectively controlled
 - 13 emission unit either will, or plan to, retire/shutdown
 - 8 emission units have no cost effective controls
 - 4 emission units have cost effective controls

June 2022

2nd implementation period update Four factor analysis :: Taconite industry overview

Facility Name	Emission Unit	Pollutants	Control Measure	Outcome
Cleveland Cliffs Minorca Mine Inc.	Indurating Machine	NO _x , SO ₂	N/A (effectively controlled)	[1], [2]
Hibbing Taconite Company	Indurating Furnace Line 1	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
	Indurating Furnace Line 2	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
	Indurating Furnace Line 3	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
	Power Boiler 1	NO _X	SNCR, SCR	[3]
		SO ₂	DSI, Spray Dry Absorber	[3]
Northshara Mining Silver Pay	Power Boiler 2	NO _X	LNB w/ OFA, SNCR, SCR	[3]
Northshore Mining - Silver Bay		SO ₂	DSI, Spray Dry Absorber	[3]
	Furnace 11	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
	Furnace 12	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
United Taconite LLC - Fairlane	Line 1 Pellet Induration	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
Plant	Line 2 Pellet Induration	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
US Steel Corporation - Keetac	Grate Kiln	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
US Steel Corporation - Minntac	Line 3 Rotary Kiln	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
	Line 4 Rotary Kiln	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
	Line 5 Rotary Kiln	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
	Line 6 Rotary Kiln	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]
	Line 7 Rotary Kiln	NO _X , SO ₂	N/A (effectively controlled)	[1], [2]

Notes

- [1] No controls recommended; considered effectively controlled for this implementation period.
- [2] Taconite Federal Implementation Plan (FIP) settlement discussions with EPA.
- [3] No controls recommended; proposed emission unit retirements/shutdowns

2nd implementation period update Four factor analysis :: Electric power generation industry overview

Facility Name	Emission Unit	Pollutants	Control Measure	Outcome
Hibbing Public Utilities Commission	Boiler No. 1A	NO _x	SNCR, SCR	[7]
		SO ₂	Spray Dry Scrubber, Wet Scrubber	[4]
	Boiler No. 2A	NO _x	SNCR, SCR	[7]
		SO ₂	Spray Dry Scrubber, Wet Scrubber	[4]
Commission	Boiler No. 3A	NO _x	SNCR, SCR	[7]
		SO ₂	Spray Dry Scrubber, Wet Scrubber	[4]
	Wood Fired Boiler	NO _x	SCR	[5]
	Unit 1	NO _x , SO ₂	N/A (unit retirement)	[3]
Minnesota Power - Boswell	Unit 2	NO _x , SO ₂	N/A (unit retirement)	[3]
Energy Center	Unit 3	NO _x , SO ₂	N/A (effectively controlled)	[1]
	Unit 4	NO _x , SO ₂	N/A (effectively controlled)	[1]
Minnesota Power - Taconite Harbor Energy	Boiler 1	NO _x , SO ₂	N/A (unit retirement)	[3]
	Boiler 2	NO _x , SO ₂	N/A (unit retirement)	[3]
Virginia Department of Public Utilities	Boiler 7	NO _x	SNCR, SCR	[3], [7]
		SO ₂	Spray Dry Scrubber, Wet Scrubber	[3], [4]
	Boiler 9	NO _x , SO ₂	N/A (unit retirement)	[3]
	Boiler 11	NO _x	SCR	[5]
Xcel Energy - Allen S. King	Boiler 1	NO _x , SO ₂	N/A (unit retirement)	[3]
Xcel Energy - Sherburne	Unit 1	NO _x , SO ₂	N/A (unit retirement)	[3]
	Unit 2	NO _x , SO ₂	N/A (unit retirement)	[3]
	Unit 3	NO _X , SO ₂	N/A (unit retirement)	[3]

Notes

- [1] No controls recommended; considered effectively controlled for this implementation period.
- [3] No controls recommended; proposed emission unit retirements/shutdowns
- [4] No SO2 controls recommended; not considered cost-effective for this implementation period.
- [5] No NOX controls recommended; not considered cost-effective for this implementation period.
- [7] NOX controls recommended for this implementation period.

2nd implementation period update Four factor analysis :: Pulp/paper and sugar beet industry overview

Facility Name	Emission Unit	Pollutants	Control Measure	Outcome
American Crystal Sugar - Crookston	Boiler 1	NO _X	SNCR, SCR	[5]
		SO ₂	DSI, Dry FGD	[4]
	Boiler 2	NO _X	SNCR, SCR	[5]
		SO ₂	DSI, Dry FGD	[4]
	Boiler 3	NO_X	SNCR, SCR	[5]
		SO ₂	DSI, Dry FGD	[4]
American Crystal Sugar - East Grand Forks	Boiler 1	NO _X	SNCR, SCR	[5]
		SO ₂	DSI, Dry FGD	[4]
	Boiler 2	NO _X	SNCR, SCR	[5]
		SO ₂	DSI, Dry FGD	[4]
Southern Minnesota Beet Sugar	Boiler 1	NO _X	LNB w/ OFA, SNCR, SCR	[7]
Соор		SO ₂	DSI, Spray Dry Absorber	[4]

Facility Name	Emission Unit	Pollutants	Control Measure	Outcome
Boise White Paper	Recovery Furnace	NO _X	N/A (effectively controlled)	[1]
	Boiler 1	NO _X	LNB w/ FGR & OFA, SCR	[5]
	Boiler 2	NO _X , SO ₂	N/A (effectively controlled)	[1]
Sappi Cloquet LLC	Power Boiler #9	NO _X	SNCR, SCR	[5]
		SO ₂	DSI, Spray Dry Absorber	[4]
	Recovery Boiler #10	NO _X	N/A (effectively controlled)	[1]

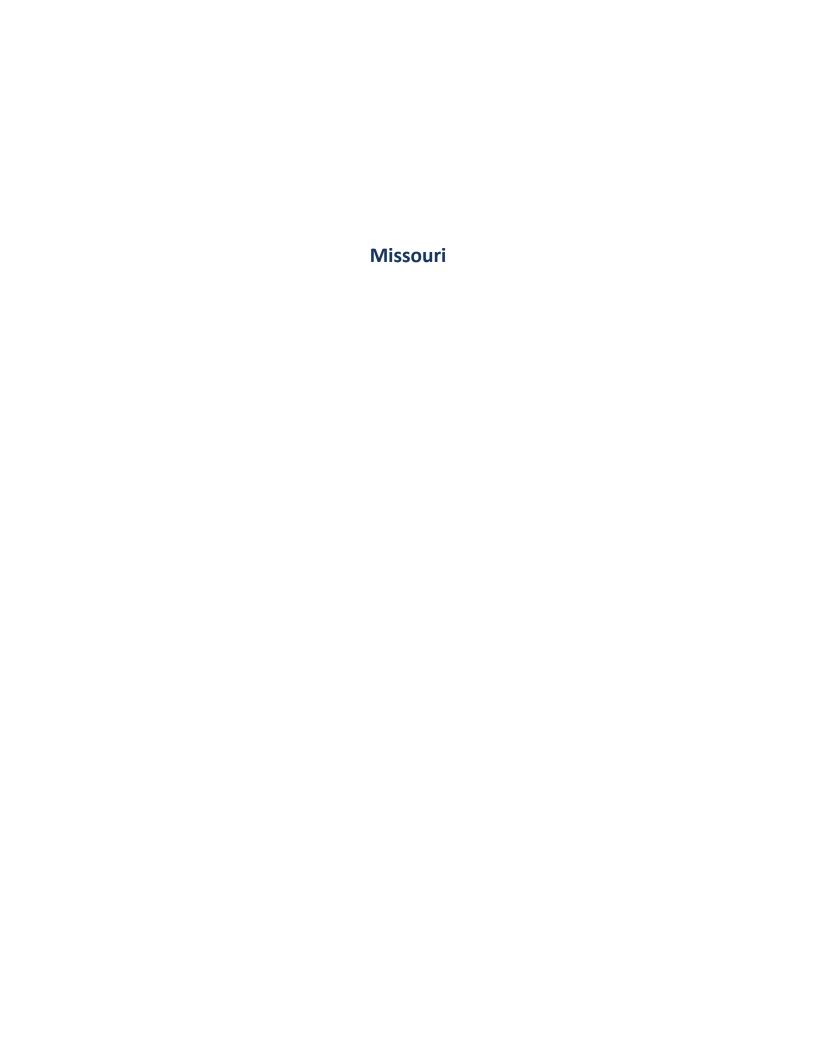
Notes

- [1] No controls recommended; considered effectively controlled for this implementation period.
- [4] No SO2 controls recommended; not considered cost-effective for this implementation period.
- [5] No NOX controls recommended; not considered cost-effective for this implementation period.
- [7] NOX controls recommended for this implementation period.

2nd implementation period update Tentative schedule

Action	Target Completion Date	Status
Four factor analysis	2021	Complete
Draft agreements with facilities	April 2022	Underway
Begin formal FLM consultation on draft SIP packet (at least 60 days)	May 11, 2022	Underway
FLM consultation complete	July 11, 2022	
Public notice for SIP (at least 30 days)	Late July 2022	
Public meeting for SIP	August-September 2022	
Final SIP submission to EPA	October 2022	

Moving forward Minnesota summary


- Visibility trends continue to improve at Boundary Waters and Voyageurs
 - We're on track to meet the 2064 goal
 - We expect additional visibility improvement due to additional reductions not modeled
- Minnesota has achieved significant reductions in NOX and SO2 emissions:
 - NOX emissions have been reduced by 71% since 2002 (point sources)
 - SO2 emissions have been reduced by 89% since 2002 (point sources)
 - Future 2028 projections estimate a 31% NOX reduction and 18% SO2 reductions (all sources since 2016)
- We're not done yet and the sources we focus on in the future may change

Moving forward Consultation summary

- No specific asks to states
 - Information sharing
 - Documentation for the SIP document
- Minnesota will share the language we include in our SIP
 - Welcome to review and offer comments/clarifications

Questions

Johnson, Matthew <matthew.johnson@dnr.iowa.gov>

RE: Regional Haze Consultation - lowa/Missouri

1 message

Leath, Mark <mark.leath@dnr.mo.gov>

Tue, Nov 1, 2022 at 2:32 PM

To: "Johnson, Matthew" <matthew.johnson@dnr.iowa.gov>

Cc: "Mcgraw, Jim" < jim.mcgraw@dnr.iowa.gov>, Jessica Reese McIntyre < jessica.reesemcintyre@dnr.iowa.gov>

Thank you Mathew,

I appreciated the chance to discuss the information with you this morning. We concur that no further action steps are required at this time. Thanks again.

Mark Leath, P.E.

Air Quality Planning Section Chief

Missouri Department of Natural Resources

Air Pollution Control Program

Phone: 573-526-5503

Email: mark.leath@dnr.mo.gov

Promoting, Protecting and Enjoying our Natural Resources. Learn more at www.dnr.mo.gov.

From: Johnson, Matthew <matthew.johnson@dnr.iowa.gov>

Sent: Tuesday, November 1, 2022 2:10 PM To: Leath, Mark <mark.leath@dnr.mo.gov>

Cc: Mcgraw, Jim <jim.mcgraw@dnr.iowa.gov>; Jessica Reese McIntyre <jessica.reesemcintyre@dnr.iowa.gov>

Subject: Regional Haze Consultation - Iowa/Missouri

Hello Mark,

Thank you for meeting today to review lowa's draft Regional Haze SIP for the second implementation period and participating in the consultation process required under the Regional Haze Rule.

The presentation (distributed prior to the call) outlines lowa's preliminary decisions, including: the method we used to conclude that Iowa contributes to HEGL; our source selection methods; and control decisions. For reference, we're currently within Iowa's formal FLM consultation period (October 11 – December 9).

The Iowa DNR believes the current consultation obligations between Missouri and Iowa have been fulfilled and that no additional action steps are warranted or required at this time. However, we will provide additional information if requested and can meet again as needed.

Thank you, Matthew Johnson

> Matthew Johnson | Environmental Specialist Senior Air Quality Bureau **Iowa Department of Natural Resources** P: 515-725-9554 502 E. 9th Street, Des Moines, IA 50319

www.iowadnr.gov

State of Iowa Regional Haze State Implementation Plan 2nd Planning Period (2019-2028)

Summary of Iowa's Draft SIP

State Consultation
Missouri
November 1, 2022

Purpose of Today's Meeting

- Highlight key draft decision points in Iowa's draft regional haze SIP
- Provide consultation opportunity

Iowa's Class I Area Linkages

- Starting Point: Round 1 Iowa may contribute to Class I areas in MN and MI
- Next: Use LADCO's 2028₂₀₁₆ CAM_X PSAT results to examine current relationships
 - lowa contributes 3.0% 3.9% of total 2028 modeled visibility impact (modeled impact means that Rayleigh (& sea salt) are excluded, i.e. their impact=0%)
- Then: Add any other Class I area in/above that range: Adds HEGL

State	Class I Area	Iowa Anthro	All Other States Anthro	Mostly Non- Anthro	Round 2 Link?
N/II	ISLE	3.9%	44.3%	51.9%	Yes
MI	SENE	3.3%	51.0%	45.7%	Yes
NANI	BOWA	3.2%	38.3%	58.6%	Yes
MN	VOYA	3.0%	36.0%	61.1%	Yes
<u>MO</u>	<u>HEGL</u>	3.9%	53.3%	42.7%	Yes

Iowa's Source Selection

Importance of linkages minimized by conservatively evaluating 12 Class I area:

State	Area
Michigan	Isle Royale
Michigan	Seney
Minnesota	Boundary Waters
iviiiiiesota	Voyageurs
Missouri	Hercules-Glades
Missouri	Mingo

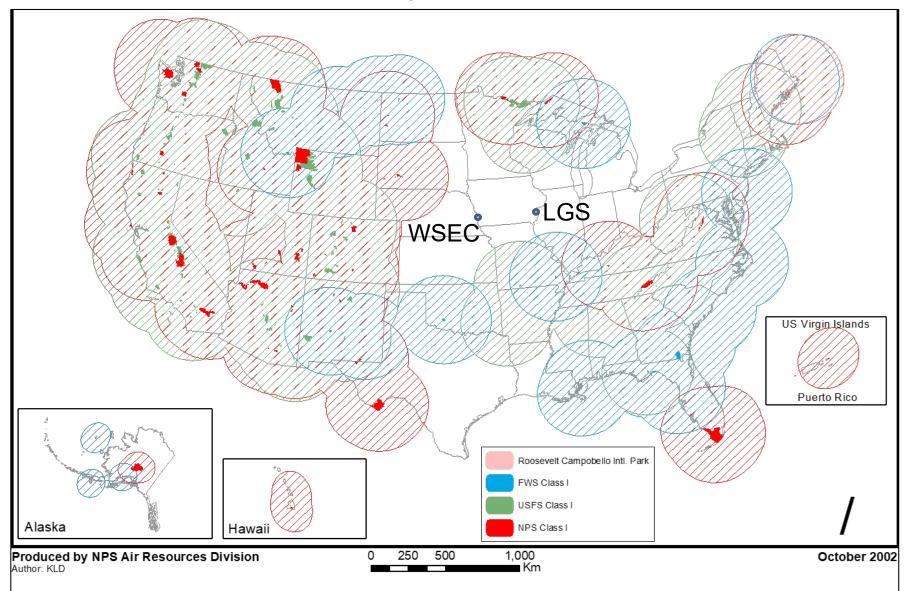
State	Area		
Arkansas	Caney Creek		
AIKalisas	Upper Buffalo		
Kentucky	Mammoth Cave		
Oklahoma	Wichita Mtns.		
S. Dakota	Badlands		
S. DaKOla	Wind Cave		

- Utilized CenSARA's Area of Influence (AOI) analysis conducted by Ramboll
 - Residence time (72-hr back trajectories on 20% most impaired days, 2012-2016)
 - Weighted by the IMPROVE sulfate and nitrate light extinction impacts
 - 2016 emissions from point sources and distance to Class I Areas

Source Selection Methodology Summary

- AOI Analysis:
 - Produced facility-level extinction weighted residence times for sulfates and nitrates (EWRT*Q/d-NO₃ and EWRT*Q/d-SO₄)
 - Excel analytical worksheet (modified by DNR; provided as Appendix C-1)
 - This Excel file is resource intensive (can be slow to open and use)
- Multiple reasonable ways to use the data
 - Choice of various screening thresholds
 - Evaluate EWRT*Q/d-NO₃ and EWRT*Q/d-SO₄ metrics separately or combined

Source Selection Methodology Summary (cont.)


- DNR method
 - No sources screened out (EWRT-NO₃ and EWRT-SO₄ thresholds set to zero)
 - EWRT*Q/d-NO₃ and EWRT*Q/d-SO₄ metrics summed (one-atmosphere)
 - Converted to a percentage of the total for the given Class I area
 - Ranked from largest to smallest, with a running total
 - Select all Iowa sources contributing to the majority of the total impact
 - Repeat for each of the 12 Class I areas identified on slide 4

Results - Iowa Sources Selected for 4-Factor Analysis

- Method identified two Iowa facilities both operated by MidAmerican Energy Co.
 - Louisa Generating Station (LGS)
 - Walter Scott Jr. Energy Center (WSEC)

Facility	Source Type	Unit ID	Nameplate Capacity (Online Year)	Max Rated Heat Input	Existing SO ₂ Controls	Existing NO _X Controls	2016 SO ₂ (tons)	2016 NO _X (tons)
Louisa Generating Station	EGU (coal-fired)	101	811.9 MW (1983)	8,000 MMBtu/hr	Dry Lime FGD	LNB+OFA	5,156	3,131
Walter Scott Jr.	EGU	3	725.8 MW (1978)	7,700 MMBtu/hr	Dry Lime FGD	LNB+OFA	7,365	4,326
Energy Center	(coal-fired)	4	922.5 MW (2007)	7,675 MMBtu/hr	Dry Lime FGD	SCR, LNB+OFA	1,601	1,141

LGS & WSEC and Areas w/in 300 km of a Class I Area

Four Factor Analysis: SO₂ & NO_X Control Options

- DNR requested that MidAmerican conduct Four Factor analysis of LGS and WSEC
 - MidAmerican provided final version on Aug 10, 2021
- Identified the following control options for both Louisa and WSEC-Unit 3

SO ₂	NO _X
Operational Improvements to Existing Dry FGD	SNCR
New Wet FGD	SCR

- WSEC-Unit 4
 - Currently well controlled (BACT limits, operation began in 2007)
 - SO₂: 0.1 lb/MMBtu
 - NO_X: 0.07 lb/MMBtu
 - DNR including its current permit in the SIP to prevent future visibility impairment

MidAmerican's Cost Analysis of SO₂ & NO_X Reductions

Baseline Emissions		SC)2		NOx			
(2017-2019 avg)	Louisa Unit 101		Walter Scott Jr. Unit 3		Louisa Unit 101		Walter Scott Jr. Unit 3	
tons/yr	5,95	52	8,04	1 1	3,77	74	5,030	
lb/MMBtu	0.29)2	0.35	57	0.18	33	0.22	23
Control Measure	Improved Dry FGD	Wet FGD	Improved Dry FGD	Wet FGD	SNCR	SCR	SNCR	SCR
Emissions With Controls (tons/yr)	2,049	1,230	2,256	1,354	3,208	1,035	4,275	1,181
lb/MMBtu w/ Controls	0.1	0.06	0.1	0.06	0.157	0.05	0.181	0.05
Emission Reduction vs Baseline (tons/yr)	-3,903	-4,722	-5,785	-6,687	-566	-2,739	-755	-3,849
Emission Reduction vs Baseline (%)	-66%	-79%	-72%	-83%	-15%	-73%	-15%	-77%
Capital Cost (2019\$)	-	\$398,140,000	-	\$370,150,000	\$14,175,300	\$236,140,160	\$13,851,200	\$238,436,408
Capital Cost Recovery (2019\$/yr)*	-	\$40,136,000	-	\$37,314,000	\$1,429,000	\$20,709,492	\$1,396,300	\$20,910,873
Annual O&M (2019\$)	\$1,102,000	\$1,986,000	\$1,248,000	\$3,849,000	\$2,192,000	\$3,562,450	\$2,844,000	\$3,860,815
Total Annualized Costs (2019\$)	\$1,102,000	\$42,122,000	\$1,248,000	\$41,163,000	\$3,621,000	\$24,271,942	\$4,240,300	\$24,771,688
Cost Effectiveness (2019\$/Ton)	\$282	\$8,920	\$216	\$6,160	\$6,398	\$8,862	\$5,616	\$6,436
Incremental Costs (2019\$/Ton)	n/a	\$50,090	n/a	\$44,250	n/a	\$9,500	n/a	\$6,640

Fifth Factor (Visibility Impacts) Information

- Source apportion or zero out runs for LGS & WSEC not available
 - Solution: Ratio IA impacts using the LADCO 2028 PSAT data and associated
 2028 anthropogenic emissions, but incorporate conservative assumptions
- Iowa's <u>maximum</u> impacts among any of the 5 Class I areas linked to Iowa are:
 - Sulfate = 1.000 Mm^{-1} (HEGL)
 - Nitrate= 0.798 Mm⁻¹ (SENE)
- Iowa's EGUs in 2028 are forecast (ERTAC v16.1) to emit:
 - 78.8% of the state's SO_2
 - 22.2% of the state's NO_{χ}
- Using an emission ratio method, lowa's EGU have the following visibility impacts:
 - 0.788 Mm⁻¹ sulfate impact (1.000 Mm⁻¹ * 78.8%)
 - 0.177 Mm⁻¹ nitrate impact (0.798 Mm⁻¹ * 22.2%)
 - How should we apportion these down to LGS and WSEC?

Fifth Factor (Visibility Impacts) Information (cont.)

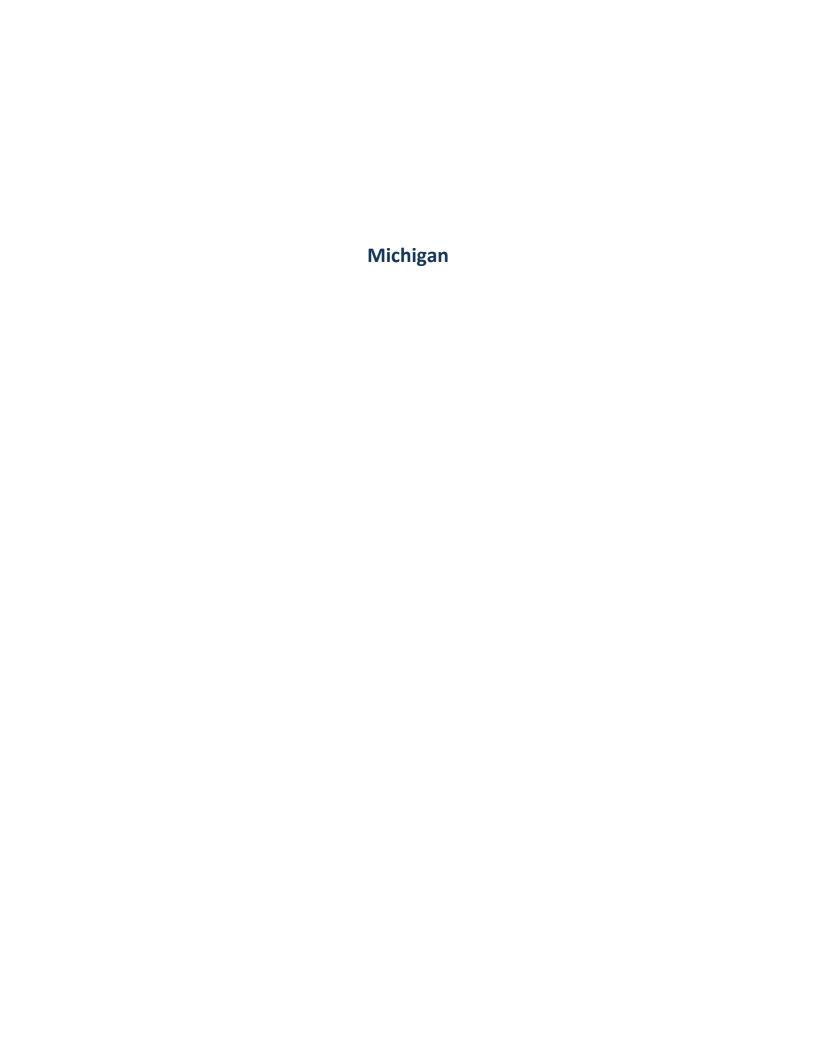
- Conservatively split the <u>total</u> lowa EGU impacts between LGS and WSEC
 - Roughly doubles the results vs a standard emissions ratio
 - LGS + WSEC emit ~half of IA's 2028 EGU SO₂ and NO_X emissions
- Apportion that total between LGS and WSEC using the facility's 2028 emissions
 - ~36% of the sulfate impact assigned to LGS 5,605 / (5,605 + 9,897)
 - ~64% of the sulfate impact assigned to WSEC
 9,897 / (5,605 + 9,897)
 - The NO_X emissions ratios happen to be about the same (~36% and ~64%)

	Sulfate Impacts	Nitrate Impacts	Sulfate vs Nitrate
	(Mm ⁻¹)	(Mm ⁻¹)	Impacts Ratio
Iowa EGU Total	0.788	.177	4.4
LGS-assigned	0.285	0.064	4.4
WSEC-assigned	0.503	0.113	4.4

Control Decisions (Long Term Strategy)

SO₂: Require Dry FGD operational improvements at both Louisa & WSEC-Unit 3

	SO ₂ Cost Effectiveness 2019\$/ton	SO ₂ Reductions (vs 2017-2019 avg)
Louisa	\$282	3,903
WSEC-Unit 3	\$216	5,785
Total Es	stimated SO ₂ Reductions	9,688


- NO_x: Requiring SNCR or SCR currently unreasonable for RHR purposes
 - NO_X costs more than an order of magnitude larger than SO₂
 - Visibility modeling (LADCO 2028₂₀₁₆ source apportionment) results
 - Iowa EGUs: SO_2 reductions much more effective at improving visibility than $NO_{\rm X}$

Implementation - Permit Modifications

- DNR has drafted permit modifications for the LGS main boiler and WSEC-3 permits
 - New 30-day rolling average SO₂ limits comparable to 0.10 lb/MMBtu
 - LGS = 770 lb/hr (65.6% reduction below 2017-2019 baseline)
 - WSEC = 800 lb/hr (72% reduction below 2017-2019 baseline)
 - Permits require MidAmerican to conduct a study to develop minimum additive injection rates across varying boiler operating loads
 - Scrubber enhancements must be implemented by December 31, 2023
 - Not dependent on EPA action/approval

Questions?

- Matthew Johnson
 - Iowa DNR Air Quality Bureau
 - matthew.johnson@dnr.iowa.gov
 - (515) 725-9554

Johnson, Matthew <matthew.johnson@dnr.iowa.gov>

Regional Haze Consultation - Iowa/Michigan

1 message

Johnson, Matthew <matthew.johnson@dnr.iowa.gov>

Fri, Nov 4, 2022 at 9:58 AM

To: Robert Irvine <irviner@michigan.gov>

Cc: "Mcgraw, Jim" < jim.mcgraw@dnr.iowa.gov>, Jessica Reese McIntyre < jessica.reesemcintyre@dnr.iowa.gov>

Hello Bob,

Thank you for meeting today to review lowa's draft Regional Haze SIP for the second implementation period and participating in the consultation process required under the Regional Haze Rule.

The presentation (distributed prior to the call) outlines lowa's preliminary decisions, including: the method we used to conclude that Iowa contributes to ISLE and SENE; our source selection methods; and control decisions.

For reference, we're currently within Iowa's formal FLM consultation period (October 11 – December 9).

The Iowa DNR believes the current consultation obligations between Michigan and Iowa have been fulfilled and that no additional action steps are warranted or required at this time. However, we will provide additional information if requested and can meet again as needed.

Thank you, Matthew

Matthew Johnson | Environmental Specialist Senior Air Quality Bureau

Iowa Department of Natural Resources P: 515-725-9554

502 E. 9th Street, Des Moines, IA 50319

State of Iowa Regional Haze State Implementation Plan 2nd Planning Period (2019-2028)

Summary of Iowa's Draft SIP

State Consultation
Michigan
November 4, 2022

Purpose of Today's Meeting

- Highlight key draft decision points in Iowa's draft regional haze SIP
- Provide additional consultation opportunity
 - Monthly/bi-monthly LADCO calls

Iowa's Class I Area Linkages

- Starting Point: Round 1 Iowa may contribute to Class I areas in MN and MI
- Next: Use LADCO's 2028₂₀₁₆ CAM_X PSAT results to examine current relationships
 - lowa contributes 3.0% 3.9% of total 2028 modeled visibility impact (modeled impact means that Rayleigh (& sea salt) are excluded, i.e. their impact=0%)
- Then: Add any other Class I area in/above that range: Adds HEGL

State	Class I Area	Iowa Anthro	All Other States Anthro	Mostly Non- Anthro	Round 2 Link?
N/I	ISLE	3.9%	44.3%	51.9%	Yes
MI	SENE	3.3%	51.0%	45.7%	Yes
N/INI	BOWA	3.2%	38.3%	58.6%	Yes
MN	VOYA	3.0%	36.0%	61.1%	Yes
<u>MO</u>	<u>HEGL</u>	3.9%	53.3%	42.7%	Yes

Iowa's Source Selection

Importance of linkages minimized by conservatively evaluating 12 Class I area:

State	Area
Michigan	Isle Royale
Michigan	Seney
Minnesota	Boundary Waters
wiiiiiesota	Voyageurs
Missouri	Hercules-Glades
Missouri	Mingo

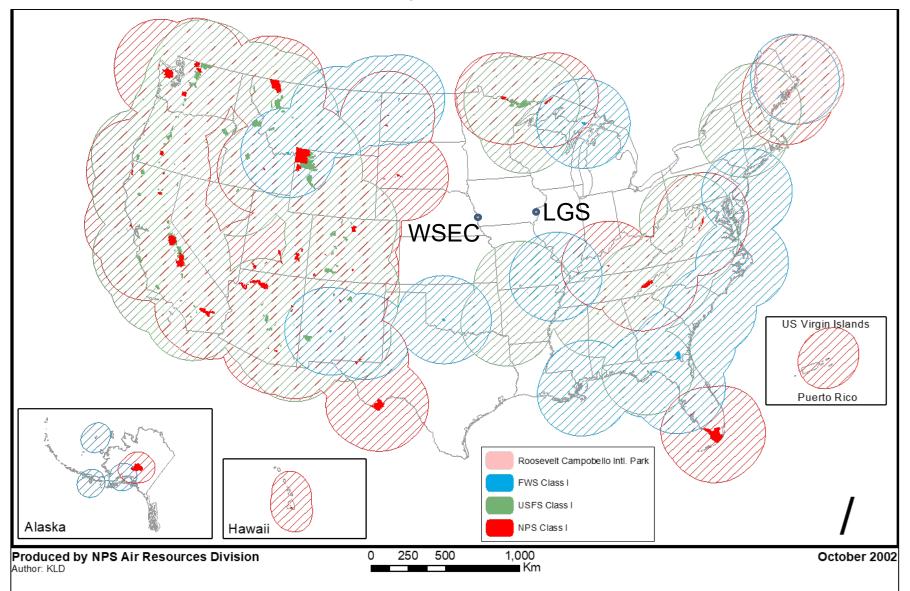
State	Area		
Arkansas	Caney Creek		
AIKalisas	Upper Buffalo		
Kentucky	Mammoth Cave		
Oklahoma	Wichita Mtns.		
S. Dakota	Badlands		
S. DaKOld	Wind Cave		

- Utilized CenSARA's Area of Influence (AOI) analysis conducted by Ramboll
 - Residence time (72-hr back trajectories on 20% most impaired days, 2012-2016)
 - Weighted by the IMPROVE sulfate and nitrate light extinction impacts
 - 2016 emissions from point sources and distance to Class I Areas

Source Selection Methodology Summary

- AOI Analysis:
 - Produced facility-level extinction weighted residence times for sulfates and nitrates (EWRT*Q/d-NO₃ and EWRT*Q/d-SO₄)
 - Excel analytical worksheet (modified by DNR; provided as Appendix C-1)
 - This Excel file is resource intensive (can be slow to open and use)
- Multiple reasonable ways to use the data
 - Choice of various screening thresholds
 - Evaluate EWRT*Q/d-NO₃ and EWRT*Q/d-SO₄ metrics separately or combined

Source Selection Methodology Summary (cont.)


- DNR method
 - No sources screened out (EWRT-NO₃ and EWRT-SO₄ thresholds set to zero)
 - EWRT*Q/d-NO₃ and EWRT*Q/d-SO₄ metrics summed (one-atmosphere)
 - Converted to a percentage of the total for the given Class I area
 - Ranked from largest to smallest, with a running total
 - Select all Iowa sources contributing to the majority of the total impact
 - Repeat for each of the 12 Class I areas identified on slide 4

Results - Iowa Sources Selected for 4-Factor Analysis

- Method identified two Iowa facilities both operated by MidAmerican Energy Co.
 - Louisa Generating Station (LGS)
 - Walter Scott Jr. Energy Center (WSEC)

Facility	Source Type	Unit ID	Nameplate Capacity (Online Year)	Max Rated Heat Input	Existing SO ₂ Controls	Existing NO _X Controls	2016 SO ₂ (tons)	2016 NO _X (tons)
Louisa Generating Station	EGU (coal-fired)	101	811.9 MW (1983)	8,000 MMBtu/hr	Dry Lime FGD	LNB+OFA	5,156	3,131
Walter Scott Jr.	EGU	3	725.8 MW (1978)	7,700 MMBtu/hr	Dry Lime FGD	LNB+OFA	7,365	4,326
Energy Center	(coal-fired)	4	922.5 MW (2007)	7,675 MMBtu/hr	Dry Lime FGD	SCR, LNB+OFA	1,601	1,141

LGS & WSEC and Areas w/in 300 km of a Class I Area

Four Factor Analysis: SO₂ & NO_X Control Options

- DNR requested that MidAmerican conduct Four Factor analysis of LGS and WSEC
 - MidAmerican provided final version on Aug 10, 2021
- Identified the following control options for both Louisa and WSEC-Unit 3

SO ₂	NO _X
Operational Improvements to Existing Dry FGD	SNCR
New Wet FGD	SCR

- WSEC-Unit 4
 - Currently well controlled (BACT limits, operation began in 2007)
 - SO₂: 0.1 lb/MMBtu
 - NO_X: 0.07 lb/MMBtu
 - DNR including its current permit in the SIP to prevent future visibility impairment

MidAmerican's Cost Analysis of SO₂ & NO_x Reductions

Baseline Emissions	SO2			NOx				
(2017-2019 avg)	Louisa Unit 101 Walter Scott Jr. Unit 3		Louisa Unit 101		Walter Scott Jr. Unit 3			
tons/yr	5,952		8,041		3,774		5,030	
lb/MMBtu	0.292		0.357		0.183		0.223	
Control Measure	Improved Dry FGD	Wet FGD	Improved Dry FGD	Wet FGD	SNCR	SCR	SNCR	SCR
Emissions With Controls (tons/yr)	2,049	1,230	2,256	1,354	3,208	1,035	4,275	1,181
lb/MMBtu w/ Controls	0.1	0.06	0.1	0.06	0.157	0.05	0.181	0.05
Emission Reduction vs Baseline (tons/yr)	-3,903	-4,722	-5,785	-6,687	-566	-2,739	-755	-3,849
Emission Reduction vs Baseline (%)	-66%	-79%	-72%	-83%	-15%	-73%	-15%	-77%
Capital Cost (2019\$)	-	\$398,140,000	-	\$370,150,000	\$14,175,300	\$236,140,160	\$13,851,200	\$238,436,408
Capital Cost Recovery (2019\$/yr)*	-	\$40,136,000	-	\$37,314,000	\$1,429,000	\$20,709,492	\$1,396,300	\$20,910,873
Annual O&M (2019\$)	\$1,102,000	\$1,986,000	\$1,248,000	\$3,849,000	\$2,192,000	\$3,562,450	\$2,844,000	\$3,860,815
Total Annualized Costs (2019\$)	\$1,102,000	\$42,122,000	\$1,248,000	\$41,163,000	\$3,621,000	\$24,271,942	\$4,240,300	\$24,771,688
Cost Effectiveness (2019\$/Ton)	\$282	\$8,920	\$216	\$6,160	\$6,398	\$8,862	\$5,616	\$6,436
Incremental Costs (2019\$/Ton)	n/a	\$50,090	n/a	\$44,250	n/a	\$9,500	n/a	\$6,640

Fifth Factor (Visibility Impacts) Information

- Source apportion or zero out runs for LGS & WSEC not available
 - Solution: Ratio LADCO's 2028 PSAT results (Iowa's total anthro impacts) by 2028 emissions, but incorporate conservative assumptions
- Iowa's <u>maximum</u> impacts among any of the 5 Class I areas linked to Iowa are:
 - Sulfate = 1.000 Mm^{-1} (HEGL)
 - Nitrate = 0.798 Mm⁻¹ (SENE)
- Iowa's EGUs in 2028 are forecast (ERTAC v16.1) to emit:
 - 78.8% of the state's total anthropogenic SO₂ emissions
 - 22.2% of the state's total anthropogenic NO_x emissions
- Using an emissions ratio method, Iowa's EGU have the following visibility impacts:
 - 0.788 Mm⁻¹ sulfate impact (1.000 Mm⁻¹ * 78.8%)
 - 0.177 Mm⁻¹ nitrate impact (0.798 Mm⁻¹ * 22.2%)
 - How should we apportion these down to LGS and WSEC?

Fifth Factor (Visibility Impacts) Information (cont.)

- Conservatively split the <u>total</u> lowa EGU impacts between LGS and WSEC
 - Roughly doubles the results vs a standard emissions ratio
 - LGS + WSEC emit ~half of IA's 2028 EGU SO₂ and NO_X emissions
- Apportion that total between LGS and WSEC using the facility's 2028 emissions
 - ~36% of the sulfate impact assigned to LGS 5,605 / (5,605 + 9,897)
 - ~64% of the sulfate impact assigned to WSEC 9,897 / (5,605 + 9,897)
 - The NO_X emissions ratios happen to be about the same (~36% and ~64%)

	Sulfate Impacts	Nitrate Impacts	Sulfate vs Nitrate
	(Mm ⁻¹)	(Mm ⁻¹)	Impact Ratio
Iowa EGU Total	0.788	.177	4.4
LGS-assigned	0.285	0.064	4.4
WSEC-assigned	0.503	0.113	4.4

Control Decisions (Long Term Strategy)

SO₂: Require Dry FGD operational improvements at both Louisa & WSEC-Unit 3

	SO ₂ Cost Effectiveness 2019\$/ton	SO ₂ Reductions (vs 2017-2019 avg)
Louisa	\$282	3,903
WSEC-Unit 3	\$216	5,785
Total Estimate	d Actual SO ₂ Reductions (tpy)	9,688

- NO_x: Requiring SNCR or SCR currently unreasonable for RHR purposes
 - NO_X costs more than an order of magnitude larger than SO₂
 - Visibility assessment
 - Iowa EGUs SO_2 reductions much more effective at improving visibility than NO_x

Implementation - Permit Modifications

- DNR has drafted permit modifications for the LGS main boiler and WSEC-3 permits
 - New 30-day rolling average SO₂ limits
 - LGS = 800 lb/hr (65.6% reduction below 2017-2019 baseline)
 - WSEC = 770 lb/hr (72% reduction below 2017-2019 baseline)
 - Comparable to 0.10 lb/MMBtu
 - Permits require MidAmerican to conduct a study to develop minimum additive injection rates across varying boiler operating loads to achieve those reductions
 - Scrubber enhancements must be implemented by December 31, 2023
 - Not dependent on EPA action/approval

Questions?

- Matthew Johnson
 - lowa DNR Air Quality Bureau
 - matthew.johnson@dnr.iowa.gov
 - (515) 725-9554