Appendix D-2: DNR's NOx Control Cost Estimates Review

Data Inputs			
Enter the following data for your combustion un	it:		
Is the combustion unit a utility or industrial boiler?	Utility	What type of fuel does the unit burn?	
Is the SCR for a new boiler or retrofit of an existing boiler?	Retrofit		
Please enter a retrofit factor between 0.8 and 1.5 based on th projects of average retrofit difficulty.	e level of difficulty. Enter 1 for 1		
Complete all of the highlighted data fields:			
		Provide the following information for coal-fired boilers:	
What is the MW rating at full load capacity (Bmw)?	811.9 MW	Type of coal burned: Sub-Bituminous	
What is the higher heating value (HHV) of the fuel?	8,597 Btu/lb	Enter the sulfur content (%S) = 0.24 percent by weight	
What is the estimated actual annual MWhs output?	4,224,041 MWhs		
Enter the net plant heat input rate (NPHR)	9.678 MMBtu/MW	For units burning coal blends: Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided.	
If the NPHR is not known, use the default NPHR value:	: Fuel Type Default NPHR Coal 10 MMBtu/MW Fuel Oil 11 MMBtu/MW Natural Gas 8.2 MMBtu/MW	Coal Type Coal Blend %S HHV (Btu/lb) Bituminous 0 1.84 11,841 Sub-Bituminous 0 0.41 8,826 Lignite 0 0.82 6,685	
Plant Elevation	581 Feet above sea lev		

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates $(t_{\scriptscriptstyle SCR})$	365 days	Number of SCR reactor chambers (n _{scr})	1
Number of days the boiler operates (t _{plant})	365 days	Number of catalyst layers (R _{layer})	3
Inlet NO_x Emissions (NOx_{in}) to SCR	0.184 lb/MMBtu	Number of empty catalyst layers (R _{empty})	1
Outlet NO _x Emissions (NOx _{out}) from SCR	0.05 lb/MMBtu	Ammonia Slip (Slip) provided by vendor	5 ppm
Stoichiometric Ratio Factor (SRF)	1.050	Volume of the catalyst layers (Vol _{catalyst}) (Enter "UNK" if value is not known)	UNK Cubic feet
*The SRF value of 1.05 is a default value. User should enter actual value, if known.		Flue gas flow rate (Q _{fluegas}) (Enter "UNK" if value is not known)	_
			UNK acfm
Estimated operating life of the catalyst $(H_{catalyst})$	24,000 hours		
Estimated SCR equipment life	30 Years*	Gas temperature at the SCR inlet (T)	750 °F
* For utility boilers, the typical equipment life of an SCR is at least 30 years.		Base case fuel gas volumetric flow rate factor (Q_{fuel})	516 ft ³ /min-MMBtu/hour
Concentration of reagent as stored (C _{stored})	29 percent*	*The reagent concentration of 29% and density of 56 lbs/cft are default	
Density of reagent as stored (ρ_{stored})	56 lb/cubic feet*	values for ammonia reagent. User build enter actual values for reagent, if different from the default values provided.	
Number of days reagent is stored $(t_{storage})$	14 days	Densities of typical	
		50% urea solution 29.4% aqueous NH	71 lbs/ft ³ 3 56 lbs/ft ³
Select the reagent used Ammonia	•		

Enter the cost data for the proposed SCR:

Desired dollar-year	2019	
CEPCI for 2019	607.5 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)	7.862 Percent	
Reagent (Cost _{reag})	0.293 \$/gallon for 29% ammonia*	\$0.293/gallon is a default value for 29% ammonia. User should enter actual value, if known.
Electricity (Cost _{elect})	0.0660 \$/kWh	
Catalyst cost (CC _{replace})	\$/cubic foot (includes removal and disposal/regeneration of existing 227.00 catalyst and installation of new catalyst	* \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, if known.
Operator Labor Rate	60.00 \$/hour (including benefits)*	* \$60/hour is a default value for the operator labor rate. User should enter actual value, if known.
Operator Hours/Day	4.00 hours/day*	* 4 hours/day is a default value for the operator labor. User should enter actual value, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

Data Sources for Default Values Used in Calculations:

Data Element		Sources for Default Value	If you used your own site-specific values, please enter the value used and the reference source
Reagent Cost (\$/gallon)		U.S. Geological Survey, Minerals Commodity Summaries, January 2017 (https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2017-nitro.pdf	
Electricity Cost (\$/kWh)	0.0361	U.S. Energy Information Administration. Electric Power Annual 2016. Table 8.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	2019 EIA data-0.0660 \$/kWH
Percent sulfur content for Coal (% weight)	0.41	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Sulfur Content-0.24%
Higher Heating Value (HHV) (Btu/lb)	8,826	2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Coal HH Value-8597 BTU/lb
Catalyst Cost (\$/cubic foot)	227	U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6 Using the Integrated Planning Model. Office of Air and Radiation. May 2018. Available at: https://www.epa.gov/airmarkets/documentation-epas-power- sector-modeling-platform-v6.	
Operator Labor Rate (\$/hour)	\$60.00	U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6 Using the Integrated Planning Model. Office of Air and Radiation. May 2018. Available at: https://www.epa.gov/airmarkets/documentation-epas-power- sector-modeling-platform-v6.	
Interest Rate (Percent)	5.5	Default bank prime rate	Firm Specific Rate-7.862%

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	Bmw x NPHR =	7,857	MMBtu/hour
Maximum Annual MW Output (Bmw) =	Bmw x 8760 =	7,112,244	MWhs
Estimated Actual Annual MWhs Output (Boutput) =		4,224,041	MWhs
Heat Rate Factor (HRF) =	NPHR/10 =	0.97	
Total System Capacity Factor (CF _{total}) =	(Boutput/Bmw)*(tscr/tplant) =	0.594	fraction
Total operating time for the SCR (t _{op}) =	CF _{total} x 8760 =	5203	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	72.8	percent
NOx removed per hour =	NOx _{in} x EF x Q _B =	1052.88	lb/hour
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	2,738.89	tons/year
NO _x removal factor (NRF) =	EF/80 =	0.91	
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	4,229,137	acfm
Space velocity (V _{space}) =	q _{fiue gas} /Vol _{catalyst} =	195.16	/hour
Residence Time	1/V _{space}	0.01	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.05	
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =	< 3	lbs/MMBtu
Elevation Factor (ELEVF) =	14.7 psia/P =	1.02	
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.4	psia
Retrofit Factor (RF)	Retrofit to existing boiler	1.00	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)(1/((1+ interest rate) ^Y -1), where $Y = H_{catalyts}/(t_{SCR} x)$		
	24 hours) rounded to the nearest integer	0.3084	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q ₈ x EF _{adi} x Slipadj x NOx _{adi} x S _{adi} x (T _{adi} /N _{scr})	21 670 53	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	4,405	
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	5,066	ft ²
Reactor length and width dimensions for a square	()0.5	71.2	foot
reactor =	(A _{SCR})	/1.2	leet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	48	feet

Reagent Data:

Type of reagent used

Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/mole Density = 56 lb/ft³

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	409	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	1,411	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	188	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	63,400	gallons (storage needed to store a 14 day reagent supply rounded to

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.0877
	Where n = Equipment Life and i= Interest Rate	
Other parameters	Equation	Calculated Value
Other parameters Electricity Usage:	Equation	Calculated Value
	Equation A x 1,000 x 0.0056 x (CoalF x HRF) ^{0.43} =	Calculated Value 4578.09

Cost Estimate

Total Capital Investment (TCI)

TCI for Coal-Fired Boilers

For Coal-Fired Boilers:

TCI = $1.3 \times (SCR_{cost} + RPC + APHC + BPC)$

Capital costs for the SCR (SCR _{cost}) =	\$167,872,642	in 2019 dollars
Reagent Preparation Cost (RPC) =	\$3,602,976	in 2019 dollars
Air Pre-Heater Costs (APHC)* =	\$0	in 2019 dollars
Balance of Plant Costs (BPC) =	\$10,162,546	in 2019 dollars
Total Capital Investment (TCI) =	\$236,129,614	in 2019 dollars

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emits equal to or greater than 3lb/MMBtu of sulfur dioxide.

	SCP Canital Casta (SCP)	
	SCR Capital Costs (SCR _{cost})	
For Coal-Fired Utility Boilers >25 MW:		
	$SCR_{cost} = 310,000 \times (NRF)^{0.2} \times (B_{MW} \times HRF \times CoalF)^{0.92} \times ELEVF \times RF$	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:	0.2 0.02	
	SCR _{cost} = 310,000 x (NRF) ^{0.2} x (0.1 x Q _B x CoalF) ^{0.92} x ELEVF x RF	
SCR Capital Costs (SCR _{cost}) =		\$167,872,642 in 2019 dollars
	Reagent Preparation Costs (RPC)	
For Coal-Fired Utility Boilers >25 MW:		
	$RPC = 564,000 \times (NOx_{in} \times B_{MW} \times NPHR \times EF)^{0.25} \times RF$	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	RPC = 564,000 x (NOx _{in} x Q _B x EF) ^{0.25} x RF	
		62 C02 07C in 2010 dellars
Reagent Preparation Costs (RPC) =		\$3,602,976 in 2019 dollars
	Air Pre-Heater Costs (APHC)*	
For Coal-Fired Utility Boilers >25MW:		
· · · · · · · · · · · · · · · ·	APHC = 69,000 x (B_{MW} x HRF x CoalF) ^{0.78} x AHF x RF	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	APHC = 69,000 x (0.1 x Q _B x CoalF) ^{0.78} x AHF x RF	
Air Pre-Heater Costs (APH _{cost}) =		\$0 in 2019 dollars
	urn bituminous coal and emit equal to or greater than 3lb/MMBtu of sulfur dioxide.	·
	Balance of Plant Costs (BPC)	
For Coal-Fired Utility Boilers >25MW:	0.42	
	BPC = 529,000 x (B _{MW} x HRFx CoalF) ^{0.42} x ELEVF x RF	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:	0.0	
	BPC = 529,000 x $(0.1 \times Q_B \times CoalF)^{0.42}$ ELEVF x RF	

Balance of Plant Costs (BOP_{cost}) =

\$10,162,546 in 2019 dollars

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$3,545,430 in 2019 dollars
Indirect Annual Costs (IDAC) =	\$20,725,363 in 2019 dollars
Total annual costs (TAC) = DAC + IDAC	\$24,270,793 in 2019 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$1,180,648 in 2019 dollars
Annual Reagent Cost =	m _{sol} x Cost _{reag} x t _{op} =	\$287,322 in 2019 dollars
Annual Electricity Cost =	$P x Cost_{elect} x t_{op} =$	\$1,571,765 in 2019 dollars
Annual Catalyst Replacement Cost =		\$505,695 in 2019 dollars
For coal-fired boilers, the following method	Is may be used to calcuate the catalyst replacement cost.	
Method 1 (for all fuel types):	n _{scr} x Vol _{cat} x (CC _{replace} /R _{layer}) x FWF	* Calculation Method 1 selected.
Method 2 (for coal-fired utility boilers):	B _{MW} x 0.4 x (CoalF) ^{2.9} x (NRF) ^{0.71} x (CC _{replace}) x 35.3	
Direct Annual Cost =		\$3,545,430 in 2019 dollars

Indirect Annual Cost (IDAC) IDAC = Administrative Charges + Capital Recovery Costs				
Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$16,796 in 2019 dollars		
Capital Recovery Costs (CR)=	CRF x TCI =	\$20,708,567 in 2019 dollars		
Indirect Annual Cost (IDAC) =	AC + CR =	\$20,725,363 in 2019 dollars		

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$24,270,793 per year in 2019 dollars	
NOx Removed =	2,739 tons/year	
Cost Effectiveness =	\$8,862 per ton of NOx removed in 2019 dollars	

Data Inputs			
Enter the following data for your combustion unit:			
Is the combustion unit a utility or industrial boiler?	Utility	What type of fuel does the unit burn?	
Is the SNCR for a new boiler or retrofit of an existing boiler?	t 🗸		
Please enter a retrofit factor equal to or greater than 0.84 based on difficulty. Enter 1 for projects of average retrofit difficulty.	the level of 1		
Complete all of the highlighted data fields:			
		Provide the following information for coal-fired boilers:	
What is the MW rating at full load capacity (Bmw)?	811.9 MW	Type of coal burned: Sub-Bituminous	
What is the higher heating value (HHV) of the fuel?	8,597 Btu/lb	Enter the sulfur content (%S) = 0.24 percent by weight	
What is the estimated actual annual MWh output?	4,224,041 MWh	or Select the appropriate SO ₂ emission rate: Not Applicable	
Is the boiler a fluid-bed boiler?	No T	Ash content (%Ash): 5.84 percent by weight *The ash content of 5.84% is a default value. See below for data source. Enter actual value, if known.	
		For units burning coal blends:	
Enter the net plant heat input rate (NPHR)	9.6777 MMBtu/MW	Note: The table below is pre-populated with default values for HHV, %S, %Ash and cost. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided.	
If the NPHR is not known, use the default NPHR value:	Fuel TypeDefault NPHRCoal10 MMBtu/MWFuel Oil11 MMBtu/MWNatural Gas8.2 MMBtu/MW	Fraction in Coal BlendFraction in Coal BlendFuel Cost (\$/MMBtu)Bituminous01.849.2311,8412.4Sub-Bituminous00.415.848,8261.89Lignite00.8213.66,6261.74Please click the calculate button to calculate weighted 	

Enter the following design parameters for the proposed SNCR:

Number of days the SNCR operates (t $_{\mbox{\tiny SNCR}}$)	365	days	Plant E default 155	levation	581 Fe	et above sea level	
Inlet NO_x Emissions (NOx_{in}) to SNCR	0.184	lb/MMBtu					
Oulet NO _x Emissions (NOx _{out}) from SNCR	0.1564	lb/MMBtu					
Estimated Normalized Stoichiometric Ratio (NSR)	1.22		*The NSR for a urea sy Control Cost Manual (1.17 in Section 4, Cha	pter 1 of the Air Pollution
Concentration of reagent as stored (C _{stored})	50	Percent	1				
Density of reagent as stored (ρ_{stored})	71	lb/ft ³					
Concentration of reagent injected (C _{inj})	50	percent		Densities of typical S	NCR reagents:		
Number of days reagent is stored (t _{storage})	14	days		50% urea so	olution	71 lbs/ft ³	
Estimated equipment life	20	Years]	29.4% aqueo	ous NH ₃	56 lbs/ft ³	
Select the reagent used	Urea 🗸]

Enter the cost data for the proposed SNCR:

Desired dollar-year	2019]
CEPCI for 2019	607.5 Enter the CEPCI value for 2019 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)	7.862 Percent	
Fuel (Cost _{fuel})	1.89 \$/MMBtu*]
Reagent (Cost _{reag})	1.66 \$/gallon for a 50 percent solution of urea*	
Water (Cost _{water})	0.0042 \$/gallon*	
Electricity (Cost _{elect})	0.0660 \$/kWh	
Ash Disposal (for coal-fired boilers only) (Cost ash)	48.80 \$/ton*	
	* The values marked are default values. See the table below for the default values used	

* The values marked are default values. See the table below for the default values used and their references. Enter actual values, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

Data Sources for Default Values Used in Calculations:

			If you used your own site-specific values, please enter the value
Data Element Reagent Cost (\$/gallon)		Sources for Default Value U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6, Using the Integrated Planning Model, Updates to the Cost and Performance for APC Technologies, SNCR Cost Development Methodology, Chapter 5, Attachment 5-4, January 2017. Available at: https://www.epa.gov/sites/production/files/2018-05/documents/attachment_5- 4_sncr_cost_development_methodology.pdf.	used and the reference source
Vater Cost (\$/gallon)	0.00417	Average water rates for industrial facilities in 2013 compiled by Black & Veatch. (see 2012/2013 "50 Largest Cities Water/Wastewater Rate Survey." Available at http://www.saws.org/who_we_are/community/RAC/docs/2014/50-largest-cities- brochure-water-wastewater-rate-survey.pdf.	
Electricity Cost (\$/kWh)	0.0361	U.S. Energy Information Administration. Electric Power Annual 2016. Table 8.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	2019 EIA data-0.0660 \$/kWH
^E uel Cost (\$/MMBtu)	1.89	U.S. Energy Information Administration. Electric Power Annual 2016. Table 7.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	
Ash Disposal Cost (\$/ton)	48.8	Waste Business Journal. The Cost to Landfill MSW Continues to Rise Despite Soft Demand. July 11, 2017. Available at: http://www.wastebusinessjournal.com/news/wbj20170711A.htm.	
Percent sulfur content for Coal (% weight)	0.41	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Sulfur Content-0.24%
Percent ash content for Coal (% weight)	5.84	Average ash content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
ligher Heating Value (HHV) (Btu/lb)	8,826	2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Coal HH Value-8597 BTU/lb
nterest Rate (%)	5.5	Default bank prime rate	Firm Specific Rate-7.862%

SNCR Design Parameters

The following design parameters for the SNCR were calculated based on the values entered on the *Data Inputs* tab. These values were used to prepare the costs shown on the *Cost Estimate* tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	Bmw x NPHR =	7,857	MMBtu/hour
Maximum Annual MWh Output =	Bmw x 8760 =	7,112,244	MWh
Estimated Actual Annual MWh Output (Boutput) =		4,224,041	MWh
Heat Rate Factor (HRF) =	NPHR/10 =	0.97	
Total System Capacity Factor (CF _{total}) =	(Boutput/Bmw)*(tsncr/365) =	0.59	fraction
Total operating time for the SNCR (t_{op}) =	CF _{total} x 8760 =	5203	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	15	percent
NOx removed per hour =	$NOx_{in} \times EF \times Q_B =$	216.86	lb/hour
Total NO _x removed per year =	$(NOx_{in} x EF x Q_B x t_{op})/2000 =$	564.13	tons/year
Coal Factor (Coal _F) =	1 for bituminous; 1.05 for sub-bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.05	
SO ₂ Emission rate =	(%S/100)x(64/32)*(1x10 ⁶)/HHV =	< 3	lbs/MMBtu
Elevation Factor (ELEVF) =	14.7 psia/P =	1.02	
Atmospheric pressure at 581 feet above sea level (P) =	2116x[(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)*	14.4	psia
Retrofit Factor (RF) =	Retrofit to existing boiler	1.00	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at

https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Reagent Data:

Type of reagent used	Urea	Molecular Weight of Reagent (MW) =	60.06 g/mole
		Density =	71 lb/gallon
		-	

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times NSR \times MW_R)/(MW_{NOx} \times SR) =$	1151	lb/hour
	(whre SR = 1 for NH_3 ; 2 for Urea)		
Reagent Usage Rate (m _{sol}) =	$m_{reagent}/C_{sol} =$	2,302	lb/hour
	(m _{sol} x 7.4805)/Reagent Density =	242.6	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24 hours/day)/Reagent	91 600	gallons (storage needed to store a 14 day reagent supply rounded up to the nearest 100 gallons)
	Density =	81,000	rounded up to the nearest 100 gallons)

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.1008
	Where n = Equipment Life and i= Interest Rate	

Parameter	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	(0.47 x NOx _{in} x NSR x Q _B)/NPHR =	85.7	kW/hour
Water Usage:			
Water consumption (q _w) =	$(m_{sol}/Density of water) \times ((C_{stored}/C_{inj}) - 1) =$	0	gallons/hour
Fuel Data:			
Additional Fuel required to evaporate water in injected reagent (ΔFuel) =	Hv x $m_{reagent}$ x ((1/C _{inj})-1) =	1.04	MMBtu/hour
Ash Disposal:			
Additional ash produced due to increased fuel consumption (Δash) =	(Δfuel x %Ash x 1x10 ⁶)/HHV =	7.0	lb/hour

Cost Estimate

Total Capital Investment (TCI) For Coal-Fired Boilers: TCI = $1.3 \text{ x} (\text{SNCR}_{\text{cost}} + \text{APH}_{\text{cost}} + \text{BOP}_{\text{cost}})$ For Fuel Oil and Natural Gas-Fired Boilers: TCI = 1.3 x (SNCR_{cost} + BOP_{cost}) Capital costs for the SNCR (SNCR_{cost}) = \$4,347,697 in 2019 dollars Air Pre-Heater Costs (APH_{cost})* = \$0 in 2019 dollars Balance of Plant Costs (BOP_{cost}) = \$6,243,316 in 2019 dollars

Total Capital Investment (TCI) = * Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emits equal to or greater than 0.3lb/MMBtu

of sulfur dioxide.

SNCR Capital Costs (SNCR _{cost})				
For Coal-Fired Utility Boilers:				
$SNCR_{cost} = 220,000 \times (B_{MW} \times HRF)^{0.42} \times CoalF \times BTF \times ELEVF \times RF$				
For Fuel Oil and Natural Gas-Fired Utility Boilers:				
$SNCR_{cost} = 147,000 \times (B_{MW} \times HRF)^{0.42} \times ELEVF \times RF$				
For Coal-Fired Industrial Boilers:				
$SNCR_{cost} = 220,000 \times (0.1 \times Q_B \times HRF)^{0.42} \times CoalF \times BTF \times ELEVF \times RF$				
For Fuel Oil and Natural Gas-Fired Industrial Boilers:				
$SNCR_{cost} = 147,000 \times ((Q_B/NPHR) \times HRF)^{0.42} \times ELEVF \times RF$				

SNCR Capital Costs (SNCR_{cost}) =

\$4,347,697 in 2019 dollars

\$13,768,317 in 2019 dollars

Air Pre-Heater Costs (APH _{cost})*				
For Coal-Fired Utility Boilers:				
APH _c	_{rost} = 69,000 x (B _{MW} x HRF x CoalF) ^{0.78} x AHF x RF			
For Coal-Fired Industrial Boilers:				
APH _{cost}	_t = 69,000 x (0.1 x Q _B x HRF x CoalF) ^{0.78} x AHF x RF			
Air Pre-Heater Costs (APH _{cost}) =	\$0 in 2019 dollars			
* Not applicable - This factor applies only to coal-fired b	poilers that burn bituminous coal and emit equal to or greater than 3lb/MMBtu of			
sulfur dioxide.				
Balance of Plant Costs (BOP _{cost})				
For Coal-Fired Utility Boilers:				
BOP _{cost} = 3	320,000 x (B _{MW}) ^{0.33} x (NO _x Removed/hr) ^{0.12} x BTF x RF			
For Fuel Oil and Natural Gas-Fired Utility Boile	rs:			
BOP _{cost}	$= 213,000 \times (B_{MW})^{0.33} \times (NO_x \text{Removed/hr})^{0.12} \times \text{RF}$			
For Coal-Fired Industrial Boilers:				
$BOP_{cost} = 320,000 \times (0.1 \times Q_8)^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$				
For Fuel Oil and Natural Gas-Fired Industrial Boilers:				
	213,000 x $(Q_{R}/NPHR)^{0.33}$ x $(NO_{x}Removed/hr)^{0.12}$ x RF			
DOT cost - A				
Balance of Plant Costs (BOP _{cost}) =	\$6,243,316 in 2019 dollars			

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$2,342,055 in 2019 dollars
Indirect Annual Costs (IDAC) =	\$1,394,042 in 2019 dollars
Total annual costs (TAC) = DAC + IDAC	\$3,736,097 in 2019 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Water Cost) + (Annual Fuel Cost) + (Annual Ash Cost)

Annual Maintenance Cost =	0.015 x TCI =	\$206,525 in 2019 dollars
Annual Reagent Cost =	$q_{sol} \times Cost_{reag} \times t_{op} =$	\$2,095,036 in 2019 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$29,414 in 2019 dollars
Annual Water Cost =	$q_{water} x Cost_{water} x t_{op} =$	\$0 in 2019 dollars
Additional Fuel Cost =	Δ Fuel x Cost _{fuel} x t _{op} =	\$10,188 in 2019 dollars
Additional Ash Cost =	$\Delta Ash x Cost_{ash} x t_{op} x (1/2000) =$	\$893 in 2019 dollars
Direct Annual Cost =		\$2,342,055 in 2019 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x Annual Maintenance Cost =	\$6,196 in 2019 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$1,387,846 in 2019 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$1,394,042 in 2019 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$3,736,097 per year in 2019 dollars		
NOx Removed =	564 tons/year		
Cost Effectiveness =	\$6,623 per ton of NOx removed in 2019 dollars		

Data Inputs					
Enter the following data for your combustion unit:					
Is the combustion unit a utility or industrial boiler?	Utility	What type of fuel does the unit burn?			
Is the SNCR for a new boiler or retrofit of an existing boiler?	fit 🗾 💌				
Please enter a retrofit factor equal to or greater than 0.84 based on difficulty. Enter 1 for projects of average retrofit difficulty.	the level of 1				
Complete all of the highlighted data fields:					
		Provide the following information for coal-fired boilers:			
What is the MW rating at full load capacity (Bmw)?	811.9 MW	Type of coal burned: Sub-Bituminous			
What is the higher heating value (HHV) of the fuel?	8,597 Btu/lb	Enter the sulfur content (%S) = 0.24 percent by weight or			
		Select the appropriate SO ₂ emission rate: Not Applicable			
What is the estimated actual annual MWh output?	4,224,041 MWh				
Is the boiler a fluid-bed boiler?	No	Ash content (%Ash): 5.84 percent by weight *The ash content of 5.84% is a default value. See below for data source. Enter actual value, if known.			
		For units burning coal blends:			
Enter the net plant heat input rate (NPHR)	9.6777 MMBtu/MW	Note: The table below is pre-populated with default values for HHV, %S, %Ash and cost. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided.			
If the NPHR is not known, use the default NPHR value:	Fuel TypeDefault NPHRCoal10 MMBtu/MWFuel Oil11 MMBtu/MWNatural Gas8.2 MMBtu/MW	Fraction in Coal Blend%S%AshHHV (Btu/lb)Fuel Cost (\$/MMBtu)Bituminous01.849.2311,8412.4Sub-Bituminous00.415.848,8261.89Lignite00.8213.66,6261.74			

Enter the following design parameters for the proposed SNCR:

Number of days the SNCR operates (t $_{\mbox{\tiny SNCR}}$)	365	days	Plant E default 155	Elevation	581 Fe	et above sea level	
Inlet NO _x Emissions (NOx _{in}) to SNCR	0.184	lb/MMBtu					
Oulet NO _x Emissions (NOx _{out}) from SNCR	0.1472	lb/MMBtu					
Estimated Normalized Stoichiometric Ratio (NSR)	1.22		*The NSR for a urea so Control Cost Manual (1.17 in Section 4, Cha	pter 1 of the Air Pollution
Concentration of reagent as stored (C _{stored})	50	Percent]				
Density of reagent as stored (ρ_{stored})	71	lb/ft ³					
Concentration of reagent injected (C _{inj})	50	percent		Densities of typical S	NCR reagents:		
Number of days reagent is stored (t _{storage})	14	days		50% urea so	olution	71 lbs/ft ³	
Estimated equipment life	20	Years		29.4% aqueo	ous NH ₃	56 lbs/ft ³	
Select the reagent used	Urea						
Select the reagent used	orcu ·						

Enter the cost data for the proposed SNCR:

Desired dollar-year	2019]
CEPCI for 2019	607.5 Enter the CEPCI value for 2019 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)	7.862 Percent	
Fuel (Cost _{fuel})	1.89 \$/MMBtu*]
Reagent (Cost _{reag})	1.66 \$/gallon for a 50 percent solution of urea*	
Water (Cost _{water})	0.0042 \$/gallon*	
Electricity (Cost _{elect})	0.0660 \$/kWh	
Ash Disposal (for coal-fired boilers only) (Cost ash)	48.80 \$/ton*	
	* The values marked are default values. See the table below for the default values used	

* The values marked are default values. See the table below for the default values used and their references. Enter actual values, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

Data Sources for Default Values Used in Calculations:

			If you used your own site-specific values, please enter the value
Data Element	Default Value	Sources for Default Value	used and the reference source
Reagent Cost (\$/gallon)		U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6, Using the Integrated Planning Model, Updates to the Cost and Performance for APC Technologies, SNCR Cost Development Methodology, Chapter 5, Attachment 5-4, January 2017. Available at: https://www.epa.gov/sites/production/files/2018-05/documents/attachment_5- 4_sncr_cost_development_methodology.pdf.	
Water Cost (\$/gallon)	0.00417	Average water rates for industrial facilities in 2013 compiled by Black & Veatch. (see 2012/2013 "50 Largest Cities Water/Wastewater Rate Survey." Available at http://www.saws.org/who_we_are/community/RAC/docs/2014/50-largest-cities- brochure-water-wastewater-rate-survey.pdf.	
Electricity Cost (\$/kWh)	0.0361	U.S. Energy Information Administration. Electric Power Annual 2016. Table 8.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	2019 EIA data-0.0660 \$/kWH
^E uel Cost (\$/MMBtu)	1.89	U.S. Energy Information Administration. Electric Power Annual 2016. Table 7.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	
Ash Disposal Cost (\$/ton)	48.8	Waste Business Journal. The Cost to Landfill MSW Continues to Rise Despite Soft Demand. July 11, 2017. Available at: http://www.wastebusinessjournal.com/news/wbj20170711A.htm.	
Percent sulfur content for Coal (% weight)	0.41	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Sulfur Content-0.24%
Percent ash content for Coal (% weight)	5.84	Average ash content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
ligher Heating Value (HHV) (Btu/lb)	8,826	2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Coal HH Value-8597 BTU/lb

SNCR Design Parameters

The following design parameters for the SNCR were calculated based on the values entered on the *Data Inputs* tab. These values were used to prepare the costs shown on the *Cost Estimate* tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	Bmw x NPHR =	7,857	MMBtu/hour
Maximum Annual MWh Output =	Bmw x 8760 =	7,112,244	MWh
Estimated Actual Annual MWh Output (Boutput) =		4,224,041	MWh
Heat Rate Factor (HRF) =	NPHR/10 =	0.97	
Total System Capacity Factor (CF _{total}) =	(Boutput/Bmw)*(tsncr/365) =	0.59	fraction
Total operating time for the SNCR (t_{op}) =	CF _{total} x 8760 =	5203	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	20	percent
NOx removed per hour =	$NOx_{in} \times EF \times Q_B =$	289.15	lb/hour
Total NO _x removed per year =	$(NOx_{in} x EF x Q_B x t_{op})/2000 =$	752.17	tons/year
Coal Factor (Coal _F) =	1 for bituminous; 1.05 for sub-bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.05	
SO ₂ Emission rate =	(%S/100)x(64/32)*(1x10 ⁶)/HHV =	< 3	lbs/MMBtu
Elevation Factor (ELEVF) =	14.7 psia/P =	1.02	
Atmospheric pressure at 581 feet above sea level (P) =	2116x[(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)*	14.4	psia
Retrofit Factor (RF) =	Retrofit to existing boiler	1.00	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at

https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Reagent Data:

Type of reagent used	Urea	Molecular Weight of Reagent (MW) =	60.06 g/mole
		Density =	71 lb/gallon
		-	

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times NSR \times MW_R)/(MW_{NOx} \times SR) =$	1151	lb/hour
	(whre SR = 1 for NH_3 ; 2 for Urea)		
Reagent Usage Rate (m _{sol}) =	$m_{reagent}/C_{sol} =$	2,302	lb/hour
	(m _{sol} x 7.4805)/Reagent Density =	242.6	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24 hours/day)/Reagent	91 600	gallons (storage needed to store a 14 day reagent supply rounded up to the nearest 100 gallons)
	Density =	81,000	rounded up to the nearest 100 gallons)

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.1008
	Where n = Equipment Life and i= Interest Rate	

Parameter	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	(0.47 x NOx _{in} x NSR x Q _B)/NPHR =	85.7	kW/hour
Water Usage:			
Water consumption (q _w) =	$(m_{sol}/Density of water) \times ((C_{stored}/C_{inj}) - 1) =$	0	gallons/hour
Fuel Data:			
Additional Fuel required to evaporate water in injected reagent (ΔFuel) =	Hv x $m_{reagent}$ x ((1/C _{inj})-1) =	1.04	MMBtu/hour
Ash Disposal:			
Additional ash produced due to increased fuel consumption (Δash) =	(Δfuel x %Ash x 1x10 ⁶)/HHV =	7.0	lb/hour

Cost Estimate

Total Capital Investment (TCI) For Coal-Fired Boilers: TCI = $1.3 \times (SNCR_{cost} + APH_{cost} + BOP_{cost})$ For Fuel Oil and Natural Gas-Fired Boilers: TCI = $1.3 \times (SNCR_{cost} + BOP_{cost})$ Capital costs for the SNCR (SNCR_{cost}) = Air Pre-Heater Costs (APH_{cost})* = Salance of Plant Costs (BOP_{cost}) = \$6,462,610 in 2019 dollars

\$14,053,400 in 2019 dollars

Total Capital Investment (TCI) =

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emits equal to or greater than 0.3lb/MMBtu of sulfur dioxide.

SNCR Capital Costs (SNCR _{cost})			
For Coal-Fired Utility Boilers:	For Coal-Fired Utility Boilers:		
SNCR _{cost} = 2	20,000 x (B _{MW} x HRF) ^{0.42} x CoalF x BTF x ELEVF x RF		
For Fuel Oil and Natural Gas-Fired Utility Boilers	:		
$SNCR_{cost} = 147,000 \times (B_{MW} \times HRF)^{0.42} \times ELEVF \times RF$			
For Coal-Fired Industrial Boilers:			
$SNCR_{cost} = 220,000 \times (0.1 \times Q_B \times HRF)^{0.42} \times CoalF \times BTF \times ELEVF \times RF$			
For Fuel Oil and Natural Gas-Fired Industrial Boilers:			
SNCR _{cost}	= 147,000 x ((Q _B /NPHR)x HRF) ^{0.42} x ELEVF x RF		
SNCR Capital Costs (SNCR _{cost}) =	\$4,347,697 in 2019 dollars		
Air Pre-Heater Costs (APH _{cost})*			

Air Pre-Heater Costs (APH _{cost})*		
For Coal-Fired Utility Boilers:		
$APH_{cost} = 69,000 \times (B_{MW} \times HRF \times CoalF)^{0.78} \times AHF \times RF$		
For Coal-Fired Industrial Boilers:		
APH _{cost} =	$69,000 \times (0.1 \times Q_B \times HRF \times CoalF)^{0.78} \times AHF \times RF$	
Air Pre-Heater Costs (APH _{rost}) =	\$0 in 2019 dollars	
* Not applicable - This factor applies only to coal-fired boil	lers that burn bituminous coal and emit equal to or greater than 3lb/MMBtu of	
sulfur dioxide.		
Balance of Plant Costs (BOP _{cost})		
For Coal-Fired Utility Boilers:		
BOP _{cost} = 320	0,000 x $(B_{MW})^{0.33}$ x $(NO_x Removed/hr)^{0.12}$ x BTF x RF	
For Fuel Oil and Natural Gas-Fired Utility Boilers	:	
$BOP_{cost} = 213,000 \times (B_{MW})^{0.33} \times (NO_x Removed/hr)^{0.12} \times RF$		
For Coal-Fired Industrial Boilers:		
$BOP_{cost} = 320,000 \times (0.1 \times Q_8)^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$		
For Fuel Oil and Natural Gas-Fired Industrial Boilers:		
$BOP_{cost} = 213,000 \times (Q_B/NPHR)^{0.33} \times (NO_x Removed/hr)^{0.12} \times RF$		
Balance of Plant Costs (BOP _{cost}) =	\$6,462,610 in 2019 dollars	

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$2,346,331 in 2019 dollars
Indirect Annual Costs (IDAC) =	\$1,422,907 in 2019 dollars
Total annual costs (TAC) = DAC + IDAC	\$3,769,238 in 2019 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Water Cost) + (Annual Fuel Cost) + (Annual Ash Cost)

Annual Maintenance Cost =	0.015 x TCI =	\$210,801 in 2019 dollars
Annual Reagent Cost =	$q_{sol} \times Cost_{reag} \times t_{op} =$	\$2,095,036 in 2019 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$29,414 in 2019 dollars
Annual Water Cost =	$q_{water} x Cost_{water} x t_{op} =$	\$0 in 2019 dollars
Additional Fuel Cost =	Δ Fuel x Cost _{fuel} x t _{op} =	\$10,188 in 2019 dollars
Additional Ash Cost =	$\Delta Ash x Cost_{ash} x t_{op} x (1/2000) =$	\$893 in 2019 dollars
Direct Annual Cost =		\$2,346,331 in 2019 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x Annual Maintenance Cost =	\$6,324 in 2019 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$1,416,583 in 2019 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$1,422,907 in 2019 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$3,769,238 per year in 2019 dollars	
NOx Removed =	752 tons/year	
Cost Effectiveness =	\$5,011 per ton of NOx removed in 2019 dollars	

Data Inputs			
Enter the following data for your combustion unit:			
Is the combustion unit a utility or industrial boiler?	▼ ▼	What type of fuel does the unit burn?	
Please enter a retrofit factor between 0.8 and 1.5 based on the level of difficul projects of average retrofit difficulty.	ty. Enter 1 for 1		
Complete all of the highlighted data fields:			
What is the MW rating at full load capacity (Bmw)?	725.8 MW	Provide the following information for coal-fired boilers: Type of coal burned: Sub-Bituminous	
What is the higher heating value (HHV) of the fuel?	8,827 Btu/lb	Enter the sulfur content (%S) = 0.24 percent by weight	
What is the estimated actual annual MWhs output?	4,576,617 MWhs		
Enter the net plant heat input rate (NPHR)	9.870 MMBtu/MW	For units burning coal blends: Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided.	
C F	Euel Type Default NPHR Coal 10 MMBtu/MW Fuel Oil 11 MMBtu/MW Vatural Gas 8.2 MMBtu/MW	Fraction inCoal TypeCoal Blend%SHHV (Btu/lb)Bituminous01.8411,841Sub-Bituminous00.418,826Lignite00.826,685	
Plant Elevation	1089 Feet above sea level	Please click the calculate button to calculate weighted average values based on the data in the table above.	
		For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows	

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{scr})	365 days	Number of SCR reactor chambers (n_{scr})	1
Number of days the boiler operates $\left(t_{\text{plant}}\right)$	365 days	Number of catalyst layers (R_{layer})	3
Inlet NO _x Emissions (NOx _{in}) to SCR	0.223 lb/MMBtu	Number of empty catalyst layers (R _{empty})	1
Outlet NO _x Emissions (NOx _{out}) from SCR	0.05 lb/MMBtu	Ammonia Slip (Slip) provided by vendor	5 ppm
Stoichiometric Ratio Factor (SRF)	1.050	Volume of the catalyst layers (Vol _{catalyst}) (Enter "UNK" if value is not known)	UNK Cubic feet
*The SRF value of 1.05 is a default value. User should enter actual value, if known.			UNK acfm
Estimated operating life of the catalyst $({\rm H}_{\rm catalyst})$	24,000 hours]	
Estimated operating life of the catalyst (H _{catalyst})	24,000 hours	Gas temperature at the SCR inlet (T)	750 °F
Estimated SCR equipment life * For utility boilers, the typical equipment life of an SCR is at least 30 years.	30 Years*		
		Base case fuel gas volumetric flow rate facto	r (Q _{fuel})
Concentration of reagent as stored (C _{stored})	29 percent*	*The reagent concentration of 29% and density of 56 lbs/cft are default	
Density of reagent as stored (ρ_{stored})	56 lb/cubic feet*	values for ammonia reagent. User should enter actual values for reagent, if different from the default values provided.	
Number of days reagent is stored (t _{storage})	14 days	Densitie	es of typical SCR reagents:
			ta solution71 lbs/ft3queous NH356 lbs/ft3
Select the reagent used Ammonia	-		

Desired dollar-year	2019	
CEPCI for 2019	607.5 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)	7.862 Percent	
Reagent (Cost _{reag})	0.293 \$/gallon for 29% ammonia*	* \$0.293/gallon is a default value for 29% ammonia. User should enter actual value, if known.
Electricity (Cost _{elect})	0.0660 \$/kWh	-
	\$/cubic foot (includes removal and disposal/regeneration of existing	* \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual
Catalyst cost (CC _{replace})	227.00 catalyst and installation of new catalyst	value, if known.
Operator Labor Rate	60.00 \$/hour (including benefits)*	* \$60/hour is a default value for the operator labor rate. User should enter actual value, if known.
Operator Hours/Day	4.00 hours/day*	* 4 hours/day is a default value for the operator labor. User should enter actual value, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

0.005
0.03

Data Sources for Default Values Used in Calculations:

Data Element	Default Value	Sources for Default Value	If you used your own site-specific values, please enter the value used and the reference source
Reagent Cost (\$/gallon)		U.S. Geological Survey, Minerals Commodity Summaries, January 2017 (https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2017-nitro.pdf	
Electricity Cost (\$/kWh)		U.S. Energy Information Administration. Electric Power Annual 2016. Table 8.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	2019 EIA data-0.0660 \$/kWH
Percent sulfur content for Coal (% weight)	0.41	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Sulfur Content-0.24%
Higher Heating Value (HHV) (Btu/lb)		2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Coal HH Value-8827 BTU/lb
Catalyst Cost (\$/cubic foot)		U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6 Using the Integrated Planning Model. Office of Air and Radiation. May 2018. Available at: https://www.epa.gov/airmarkets/documentation-epas-power- sector-modeling-platform-v6.	
Operator Labor Rate (\$/hour)		U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6 Using the Integrated Planning Model. Office of Air and Radiation. May 2018. Available at: https://www.epa.gov/airmarkets/documentation-epas-power- sector-modeling-platform-v6.	
Interest Rate (Percent)	5.5	Default bank prime rate	Firm Specific Rate-7.862%

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	Bmw x NPHR =	7,164	MMBtu/hour
Maximum Annual MW Output (Bmw) =	Bmw x 8760 =	6,358,008	MWhs
Estimated Actual Annual MWhs Output (Boutput) =		4,576,617	MWhs
Heat Rate Factor (HRF) =	NPHR/10 =	0.99	
Total System Capacity Factor (CF _{total}) =	(Boutput/Bmw)*(tscr/tplant) =	0.720	fraction
Total operating time for the SCR (t _{op}) =	CF _{total} x 8760 =	6306	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	77.6	percent
NOx removed per hour =	$NOx_{in} x EF x Q_B =$	1239.31	lb/hour
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	3,907.31	tons/year
NO _x removal factor (NRF) =	EF/80 =	0.97	
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	3,855,771	acfm
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	183.77	/hour
Residence Time	1/V _{space}	0.01	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.05	
SO_2 Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =	< 3	lbs/MMBtu
Elevation Factor (ELEVF) =	14.7 psia/P =	1.04	
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.1	psia
Retrofit Factor (RF)	Retrofit to existing boiler	1.00	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)(1/((1+ interest rate) ^Y -1), where $Y = H_{catalyts}/(t_{SCR} x)$		
	24 hours) rounded to the nearest integer	0.3084	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	20,980.95	Cubic feet
Cross sectional area of the catalyst (A _{catalyst}) =	q _{flue gas} /(16ft/sec x 60 sec/min)	4,016	ft ²
Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3	feet

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	4,619	ft ²
Reactor length and width dimensions for a square	()0.5	68.0	feet
reactor =	(ASCR)	08.0	ieet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	48	feet

Reagent Data:

Type of reagent used

Ammonia

Molecular Weight of Reagent (MW) = 17.03 g/moleDensity = 56 lb/ft^3

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	482	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	1,661	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	222	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	74,600	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.0877
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	A x 1,000 x 0.0056 x (CoalF x HRF) ^{0.43} =	4127.36	kW
	where A = Bmw for utility boilers		

Cost Estimate

Total Capital Investment (TCI)

TCI for Coal-Fired Boilers

For Coal-Fired Boilers:

TCI = $1.3 \times (SCR_{cost} + RPC + APHC + BPC)$

Capital costs for the SCR (SCR _{cost}) =	\$159,054,491	in 2019 dollars
Reagent Preparation Cost (RPC) =	\$3,752,853	in 2019 dollars
Air Pre-Heater Costs (APHC)* =	\$0	in 2019 dollars
Balance of Plant Costs (BPC) =	\$9,957,446	in 2019 dollars
Total Capital Investment (TCI) =	\$224,594,227	in 2019 dollars

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emits equal to or greater than 3lb/MMBtu of sulfur dioxide.

	SCP Canital Costs (SCP)	
Fan Caal Finad Hilling Dailana S 25 - MMA	SCR Capital Costs (SCR _{cost})	
For Coal-Fired Utility Boilers >25 MW:		
	$SCR_{cost} = 310,000 \times (NRF)^{0.2} \times (B_{MW} \times HRF \times CoalF)^{0.92} \times ELEVF \times RF$	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:	0.2 0.02	
	$SCR_{cost} = 310,000 \times (NRF)^{0.2} \times (0.1 \times Q_B \times CoalF)^{0.92} \times ELEVF \times RF$	
SCR Capital Costs (SCR _{cost}) =		\$159,054,491 in 2019 dollars
	Reagent Preparation Costs (RPC)	
For Coal-Fired Utility Boilers >25 MW:		
	RPC = 564,000 x (NOx _{in} x B _{MW} x NPHR x EF) ^{0.25} x RF	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:	550 564 600 (VIC 0 55 ⁰ / ²⁵ 55	
	RPC = 564,000 x (NOx _{in} x Q ₈ x EF) ^{0.25} x RF	
Reagent Preparation Costs (RPC) =		\$3,752,853 in 2019 dollars
Reagent Freparation Costs (RFC) =		\$5,752,855 III 2019 dollars
	Air Pre-Heater Costs (APHC)*	
For Coal-Fired Utility Boilers >25MW:		
	APHC = 69,000 x $(B_{MW} \times HRF \times CoalF)^{0.78} \times AHF \times RF$	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	APHC = 69,000 x $(0.1 \times Q_{B} \times CoalF)^{0.78} \times AHF \times RF$	
	, u , ,	
Air Pre-Heater Costs (APH _{cost}) =		\$0 in 2019 dollars
* Not applicable - This factor applies only to coal-fired boilers that bu	urn bituminous coal and emit equal to or greater than 3lb/MMBtu of sulfur dioxide.	
	Balance of Plant Costs (BPC)	
For Coal-Fired Utility Boilers >25MW:		
	BPC = 529,000 x (B _{MW} x HRFx CoalF) ^{0.42} x ELEVF x RF	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:	.0.42	
	BPC = 529,000 x (0.1 x Q _B x CoalF) ^{0.42} ELEVF x RF	

Balance of Plant Costs (BOP_{cost}) =

\$9,957,446 in 2019 dollars

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$3,739,896 in 2019 dollars
Indirect Annual Costs (IDAC) =	\$19,713,017 in 2019 dollars
Total annual costs (TAC) = DAC + IDAC	\$23,452,914 in 2019 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$1,122,971 in 2019 dollars
Annual Reagent Cost =	m _{sol} x Cost _{reag} x t _{op} =	\$409,894 in 2019 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$1,717,428 in 2019 dollars
Annual Catalyst Replacement Cost =		\$489,603 in 2019 dollars
For coal-fired boilers, the following method	ds may be used to calcuate the catalyst replacement cost.	
Method 1 (for all fuel types):	n _{scr} x Vol _{cat} x (CC _{replace} /R _{layer}) x FWF	* Calculation Method 1 selected.
Method 2 (for coal-fired utility boilers):	B _{MW} x 0.4 x (CoalF) ^{2.9} x (NRF) ^{0.71} x (CC _{replace}) x 35.3	
Direct Annual Cost =		\$3,739,896 in 2019 dollars

	Indirect Annual Cost (IDAC) IDAC = Administrative Charges + Capital Recovery Costs	
Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$16,104 in 2019 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$19,696,914 in 2019 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$19,713,017 in 2019 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$23,452,914 per year in 2019 dollars
NOx Removed =	3,907 tons/year
Cost Effectiveness =	\$6,002 per ton of NOx removed in 2019 dollars

	Data	a Inputs
Enter the following data for your combustion unit:		
Is the combustion unit a utility or industrial boiler?	Utility 🗸	What type of fuel does the unit burn?
Is the SNCR for a new boiler or retrofit of an existing boiler?	fit 🗾	
Please enter a retrofit factor equal to or greater than 0.84 based on difficulty. Enter 1 for projects of average retrofit difficulty.	the level of 1	
Complete all of the highlighted data fields:		
		Provide the following information for coal-fired boilers:
What is the MW rating at full load capacity (Bmw)?	725.8 MW	Type of coal burned: Sub-Bituminous
What is the higher heating value (HHV) of the fuel?	8,827 Btu/lb	Enter the sulfur content (%S) = 0.24 percent by weight
		or Select the appropriate SO ₂ emission rate: Not Applicable
What is the estimated actual annual MWh output?	4,576,617 MWh	
		Ash content (%Ash): 5.84 percent by weight
Is the boiler a fluid-bed boiler?	No	*The ash content of 5.84% is a default value. See below for data source. Enter actual value, if known.
		For units burning coal blends:
Enter the net plant heat input rate (NPHR)	9.87 MMBtu/MW	Note: The table below is pre-populated with default values for HHV, %S, %Ash and cost. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided.
If the NPHR is not known, use the default NPHR value:	Fuel TypeDefault NPHRCoal10 MMBtu/MWFuel Oil11 MMBtu/MWNatural Gas8.2 MMBtu/MW	Fraction in Coal Blend%S%AshHHV (Btu/ib)Fuel Cost (\$/MMBtu)Bituminous01.849.2311,8412.4Sub-Bituminous00.415.848,8261.89Lignite00.8213.66,6261.74Please click the calculate button to calculate weighted values based on the data in the table above.

Enter the following design parameters for the proposed SNCR:

Number of days the SNCR operates (t $_{\mbox{\tiny SNCR}}$)	365 days	Plant Elevation 1089 Feet above sea level
Inlet NO _x Emissions (NOx _{in}) to SNCR	0.223 lb/MMBtu	
Oulet NO _x Emissions (NOx _{out}) from SNCR	0.1896 lb/MMBtu	
Estimated Normalized Stoichiometric Ratio (NSR)	1.22	*The NSR for a urea system may be calculated using equation 1.17 in Section 4, Chapter 1 of the Air Pollution Control Cost Manual (as updated March 2019).
Concentration of reagent as stored (C _{stored})	50 Percent	
Density of reagent as stored (ρ_{stored})	71 lb/ft ³	
Concentration of reagent injected (C _{inj})	50 percent	Densities of typical SNCR reagents:
Number of days reagent is stored (t _{storage})	14 days	50% urea solution 71 lbs/ft ³
Estimated equipment life	20 Years	29.4% aqueous NH ₃ 56 lbs/ft ³
Select the reagent used	Urea 💌	

Enter the cost data for the proposed SNCR:

Desired dollar-year	2019]
CEPCI for 2019	607.5 Enter the CEPCI value for 2019 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)	7.862 Percent	
Fuel (Cost _{fuel})	1.89 \$/MMBtu*]
Reagent (Cost _{reag})	1.66 \$/gallon for a 50 percent solution of urea*	
Water (Cost _{water})	0.0042 \$/gallon*	
Electricity (Cost _{elect})	0.0660 \$/kWh	
Ash Disposal (for coal-fired boilers only) (Cost ash)	48.80 \$/ton*	
	* The values marked are default values. See the table below for the default values used	

* The values marked are default values. See the table below for the default values used and their references. Enter actual values, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

Data Sources for Default Values Used in Calculations:

Data Element	Default Value	Sources for Default Value	If you used your own site-specific values, please enter the value used and the reference source
Reagent Cost (\$/gallon)		U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6, Using the Integrated Planning Model, Updates to the Cost and Performance for APC Technologies, SNCR Cost Development Methodology, Chapter 5, Attachment 5-4, January 2017. Available at: https://www.epa.gov/sites/production/files/2018-05/documents/attachment_5- 4_sncr_cost_development_methodology.pdf.	
Water Cost (\$/gallon)	0.00417	Average water rates for industrial facilities in 2013 compiled by Black & Veatch. (see 2012/2013 "50 Largest Cities Water/Wastewater Rate Survey." Available at http://www.saws.org/who_we_are/community/RAC/docs/2014/50-largest-cities- brochure-water-wastewater-rate-survey.pdf.	
Electricity Cost (\$/kWh)	0.0361	U.S. Energy Information Administration. Electric Power Annual 2016. Table 8.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	2019 EIA data-0.0660 \$/kWH
Fuel Cost (\$/MMBtu)	1.89	U.S. Energy Information Administration. Electric Power Annual 2016. Table 7.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	
Ash Disposal Cost (\$/ton)	48.8	Waste Business Journal. The Cost to Landfill MSW Continues to Rise Despite Soft Demand. July 11, 2017. Available at: http://www.wastebusinessjournal.com/news/wbj20170711A.htm.	
Percent sulfur content for Coal (% weight)	0.41	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Sulfur Content-0.24%
Percent ash content for Coal (% weight)	5.84	Average ash content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
ligher Heating Value (HHV) (Btu/lb)	8,826	2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Coal HH Value-8827 BTU/lb
nterest Rate (%)	5.5	Default bank prime rate	Firm Specific Rate-7.862%

SNCR Design Parameters

The following design parameters for the SNCR were calculated based on the values entered on the *Data Inputs* tab. These values were used to prepare the costs shown on the *Cost Estimate* tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	Bmw x NPHR =	7,164	MMBtu/hour
Maximum Annual MWh Output =	Bmw x 8760 =	6,358,008	MWh
Estimated Actual Annual MWh Output (Boutput) =		4,576,617	MWh
Heat Rate Factor (HRF) =	NPHR/10 =	0.99	
Total System Capacity Factor (CF _{total}) =	(Boutput/Bmw)*(tsncr/365) =	0.72	fraction
Total operating time for the SNCR (t _{op}) =	CF _{total} x 8760 =	6306	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	15.0	percent
NOx removed per hour =	$NOx_{in} \times EF \times Q_B =$	239.27	lb/hour
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	754.36	tons/year
Coal Factor (Coal _F) =	1 for bituminous; 1.05 for sub-bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.05	
SO ₂ Emission rate =	(%S/100)x(64/32)*(1x10 ⁶)/HHV =	< 3	lbs/MMBtu
Elevation Factor (ELEVF) =	14.7 psia/P =	1.04	
Atmospheric pressure at 1089 feet above sea level (P) =	2116x[(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)*	14.1	psia
Retrofit Factor (RF) =	Retrofit to existing boiler	1.00	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at

https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Reagent Data:

Type of reagent used	Urea	Molecular Weight of Reagent (MW) =	60.06 g/mole
		Density =	71 lb/gallon
		-	

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times NSR \times MW_R)/(MW_{NOx} \times SR) =$	1272	lb/hour
	(whre SR = 1 for NH_3 ; 2 for Urea)		
Reagent Usage Rate (m _{sol}) =	m _{reagent} /C _{sol} =	2,544	lb/hour
	(m _{sol} x 7.4805)/Reagent Density =	268.0	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24 hours/day)/Reagent	00 100	gallons (storage needed to store a 14 day reagent supply rounded up to the nearest 100 gallons)
	Density =	90,100	rounded up to the nearest 100 gallons)

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.1008
	Where n = Equipment Life and i= Interest Rate	

Parameter	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	(0.47 x NOx _{in} x NSR x Q _B)/NPHR =	92.8	kW/hour
Water Usage:			
Water consumption (q _w) =	$(m_{sol}/Density of water) \times ((C_{stored}/C_{inj}) - 1) =$	0	gallons/hour
Fuel Data:			
Additional Fuel required to evaporate water in injected reagent (ΔFuel) =	Hv x m _{reagent} x ((1/C _{inj})-1) =	1.14	MMBtu/hour
Ash Disposal:			
Additional ash produced due to increased fuel consumption (Δ ash) =	(Δfuel x %Ash x 1x10 ⁶)/HHV =	7.6	lb/hour

Cost Estimate

Total Capital Investment (TCI) For Coal-Fired Boilers: TCI = $1.3 \times (SNCR_{cost} + APH_{cost} + BOP_{cost})$ For Fuel Oil and Natural Gas-Fired Boilers: TCI = $1.3 \times (SNCR_{cost} + BOP_{cost})$ Capital costs for the SNCR (SNCR_{cost}) = Air Pre-Heater Costs (APH_{cost})* = Salance of Plant Costs (BOP_{cost}) = \$6,087,973 in 2019 dollars

\$13,452,303 in 2019 dollars

Total Capital Investment (TCI) =

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emits equal to or greater than 0.3lb/MMBtu of sulfur dioxide.

For Coal-Fired Utility Boilers: $SNCR_{cost} = 220,000 \times (B_{MW} \times HRF)^{0.42} \times CoalF \times BTF \times ELEVF \times RF$ For Fuel Oil and Natural Gas-Fired Utility Boilers: $SNCR_{cost} = 147,000 \times (B_{MW} \times HRF)^{0.42} \times ELEVF \times RF$ For Coal-Fired Industrial Boilers:
For Fuel Oil and Natural Gas-Fired Utility Boilers: SNCR _{cost} = 147,000 x (B _{MW} x HRF) ^{0.42} x ELEVF x RF
SNCR _{cost} = 147,000 x (B _{MW} x HRF) ^{0.42} x ELEVF x RF
For Coal-Fired Industrial Boilers:
$SNCR_{cost} = 220,000 \times (0.1 \times Q_B \times HRF)^{0.42} \times CoalF \times BTF \times ELEVF \times RF$
For Fuel Oil and Natural Gas-Fired Industrial Boilers:
$SNCR_{cost} = 147,000 \times ((Q_B/NPHR) \times HRF)^{0.42} \times ELEVF \times RF$
SNCR Capital Costs (SNCR _{cost}) = \$4,259,953 in 2019 dollars

Air Pre-Heater Costs (APH _{cost})*			
For Coal-Fired Utility Boilers:			
APH _{cos}	_t = 69,000 x (B _{MW} x HRF x CoalF) ^{0.78} x AHF x RF		
For Coal-Fired Industrial Boilers:			
APH _{cost} =	- 69,000 x (0.1 x Q _B x HRF x CoalF) ^{0.78} x AHF x RF		
Air Pre-Heater Costs (APH _{cost}) =	\$0 in 2019 dollars		
* Not applicable - This factor applies only to coal-fired boi sulfur dioxide.	lers that burn bituminous coal and emit equal to or greater than 3lb/MMBtu of		
	Balance of Plant Costs (BOP _{cost})		
For Coal-Fired Utility Boilers:			
BOP _{cost} = 32	$0,000 \times (B_{MW})^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$		
For Fuel Oil and Natural Gas-Fired Utility Boilers	:		
BOP _{cost} =	$BOP_{cost} = 213,000 \times (B_{MW})^{0.33} \times (NO_{v}Removed/hr)^{0.12} \times RF$		
For Coal-Fired Industrial Boilers:			
$BOP_{cost} = 320,000 \times (0.1 \times Q_{B})^{0.33} \times (NO_{v}Removed/hr)^{0.12} \times BTF \times RF$			
For Fuel Oil and Natural Gas-Fired Industrial Boilers:			
$BOP_{cost} = 213,000 \times (Q_{B}/NPHR)^{0.33} \times (NO_{x}Removed/hr)^{0.12} \times RF$			
Balance of Plant Costs (BOP _{cost}) = \$6,087,973 in 2019 dollars			

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$3,060,908 in 2019 dollars
Indirect Annual Costs (IDAC) =	\$1,362,046 in 2019 dollars
Total annual costs (TAC) = DAC + IDAC	\$4,422,954 in 2019 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Water Cost) + (Annual Fuel Cost) + (Annual Ash Cost)

Annual Maintenance Cost =	0.015 x TCI =	\$201,785 in 2019 dollars
Annual Reagent Cost =	$q_{sol} \times Cost_{reag} \times t_{op} =$	\$2,805,691 in 2019 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$38,623 in 2019 dollars
Annual Water Cost =	$q_{water} x Cost_{water} x t_{op} =$	\$0 in 2019 dollars
Additional Fuel Cost =	Δ Fuel x Cost _{fuel} x t _{op} =	\$13,644 in 2019 dollars
Additional Ash Cost =	$\Delta Ash x Cost_{ash} x t_{op} x (1/2000) =$	\$1,165 in 2019 dollars
Direct Annual Cost =	· · · · · · · · · · · · · · · · · · ·	\$3,060,908 in 2019 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x Annual Maintenance Cost =	\$6,054 in 2019 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$1,355,992 in 2019 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$1,362,046 in 2019 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$4,422,954 per year in 2019 dollars		
NOx Removed =	754 tons/year		
Cost Effectiveness =	\$5,863.19 per ton of NOx removed in 2019 dollars		

Data Inputs			
Enter the following data for your combustion unit:			
Is the combustion unit a utility or industrial boiler?	Utility	What type of fuel does the unit burn?	
Is the SNCR for a new boiler or retrofit of an existing boiler?	it 🔹		
Please enter a retrofit factor equal to or greater than 0.84 based on difficulty. Enter 1 for projects of average retrofit difficulty.	the level of 1		
Complete all of the highlighted data fields:			
		Provide the following information for coal-fired boilers:	
What is the MW rating at full load capacity (Bmw)?	725.8 MW	Type of coal burned: Sub-Bituminous	
What is the higher heating value (HHV) of the fuel?	8,827 Btu/lb	Enter the sulfur content (%S) = 0.24 percent by weight	
		or Select the appropriate SO ₂ emission rate: Not Applicable	
What is the estimated actual annual MWh output?	4,576,617 MWh		
Is the boiler a fluid-bed boiler?	No	Ash content (%Ash): 5.84 percent by weight *The ash content of 5.84% is a default value. See below for data source. Enter actual value, if known.	
		For units burning coal blends:	
Enter the net plant heat input rate (NPHR)	9.87 MMBtu/MW	Note: The table below is pre-populated with default values for HHV, %S, %Ash and cost. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided.	
If the NPHR is not known, use the default NPHR value:	Fuel TypeDefault NPHRCoal10 MMBtu/MWFuel Oil11 MMBtu/MWNatural Gas8.2 MMBtu/MW	Fraction in Coal Blend%S%AshHHV (Btu/lb)Fuel Cost (\$/MMBtu)Bituminous01.849.2311,8412.4Sub-Bituminous00.415.848,8261.89Lignite00.8213.66,6261.74Please click the calculate button to calculate weighted values based on the data in the table above.111	

Enter the following design parameters for the proposed SNCR:

Number of days the SNCR operates (t $_{\mbox{\tiny SNCR}}$)	365	days	Plant default 155	Elevation	1089 Fee	t above sea level	
Inlet NO _x Emissions (NOx _{in}) to SNCR	0.223	lb/MMBtu					
Oulet NO _x Emissions (NOx _{out}) from SNCR	0.1784	lb/MMBtu					
Estimated Normalized Stoichiometric Ratio (NSR)	1.22			system may be calcula (as updated March 20		L.17 in Section 4, Cha	pter 1 of the Air Pollution
Concentration of reagent as stored (C_{stored})	50	Percent]				
Density of reagent as stored (ρ_{stored})	71	lb/ft ³					
Concentration of reagent injected (C _{inj})	50	percent		Densities of typical S	NCR reagents:		
Number of days reagent is stored (t _{storage})	14	days		50% urea se	olution	71 lbs/ft ³	
Estimated equipment life	20	Years]	29.4% aque	ous NH ₃	56 lbs/ft ³	
Select the reagent used	Urea 🗖	•					

Enter the cost data for the proposed SNCR:

Desired dollar-year	2019]
CEPCI for 2019	607.5 Enter the CEPCI value for 2019 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)	7.862 Percent	
Fuel (Cost _{fuel})	1.89 \$/MMBtu*]
Reagent (Cost _{reag})	1.66 \$/gallon for a 50 percent solution of urea*	
Water (Cost _{water})	0.0042 \$/gallon*	
Electricity (Cost _{elect})	0.0660 \$/kWh	
Ash Disposal (for coal-fired boilers only) (Cost ash)	48.80 \$/ton*	
	* The values marked are default values. See the table below for the default values used	

* The values marked are default values. See the table below for the default values used and their references. Enter actual values, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

Data Sources for Default Values Used in Calculations:

			If you used your own site-specific values, please enter the value
Data Element Reagent Cost (\$/gallon)		Sources for Default Value U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6, Using the Integrated Planning Model, Updates to the Cost and Performance for APC Technologies, SNCR Cost Development Methodology, Chapter 5, Attachment 5-4, January 2017. Available at: https://www.epa.gov/sites/production/files/2018-05/documents/attachment_5- 4_sncr_cost_development_methodology.pdf.	used and the reference source
Nater Cost (\$/gallon)	0.00417	Average water rates for industrial facilities in 2013 compiled by Black & Veatch. (see 2012/2013 "50 Largest Cities Water/Wastewater Rate Survey." Available at http://www.saws.org/who_we_are/community/RAC/docs/2014/50-largest-cities-brochure-water-wastewater-rate-survey.pdf.	
Electricity Cost (\$/kWh)	0.0361	U.S. Energy Information Administration. Electric Power Annual 2016. Table 8.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	2019 EIA data-0.0660 \$/kWH
⁻ uel Cost (\$/MMBtu)	1.89	U.S. Energy Information Administration. Electric Power Annual 2016. Table 7.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	
Ash Disposal Cost (\$/ton)	48.8	Waste Business Journal. The Cost to Landfill MSW Continues to Rise Despite Soft Demand. July 11, 2017. Available at: http://www.wastebusinessjournal.com/news/wbj20170711A.htm.	
Percent sulfur content for Coal (% weight)	0.41	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Sulfur Content-0.24%
Percent ash content for Coal (% weight)	5.84	Average ash content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
ligher Heating Value (HHV) (Btu/lb)	8,826	2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	Site Specific Coal HH Value-8827 BTU/lb
nterest Rate (%)	5.5	Default bank prime rate	Firm Specific Rate-7.862%

SNCR Design Parameters

The following design parameters for the SNCR were calculated based on the values entered on the *Data Inputs* tab. These values were used to prepare the costs shown on the *Cost Estimate* tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	Bmw x NPHR =	7,164	MMBtu/hour
Maximum Annual MWh Output =	Bmw x 8760 =	6,358,008	MWh
Estimated Actual Annual MWh Output (Boutput) =		4,576,617	MWh
Heat Rate Factor (HRF) =	NPHR/10 =	0.99	
Total System Capacity Factor (CF _{total}) =	(Boutput/Bmw)*(tsncr/365) =	0.72	fraction
Total operating time for the SNCR (t_{op}) =	CF _{total} x 8760 =	6306	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	20.0	percent
NOx removed per hour =	$NOx_{in} \times EF \times Q_B =$	319.50	lb/hour
Total NO _x removed per year =	$(NOx_{in} x EF x Q_B x t_{op})/2000 =$	1,007.32	tons/year
Coal Factor (Coal _F) =	1 for bituminous; 1.05 for sub-bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.05	
SO ₂ Emission rate =	(%S/100)x(64/32)*(1x10 ⁶)/HHV =	< 3	lbs/MMBtu
Elevation Factor (ELEVF) =	14.7 psia/P =	1.04	
Atmospheric pressure at 1089 feet above sea level (P) =	2116x[(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)*	14.1	psia
Retrofit Factor (RF) =	Retrofit to existing boiler	1.00	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at

https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Reagent Data:

Type of reagent used	Urea	Molecular Weight of Reagent (MW) =	60.06 g/mole
		Density =	71 lb/gallon
		-	

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times NSR \times MW_R)/(MW_{NOx} \times SR) =$	1272	lb/hour
	(whre SR = 1 for NH_3 ; 2 for Urea)		
Reagent Usage Rate (m _{sol}) =	m _{reagent} /C _{sol} =	2,544	lb/hour
	(m _{sol} x 7.4805)/Reagent Density =	268.0	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24 hours/day)/Reagent	00 100	gallons (storage needed to store a 14 day reagent supply rounded up to the nearest 100 gallons)
	Density =	90,100	rounded up to the nearest 100 gallons)

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i (1+i)^n / (1+i)^n - 1 =$	0.1008
	Where n = Equipment Life and i= Interest Rate	

Parameter	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	(0.47 x NOx _{in} x NSR x Q _B)/NPHR =	92.8	kW/hour
Water Usage:			
Water consumption (q _w) =	$(m_{sol}/Density of water) \times ((C_{stored}/C_{inj}) - 1) =$	0	gallons/hour
Fuel Data:			
Additional Fuel required to evaporate water in injected reagent (ΔFuel) =	Hv x m _{reagent} x ((1/C _{inj})-1) =	1.14	MMBtu/hour
Ash Disposal:			
Additional ash produced due to increased fuel consumption (Δ ash) =	(Δfuel x %Ash x 1x10 ⁶)/HHV =	7.6	lb/hour

Cost Estimate

Total Capital Investment (TCI) For Coal-Fired Boilers: TCI = $1.3 \times (SNCR_{cost} + APH_{cost} + BOP_{cost})$ For Fuel Oil and Natural Gas-Fired Boilers: TCI = $1.3 \times (SNCR_{cost} + BOP_{cost})$ Capital costs for the SNCR (SNCR_{cost}) = Air Pre-Heater Costs (APH_{cost})* = Solution 2019 dollars Balance of Plant Costs (BOP_{cost}) =

\$13,731,763 in 2019 dollars

Total Capital Investment (TCI) =

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emits equal to or greater than 0.3lb/MMBtu of sulfur dioxide.

(B _{MW} x HRF) ^{0.42} x CoalF x BTF x ELEVF x RF		
For Fuel Oil and Natural Gas-Fired Utility Boilers:		
$SNCR_{cost} = 147,000 \times (B_{MW} \times HRF)^{0.42} \times ELEVF \times RF$		
For Coal-Fired Industrial Boilers:		
$SNCR_{cost} = 220,000 \times (0.1 \times Q_B \times HRF)^{0.42} \times CoalF \times BTF \times ELEVF \times RF$		
For Fuel Oil and Natural Gas-Fired Industrial Boilers:		
0 x ((Q _B /NPHR)x HRF) ^{0.42} x ELEVF x RF		
\$4,259,953 in 2019 dollars		
	$1 \times Q_B \times HRF$) ^{0.42} x CoalF x BTF x ELEVF x RF 0 x ((Q _B /NPHR)x HRF) ^{0.42} x ELEVF x RF	

Air Pre-Heater Costs (APH _{cost})*	
For Coal-Fired Utility Boilers:	
$APH_{cost} = 69,000 \times (B_{MW} \times HRF \times CoalF)^{0.78} \times AHF \times RF$	
For Coal-Fired Industrial Boilers:	
$APH_{cost} = 69,000 \times (0.1 \times Q_B \times HRF \times CoalF)^{0.78} \times AHF \times RF$	
Air Pre-Heater Costs (APH _{cost}) = \$0 in 2019 dollars	
* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emit equal to or greater than 3lb/MMBtu of	
sulfur dioxide.	
Balance of Plant Costs (BOP _{cost})	
For Coal-Fired Utility Boilers:	
$BOP_{cost} = 320,000 \times (B_{MW})^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$	
For Fuel Oil and Natural Gas-Fired Utility Boilers:	
$BOP_{cost} = 213,000 \times (B_{MW})^{0.33} \times (NO_{v}Removed/hr)^{0.12} \times RF$	
For Coal-Fired Industrial Boilers:	
$BOP_{cost} = 320,000 \times (0.1 \times Q_8)^{0.33} \times (NO_x Removed/hr)^{0.12} \times BTF \times RF$	
For Fuel Oil and Natural Gas-Fired Industrial Boilers:	
$BOP_{cost} = 213,000 \times (Q_B/NPHR)^{0.33} \times (NO_x Removed/hr)^{0.12} \times RF$	
Balance of Plant Costs (BOP _{cost}) = \$6,302,942 in 2019 dollars	

Annual Costs

Total Annual Cost (TAC)

TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$3,065,100 in 2019 dollars
Indirect Annual Costs (IDAC) =	\$1,390,341 in 2019 dollars
Total annual costs (TAC) = DAC + IDAC	\$4,455,441 in 2019 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Water Cost) + (Annual Fuel Cost) + (Annual Ash Cost)

Annual Maintenance Cost =	0.015 x TCI =	\$205,976 in 2019 dollars
Annual Reagent Cost =	$q_{sol} \times Cost_{reag} \times t_{op} =$	\$2,805,691 in 2019 dollars
Annual Electricity Cost =	P x Cost _{elect} x t _{op} =	\$38,623 in 2019 dollars
Annual Water Cost =	q _{water} x Cost _{water} x t _{op} =	\$0 in 2019 dollars
Additional Fuel Cost =	Δ Fuel x Cost _{fuel} x t _{op} =	\$13,644 in 2019 dollars
Additional Ash Cost =	$\Delta Ash x Cost_{ash} x t_{op} x (1/2000) =$	\$1,165 in 2019 dollars
Direct Annual Cost =		\$3,065,100 in 2019 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x Annual Maintenance Cost =	\$6,179 in 2019 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$1,384,162 in 2019 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$1,390,341 in 2019 dollars

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$4,455,441 per year in 2019 dollars	
NOx Removed =	1,007 tons/year	
Cost Effectiveness =	\$4,423.07 per ton of NOx removed in 2019 dollars	