

Regional Haze Reasonable Further Progress Four Factor Analysis

MEC Louisa and Walter Scott Jr. Coal-Fired Boilers AECOM Project Number: 60645615

MidAmerican Energy Company 4299 NW Urbandale Dr. Urbandale, IA 50322

Prepared by:

AECOM Technical Services, Inc. 500 West Jefferson Street, Suite 1600 Louisville, KY 40202

August 9, 2021

Table of Contents

1.0	EXEC	EXECUTIVE SUMMARY			
2.0	FACIL		DESCRIPTION/LOCATION	3	
3.0			GIONAL HAZE PLANNING PERIOD REASONABLE PROGRESS	4	
4.0	BASE	LINE	EMISSIONS SUMMARY	4	
5.0	FOUF	r fac	CTOR ANALYSIS SULFUR DIOXIDE (SO2)	5	
	5.1	Iden	tification of Potentially Feasible Emission Controls	5	
	5.2	Anal	ysis of Four Statutory Factors	7	
	5	5.2.1	Factor 1 - Cost of Implementing Emission Controls	8	
	5	5.2.2	Factor 2 - Time Necessary to Install Controls	11	
	5	5.2.3	Factor 3 - Energy and Non-air Quality Impacts of Controls	11	
	5	5.2.4	Factor 4 - Remaining Useful Life of Facility	12	
	5.3	Con	clusions of SO ₂ Four Factor Evaluation	12	
6.0	FOUF	R FAC	CTOR ANALYSIS NITROGEN OXIDES (NOx)	13	
	6.1	Iden	tification of Potentially Feasible Emission Controls	13	
	6.2	Anal	ysis of Four Statutory Factors for NOx Controls	15	
	6	6.2.1	Factor 1 - Cost of Implementing Emission Controls	16	
	6	6.2.2	Factor 2 - Time Necessary to Install Controls	18	
	6	6.2.3	Factor 3 - Energy and Non-air Quality Impacts of Controls	18	
	6	6.2.4	Factor 4 - Remaining Useful Life of Facility	19	
	6.3	Con	clusions of NOx Four Factor Evaluation	19	
7.0	ADDI	TION	AL CONSIDERATIONS - VISIBILITY IMPACTS	20	
	7.1	EPA	Guidance Regarding Considerations of Visibility Impacts	20	
	7.2	Appr	oach to Understanding RHR Visibility Impacts of Iowa Sources	21	
	7.3	Estir	nated Louisa and Walter Scott Visibility Impacts	22	
8.0	SUM				

1.0 EXECUTIVE SUMMARY

The lowa Department of Natural Resources (DNR) requested that MidAmerican Energy Company (MEC) provide a Four Factor Analysis for the Louisa Generating Station and Walter Scott Jr. Energy Center. The DNR will use the Four Factor Analysis results in its development of a State Implementation Plan (SIP) for the Second Decadal Review period of the federal Regional Haze Rule (RHR) promulgated by the Environmental Protection Agency (EPA) under the Clean Air Act. *See* 42 USC § 7491 ("Visibility Protection for Federal Class I Areas") *and* 40 CFR Part 51 Subpart P ("Protection of Visibility"). The RHR calls for state and federal agencies to work to improve visibility in national parks and wilderness areas throughout the country with the ultimate goal of achieving "natural background" visibility in these Class I areas by the year 2064. Every ten years, agencies are required to evaluate and revise their plans and consider whether additional emission reductions are warranted to continue "reasonable progress" in visibility improvement. The DNR identified the coal-fired generating units at the Louisa Generating Station and the Walter Scott Jr. Energy Center as sources to be analyzed regarding the potential for additional controls of sulfur dioxide (SO₂) and nitrogen oxides (NO_x) for improvement of visibility in Class I areas.

This analysis, referred to as a "Four Factor Analysis," first identifies all technically feasible control technologies for additional SO₂ and NO_x control. Then, each technically feasible control is evaluated to determine whether it may be "necessary to make reasonable progress toward meeting the national goal" of the RHR, based on the following four "statutory factors" found in the definition of "reasonable progress" provided in 42 U.S.C. § 7491(g)(1):

- (1) Cost of compliance;
- (2) Time necessary for compliance;
- (3) Energy and non-air quality impacts of compliance; and
- (4) The remaining useful life of any existing source.

This analysis has been completed in accordance with the statute, the RHR, and the EPA's guidance on regional haze, including both the "Draft Guidance on Progress Tracking Metrics, Long-term Strategies, Reasonable Progress Goals and Other Requirements for Regional Haze State Implementation Plans for the Second Implementation Period" issued in 2016 (the "2016 Draft Guidance"), the final "Guidance on Regional Haze State Implementation Plans for the Second Implementation Plans for the Second Implementation Plans for the "2019 Final Guidance"), and EPA's July 8, 2021 "Clarifications Regarding Regional Haze State Implementation Plants for the Second implementation Period" (the "2011 Clarification Memo"). Where any inconsistencies may exist among EPA's guidance, this analysis follows the binding statutory and regulatory requirements and the direction provided by the DNR in its request.

As noted in the RHR and all of EPA's guidance, states may consider visibility benefits in addition to the four statutory factors when making their reasonable progress determinations and

selecting among the available control measures to include in their long term strategy.¹ Accordingly, Section 7 of this analysis evaluates the potential visibility benefits of reducing emissions at the two facilities for which the DNR requested this Four Factor Analysis. The consideration of potential visibility benefits is particularly important in determining the reasonableness of additional control measures for these two power plants because they are very far away from any Class I area—the nearest Class I area that is downwind to either plant is over 550 kilometers away.²

As presented in this report, MEC found that there are no reasonable emission control options to further reduce the NOx and SO₂ emissions of Unit 4 at the Walter Scott Jr. Energy Center. This boiler already has highly effective selective catalytic reduction and flue gas desulfurization systems that minimize its NOx and SO₂ emissions. These existing controls on Unit 4 were required as Best Available Control Technology (BACT) at the time of this unit's installation in 2007 and remain the most effective controls available for these pollutants. No further control measures are reasonable for this unit.

This Four Factor Analysis considers several potential control options for the other units at these two facilities, Louisa Unit 101 and Walter Scott Jr. Unit 3. The Four Factor Analysis for Louisa Unit 101 and Walter Scott Jr. Unit 3 concludes that making operational improvements to the existing dry flue gas desulfurization processes at both of these other units is possible and could be completed for a reasonable cost. As such, MEC proposes these operating improvements in order to lower SO₂ emissions from these units. The proposed improved emissions performance for these two units together are forecast to provide a 9,688 ton/year reduction to SO₂ versus recent past average emissions (2017-2019 baseline). MEC also evaluated the use of Wet flue gas desulfurization (FGD) system for further SO₂ control, as well as the possible use of selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) for NOx control for these two coal-fired units. However, these other control options are not cost effective and, therefore, they are not necessary to make reasonable progress toward visibility improvement at any Class I areas. In addition, including these costly control measure in the SIP would be unreasonable because the impact of those controls on Class I visibility would be *de minimis*.

¹ 40 CFR 51.308(f)(2)(iv) ("The State must consider the following additional factors in developing its longterm strategy: ... The anticipated net effect on visibility due to projected changes in point, area, and mobile source emissions over the period addressed by the long-term strategy."); 2016 Draft Guidance, at 14-15 ("[G]iven that the goal of the regional haze program is to improve visibility, the EPA believes that states may consider visibility in addition to the four statutory factors when making their reasonable progress determinations, as long as they do so in a reasonable fashion."); 2019 Final Guidance, at 36-37 ("Because the goal of the regional haze program is to improve visibility, it is reasonable for a state to consider whether and by how much an emission control measure would help achieve that goal."); 2021 Clarification Memo, at 12 ("EPA has interpreted the CAA and RHR as allowing states to consider visibility alongside the four statutory factors when determining the emission reduction measures that are necessary to make reasonable progress.").

² The nearest Class I area in any other direction is Mingo Wilderness Area in Missouri, which is approximately 485 km south of the Louisa Generating Station, but the wind does not blow frequently in that direction.

2.0 FACILITY DESCRIPTION/LOCATION

This Four Factor Analysis addresses the NOx and SO₂ emissions from the coal-fired boilers at the Louisa Generating Station at 8602 172nd Street, Muscatine, Iowa, and the Walter Scott Jr. Energy Center located at 7215 Navajo Street, Council Bluffs, Iowa. There are three coal-fired electric generating units at these two facilities. These units are listed in Table 1 below.

Facility/Unit	Nameplate Capacity	Rated Coal Heat Input	Year In- Service			
Louisa Unit 101	811.9 MW	8,000 MMBtu/hr	1983			
Walter Scott Unit 3	725.8 MW	7,700 MMBtu/hr	1978			
Walter Scott Unit 4	922.8 MW	7,675 MMBtu/hr	2007			

Table 1 MEC Units Subject to Four Factor Analysis

Louisa Unit 101 and Walter Scott Unit 3: Both these units burn low-sulfur subbituminous coal and have similar types of emissions controls and fairly similar emissions performance for NOx and SO₂ on a lb/MMBtu basis. NOx emissions are controlled with low NOx burners and overfire air. SO₂ emissions are controlled by a Dry FGD system. Both units also have halogenated powder activated carbon (PAC) sorbent injection for control of mercury emissions and baghouse filters for control of particulate emissions.

Walter Scott Unit 4: This unit burns low-sulfur subbituminous coal in a high efficiency supercritical coal-fired boiler that was installed in 2007. Unit 4's permitting imposed Best Available Control Technology requirements of Low NOx burners and overfire air for NOx control, as well as Selective Catalytic Reduction (SCR) to reduce NOx emissions. SO₂ is controlled by a Dry FGD system, and it also has halogenated PAC sorbent injection and baghouse filters for the control of mercury and particulate emissions.

Proximity of Class I Areas

As previously mentioned, there are no Class I areas within several hundred kilometers of the Louisa or Walter Scott Jr. power plants. The regional Class I areas of greatest interest relative to potential emissions impacts from Louisa and Walter Scott Jr. are those to the north, northeast, or east of the facilities, which are the predominant wind directions. Table 2 indicates the distance from each plant to these Class I areas.

	Louisa Generating Station	Walter Scott Jr. Energy Center		
Isle Royale National Park, MI	721 km	927 km		
Seney National Park, MI	670 km	960 km		
Rainbow Lake Wilderness, WI	555 km	670 km		
Boundary Waters Canoe Area Wilderness, MN	720 km	810 km		

Table 2 – Distances to Class I Areas of Interest³

3.0 FIRST REGIONAL HAZE PLANNING PERIOD REASONABLE PROGRESS DETERMINATION

In the first regional haze planning period, the RHR generally required large emissions sources that had been constructed after August 7, 1962 and were in existence by August 7, 1977 to conduct a Best Available Retrofit Technology (BART) review, which was similar to the currently required Four Factor Analysis. The Walter Scott Jr. Unit 3 met those criteria and was BART-eligible. However, for electric generating units (EGUs), the EPA determined that the Clean Air Interstate Rule (CAIR) cap and trade program improved visibility more than implementing BART in states subject to CAIR. The EPA later extended that determination to the Cross-State Air Pollution Rule (CSAPR) when it replaced CAIR with CSAPR. The DNR accepted the EPA's overall finding that CAIR/CSAPR is a "better-than-BART" "substitute" for EGUs and, thus, no additional controls were required for NOx and SO₂ at any MEC unit.⁴ In this same timeframe, the Walter Scott Jr. Unit 3 was retrofitted with Low NOx burners and Overfire Air, which decreased its NOx emissions.

These NOx controls on Unit 3 and other actions responding to CAIR/CSAPR and other regulatory requirements resulted in both the Louisa and Walter Scott Jr. power plants making significant reductions to emissions during the previous regional haze planning period. The current baseline emissions (2017-2019 average) discussed in the next section represents a reduction of more than 16,000 tons/yr of NOx and over 5,000 tons/yr SO₂ since 2008.⁵

4.0 BASELINE EMISSIONS SUMMARY

Table 3 summarizes the most recent three-year average NOx and SO₂ emissions and other operating parameters from these coal-fired units for calendar years 2017-2019.

³ The Class I areas listed in Table 2 are to the north and northeast of the MEC facilities. These are the most common wind directions. The wind also frequently blows towards the east, but there are no Class I areas for over 1000 km to the east of these facilities. As noted above, Mingo Wilderness Area is approximately 485 km south of Louisa, but the wind does not blow frequently in that direction. ⁴ Iowa DNR State Implementation Plan for Regional Haze, at 27 (March 2008).

https://www.iowadnr.gov/portals/idnr/uploads/air/insidednr/implementation/rh_sip_final.pdf ⁵ Emissions reduction comparison reflects 2005-2007 average emissions to 2017-2019 average emissions from EPA Clean Air Markets Program Data tool, available at https://ampd.epa.gov/ampd/.

Parameters	Louisa Unit 101	Walter Scott Jr. Unit 3	Walter Scott Jr. Unit 4
SO ₂ (tons/yr)	5,592	8,041	1,500
SO ₂ (lb/MMBtu)	0.292	0.357	0.067
NOx (tons/yr)	3,774	5,030	1,239
NOx (lb/MMBtu)	0.184	0.223	0.054
Capacity Factor based on MWh	59.4%	72.0%	61.5%
Gross Heat Input MMBTU/yr	40,985,344	45,119,088	45,065,502
Power Output (MWh)	4,224,041	4,576,617	4,967,733

Table 1 - Most Recent 3-Year Average Emissions and Operation Baseline (2017-2019)

In addition to any changes that might be required by the RHR, the average annual utilization of these units will likely decrease due to increased integration of renewable energy, particularly wind, into the grid. However, for conservatism, the following analysis assumes future utilization for the above units would not change significantly between now and 2028, the end of the second regional haze planning period, except for any RHR controls.

5.0 FOUR FACTOR ANALYSIS SULFUR DIOXIDE (SO2)

5.1 Identification of Potentially Feasible Emission Controls

The first step in a Four Factor Analysis is the identification of all potentially feasible emissions control options for each source. This section presents an evaluation of the technical feasibility of potential SO₂ control options for the Louisa and Walter Scott Jr. coal-fired boilers. The following sections then evaluate each option relative to the statutory four factors (cost, timing, other impacts, and remaining useful life), the requirements of the RHR, and potential visibility benefits.

There are multiple technology options for controlling the emissions of SO₂ from coal-fired power plants. These options fall into three general categories: (Wet FGD; Dry FGD; or Dry Sorbent Injection (DSI). The most effective of these options for controlling SO₂ for coal-fired boilers is a Wet FGD system. The next most effective control is a Dry FGD system. All three of the MEC coal-fired boilers under review are already equipped with Dry FGD systems.

The third type of control, DSI, is an alternative method of contacting lime or other reagent with the exhaust gas. However, as a stand-alone control it is less effective than the boilers' existing controls. Also, while adding DSI might provide some additional benefit to a Dry-FGD-equipped boiler burning high sulfur coal, which can have reagent addition constrained due to limitations associated with inlet and outlet temperatures, MEC's boilers burn low sulfur coal, and therefore the Dry-FGDs on the boilers are not constrained by temperature. Since DSI is less effective than the existing Dry-FGD systems and its addition would not improve overall performance, DSI is not considered further in this analysis.

Walter Scott Jr. Unit 4

AECOM Imagine it. Delivered.

Walter Scott Jr. Unit 4 has a Babcock & Wilcox Dry-FGD system for SO₂ control. The existing FGD system operates very efficiently and achieves average performance levels below 0.067 lb SO₂ per MMBtu (2017-2019 average). This unit was subject to Best Available Control Technology (BACT) when it was initially installed, and its current extremely low emission rate is still consistent with recent BACT determinations based on a review of the EPA's RACT/BACT/LAER Clearinghouse (RBLC) database (see Attachment C). MEC has not identified any changes to the current Dry FGD system that could improve its performance, which already provides the same level of emission control as a Wet FGD system. Accordingly, there are no technically feasible better SO₂ control options for Walter Scott Unit 4.⁶

Louisa Unit 101 and Walter Scott Jr. Unit 3

Louisa Unit 101 and Walter Scott Jr. Unit 3 have been retrofitted with Alstom Dry FGD systems for SO₂ control. The performance of these Dry FGD systems currently average 0.292 lb/MMBtu and 0.359 lb/MMBtu, respectively, for Unit 101 and Unit 3 (2017-2019 average). MEC identified two possible control options for reducing SO₂ emissions from these two units:

- Operational Improvements to Existing Dry FGD; or
- Replace existing system with a new Wet FGD system.

Operating Improvements to Existing Dry-FGD system.

The Alstom Dry FGD systems used by Unit 101 and Unit 3 spray an aqueous sorbent slurry into the boiler exhaust in a spray dryer absorber vessel. The spray dryer absorber is upstream of the particulate control baghouse. The system uses lime (CaO) as the sorbent, creating an alkaline calcium hydroxide slurry. The absorber vessel has sufficient residence time to allow the SO₂ in the flue gas to absorb into the alkaline slurry and chemically react with the lime forming calcium sulfite (CaSO₃) and calcium sulfate (CaSO₄). The heat from the flue gas evaporates the water from the slurry droplets forming a dry waste byproduct that is collected in the bottom of the absorber vessel and in the downstream baghouse. A portion of the collected dry solids, which contain some unreacted lime, are recycled with the slurry and fresh lime is added to maintain reactivity.

Table 4 below shows the current allowable SO₂ emissions rate (lb/hr or tons/yr) in the Title V air permit for these two boilers along with their actual performance (2017-2019 average).

⁶ 2016 Draft Guidance, at 77 ("A source subject to a federally enforceable emission limit that effectively requires it to apply the most effective control technology for a given PM species or precursor may be screened out of further analysis for that pollutant."); 2019 Final Guidance, at 22-24 ("If a source owner has recently made a significant expenditure that has resulted in significant reductions of visibility impairing pollutants at an emissions unit, it may be reasonable for the state to assume that additional controls for that unit are unlikely to be reasonable for the upcoming implementation period.").

	Louisa Unit 101	Walter Scott Jr. Unit 3
SO2 Permit Emissions Limit	3,449.6 lb/hr	12,632.1 tons/yr
SO2 Ib/MMBtu Permit Limit	0.96 lb/MMBtu	1.2 lb/MMBtu
SO ₂ Actual Average Performance	0.292 lb/MMBtu	0.357 lb/MMBtu

Table 4 – SO2 Permit Allowable Emissions and Unit Actual Performance

The Dry FGD systems on both boilers currently achieve emissions performance much better than required by their current permits. However, MEC estimates that, with an increase to the lime addition rate, SO₂ emissions can be lowered further. MEC determined that the units are capable of consistently achieving performance of 0.10 lb/MMBtu by sufficiently increasing lime addition. This improvement of the existing Dry FGD systems operation is a technically feasible SO₂ control option.

Replace with New Wet FGD system

Wet FGD systems use a recirculating liquid stream in a scrubber to absorb SO₂ from the coal combustion flue gas. An alkaline reagent, typically lime (CaO) or limestone (CaCO₃), is used to maintain the pH of the recirculating liquid to ensure continual and effective absorption. Dissolved SO₂ forms a sulfite ion (SO₃⁻²) which then reacts with the dissolved calcium from the reagent to form calcium sulfite (CaSO₃). Some FGD systems also utilize a forced oxidization process, which further oxidizes the calcium sulfite to produce marketable gypsum.

Wet FGD systems are typically somewhat more efficient than dry systems. A new state-of-theart Wet FGD system can achieve up to 98%⁷ control down to about 0.06 lb/MMBtu⁸ and represents the highest level of SO₂ control for a coal-fired boiler. However, Wet FGD has very high capital and operating costs.

Replacing the existing Dry FGD systems at Louisa Unit 101 and Walter Scott Jr. Unit 3 with a new Wet FGD system is a technically feasible control option.

5.2 Analysis of Four Statutory Factors

The previous section presented an analysis of the control technologies that are technically feasible to further lower the emissions of SO₂ from the coal-fired boilers at the Louisa Generating Station and Walter Scott Jr. Energy Center. There are no technically feasible control options for further lowering the emissions of the Walter Scott Jr. Unit 4, which is already well controlled. For the other two boilers, two options were identified as being technically feasible for potential improvements to SO₂ control. These technically feasible options are:

⁷ EPA Flue Gas Desulfurization Fact Sheet: https://www3.epa.gov/ttncatc1/dir1/ffdg.pdf

⁸ Lowest level in RBLC Database for Coal-Boilers – See Attachment C.

- 1. Operational improvements to the existing Dry FGD systems; and
- 2. Replacing the existing controls with a new Wet FGD system.

These options are analyzed in this section relative to the four statutory factors listed in the RHR.

5.2.1 Factor 1 - Cost of Implementing Emission Controls

For technically feasible control options, the first of the four factors to be evaluated is the reasonableness of the cost of the control option. There are a number of metrics that can provide perspective on the economic reasonableness of a particular control. The economic metric detailed in this section is the control's cost-effectiveness relative to its emissions reduction determined by taking total annualized costs for the control divided by the total annual emissions reduction. This yields a "cost-effectiveness" value expressed as dollars per ton of pollutant reduced. High \$/ton values indicate that a control measure is not cost-effective. Another economic metric presented in Section 7.0 of this report is the cost-effectiveness in units of \$/visibility improvement.

Table 5 below shows the current baseline emissions for these two boilers and the projected 2028 emissions employing each of the two identified technically feasible control options.

Unit	Current Baseline SO₂ (tons/yr)	Option 1 Projection w/Improvements to Dry FGD SO ₂ (tons/yr)	Option 2 Further Improvement if Wet FGD (tons/yr)
Louisa Unit 101	5,592	2,049	1,230
Walter Scott Jr. Unit 3	8,041	2,256	1,354

Table 5 – Projected Emissions with Each SO₂ Control Option

SO2 Option 1: Improvement of Existing Dry FGD

MEC determined that the existing Dry FGD systems on these two boilers are capable of consistently achieving performance of 0.10 lb/MMBtu by increasing lime addition. MEC estimated the increased cost to operate the existing Dry FGD system at this higher level of performance using the EPA's Retrofit Cost Analyzer (RCA) spreadsheet, which is an Excelbased tool developed by the EPA and includes a spreadsheet tab for estimating the cost of a Spray Dryer Absorber Dry-FGD system.⁹ Since these units already have an existing Dry FGD system, MEC ignored the capital cost portion of the Retrofit Cost Tool and only included the operating costs increases associated with increased lime usage and commensurate increased waste disposal charges.

⁹ Available at: <u>https://www.epa.gov/airmarkets/retrofit-cost-analyzer</u>. This EPA-generated spreadsheet uses the same equations as the FGD section of the EPA Control Cost Manual. Therefore, the two are equivalent.

AECOM Imagine it. Delivered.

As shown in Table 6 below, the cost-effectiveness of this control option is less than \$300/ton. Therefore, the statutory factor for the cost of compliance weighs in favor of making operational improvements to the existing Dry FGD systems at Louisa Unit 101 and Walter Scott Jr. Unit 3.

SO2 Option 2: New Wet FGD System

The capital costs estimate for installing Wet Limestone FGD systems relies on the EPA's RCA spreadsheet tab for Wet FGD systems. MEC considers the budgetary costs estimated by this method and shown in Table 6, to be conservative.

The operating costs estimates for a Wet FGD system reflect the incremental increased annual operating and maintenance expenses associated with use of a Wet FGD system (excluding capital recovery) versus continued operation of the existing Dry FGD system. Annual operating and maintenance (O&M) costs for both a new Wet FGD system and the operating cost credits for removing the existing Dry FGD system are based on the EPA RCA spreadsheet discussed above. This cost estimating tool estimates both fixed and variable O&M costs for a Wet FGD system and Dry FGD systems. The operating costs of a Wet FGD system include limestone reagent, waste disposal, wastewater treatment, and auxiliary power. The operating costs credit for discontinued operation of the dry system are based on operating that system at each unit's current "baseline" performance (not the higher cost associated with improved Dry FGD performance).

Table 6 summarizes the control cost evaluations for each of the above SO₂ control options for both these boilers. A further description of the basis of these costs is provided below and full details are provided in Attachment A.

	Louisa Unit 101		Walter Scott Jr. Unit 3	
	Improved		Improved	
	Dry FGD	Wet FGD	Dry FGD	Wet FGD
Current Baseline Emissions (Tons/Yr)	5952	5952	8041	8041
Emissions With Controls (Tons/yr)	2049	1230	2256	1354
Ib/MMBtu with Controls	0.1	0.06	0.1	0.06
Capital Cost (\$)	n/a	\$398,140,000	n/a	\$370,150,000
Capital Cost Recovery (\$/yr)	n/a	\$40,136,000	n/a	\$37,314,000
Annual O&M (\$)	\$1,102,000	\$1,986,000	\$1,248,000	\$3,849,000
Total Annualized Costs(\$)	\$1,102,000	\$42,122,000	\$1,248,000	\$41,163,000
Emission Reduction vs Baseline (T/yr)	3,903	4,722	5,785	6,687
Cost Effectiveness (\$/Ton)	\$282	\$8,920	\$216	\$6,160
Incremental Cost-Effectiveness \$/Ton	n/a	\$50,090	n/a	\$44,250

Table 6 – Summary of SO ₂ Control Op	ption Cost-Effectiveness
---	--------------------------

Annual Capital Recovery (\$/yr): For determining the control option cost-effectiveness, the one-time capital portion of the cost needs to be annualized. This is done using the Capital Recovery Factor (CRF) methodology in the EPA's Air Pollution Control Cost Manual¹⁰, which calculates an annual cost or "annual payment" during the life of the investment that is equivalent to the one-time capital expense. The above Annual Capital Recovery is calculated assuming an interest rate of 7.862% and control equipment life of 20 years.

The interest rate assumption of 7.862% is MEC's firm-specific interest rate approved by the Iowa Utilities Board. Use of a firm-specific interest rate for annualizing capital costs is supported by the EPA Control Cost Manual which states the following¹¹:

"For input to analysis of rulemakings, assessments of private cost should be prepared using firm-specific nominal interest rates if possible"

The relevant firm-specific interest rate for MEC is the "weighted average cost" of capital as documented in the most recent (2013) General Rate Case agreement approved by the Iowa Utilities Board of 7.862%. (See Attachment D). This rate is used in calculating the allowable increase to customer's rates for MEC to recover the costs of prudent capital expenditures. The Utilities Board-approved rate recognizes that MEC's capital expenditures are partially funded through issuance of debt and partially through equity financing. Accordingly, this rate represents a weighted average of debt obligations (e.g. issued bonds) and MEC's allowed return on equity financing.

Since the boilers do not have an established retirement date, the 20-year equipment life assumption is based on the life of the control equipment itself, consistent with EPA's Control Cost Manual. However, the assumption that these units will be operating for 20 years after implementation of new Wet FGD control at current levels of utilization is considered very conservative.

Total Annual Costs (\$/yr): This value is the sum of the Annual Capital Recovery and the Other Annual Operating Costs and provides a single total annual cost of the control.

Cost Effectiveness and Incremental Cost Effectiveness(\$/ton): This value is the Total Annual Costs \$/yr divided by the Emissions Reduction tons/yr to yield a cost-effectiveness in \$/ton. A high \$/ton value indicates that a control option is not cost effective. The average cost effectiveness of each option is shown in Table 6, as well as the incremental cost effectiveness for using a Wet FGD system compared to the option to improve the existing Dry FGD system. Consideration of incremental cost effectiveness along with average cost effectiveness was recommended in the EPA's BART guidelines and 2019 Final Guidance¹², and it provides an

¹⁰ EPA Air Pollution Control Cost Manual, Section 1, Introduction, Chapter 2, Cost Estimation: Concepts and Methodology, at 22 (Nov. 2017).

¹¹ EPA Air Pollution Control Cost Manual, Section 1, Introduction, Chapter 2, Cost Estimation: Concepts and Methodology, Nov. 2017, pp. 16

¹² Guidance on Regional Haze State Implementation Plans for the Second Implementation Period, August 20, 2019, page 40 which states: *"States may consider the incremental differences in cost and visibility benefits between the alternative control measures for a single source and may use an incremental version of the cost/ton and cost/inverse megameters metrics when doing so."*

appropriate basis to compare the relative cost effectiveness of different control options, particularly when a more effective control is significantly more expensive but only slightly more effective than another option.

The costs of compliance for a Wet FGD system is more expensive than control measures typically required for regional haze. For example, BART determinations made in previous regional haze actions have typically been well below \$5,000 per ton. Additionally, the incremental cost effectiveness of this option compared to improvements to the existing Dry FGD system confirms that Wet FGD is an extremely expensive control option. Accordingly, the statutory factor for the cost of compliance weighs against the use of a Wet FGD to make reasonable progress.

The cost-effectiveness of operational improvements to the existing system of less than \$300/ton is reasonable and weighs in favor of making operational improvements to the existing Dry FGD systems at Louisa Unit 101 and Walter Scott Jr. Unit 3. These operating improvements would reduce emissions from these two units by a combined total of 9,688 tons/yr SO₂ (at past baseline operating levels).

5.2.2 Factor 2 - Time Necessary to Install Controls

MEC estimates the following time needed to install each of the options evaluated:

- Control Option 1, Improvements to Existing Dry FGD System: Since no physical modification is necessary to allow implementing improvements to the operation of the existing controls, they could be implemented relatively quickly. MEC estimates it would take approximately six months for testing and optimization of the system after SIP approval. Therefore, the time necessary for installing controls does not weigh against this control option.
- Control Option 2, New Wet FGD System: MEC estimates that these additional controls could be installed within five years after SIP approval. This time is needed to design, permit, procure, install and startup the new system. Additionally, the installation of these controls will require the units to be out of service. Therefore, the implementation schedule would need to allow a unit's planned outage to accommodate regional electricity demands and be coordinated with the maintenance shutdowns of other regionally affected utilities.

5.2.3 Factor 3 - Energy and Non-air Quality Impacts of Controls

Both of the control options evaluated have some impacts as described below. However, these impacts do not weigh heavily for or against these controls options as possible reasonable progress control measures. (Note: The operating costs associated with the below items were included in the above analysis of the costs of compliance.)

 Control Option 1, Improvements to Existing Dry FGD System: Increasing the use of lime injection will result in a small increase to material handling PM emissions and solid waste disposal costs. • Control Option 2, New Wet FGD System: Conversion to use of a Wet FGD system has several environmental impacts compared to a dry system. Wet FGD systems create significantly greater volumes of waste that must be dewatered and disposed. A wet system uses significantly more water than dry systems. They also generate a wastewater stream that must be treated and discharged.

5.2.4 Factor 4 - Remaining Useful Life of Facility

Because no specific retirement date is yet planned, this analysis conservatively assumes that the units may be operational for the life of the control equipment for each option under evaluation. Thus, the statutory factor for remaining useful life does not weigh for or against either control option. However, the assumption that the units will be operating for 20 years at current levels of utilization is considered very conservative.

5.3 Conclusions of SO₂ Four Factor Evaluation

At the request of the DNR, a Four Factor Analysis was prepared for SO₂ emissions for Louisa Unit 101 and Walter Scott Jr. Units 3 and 4. All three units are coal-fired boilers.

Walter Scott Jr. Unit 4 is equipped with a highly efficient Dry FGD system, which achieves average performance levels of 0.067 lb SO₂/MMBtu. This extremely high level of performance is consistent with the lowest limits in the EPA's RBLC database, and no technically feasible better SO₂ control options for Walter Scott Unit 4 were identified. Accordingly, no further SO₂ emission reductions from this unit are necessary to make reasonable progress.

Louisa Unit 101 and Walter Scott Jr. Unit 3 are both retrofitted with Dry FGD systems for SO₂ control. The average performance of these units' existing FGD systems is currently 0.292 lb/MMBtu and 0.357 lb/MMBtu, respectively, for Unit 101 and Unit 3 (2017-2019 average).

One technically feasible option to reduce SO₂ emissions from these sources is to replace the existing control systems with new Wet FGD systems. This option would provide significant SO₂ emissions reductions but is extremely expensive. The average cost-effectiveness of installing a new Wet FGD system is over \$6,000/ton, which weighs against this option. Additionally, the incremental cost-effectiveness of this control option versus the other SO₂ control option is over \$44,000/ton. Therefore, MEC recommends that the DNR conclude that new Wet FGDs are not necessary to make reasonable progress in this regional haze planning period.

The other option identified for reducing SO₂ emissions from these sources is operational improvements of the existing Dry FGD system through an increase to the lime addition rates. This could improve the performance on both boilers to 0.10 lb SO₂/MMBtu, which would provide approximately 9,688 tons/yr of SO₂ emissions reduction (total for both units) at a cost-effectiveness of less than \$300/ton SO₂. Given the low cost of this option, MEC recommends these operating improvements to lower SO₂ emissions as a reasonable progress control measure for the second regional haze planning period. Specifically, MEC recommends that the DNR include a new emission limitation of 0.10 lb/MMBtu SO₂ on a 30-boiler operating day

rolling average for Unit 101 and Unit 3. Because this option does not require the installation of new equipment, MEC recommends that the DNR make the proposed emission limitation effective within six months of EPA approval of the Iowa regional haze SIP (to allow time for testing and optimization of the system).

6.0 FOUR FACTOR ANALYSIS NITROGEN OXIDES (NOx)

6.1 Identification of Potentially Feasible Emission Controls

There are multiple technology options for controlling the emissions of NOx from coal-fired power plants. All three of the coal-fired boilers at these facilities are already equipped with Low NOx burners and Overfire Air, which help minimize NOx emissions. Beyond these controls, the other technically feasible controls for NOx are SNCR or SCR. As discussed below, Walter Scott Jr. Unit 4 already has SCR.

Walter Scott Jr. Unit 4

Walter Scott Jr. Unit 4 currently utilizes SCR for NOx control, as well as low NOx burners and overfire air. This boiler's overall control system performance achieves average levels of 0.054 lb/MMBtu. This extremely high level of performance is consistent with the lowest limits in the EPA's RBLC database (see Attachment C), which also use SCR. Operation of a well-performing SCR system is the highest level of NOx control available. Accordingly, there are no technically feasible better NOx control options for Walter Scott Unit 4. Therefore, this Four Factor Analysis does not contain any further evaluation of this well-controlled boiler.¹³

Louisa Unit 101 and Walter Scott Jr. Unit 3

Louisa Unit 101 and Walter Scott Jr. Unit 3 are both controlled with low NOx burners and overfire air for NOx control. The average NOx performance of these boilers is currently 0.184 lb/MMBtu and 0.223 lb/MMBtu, respectively, for Unit 101 and Unit 3 (2017-2019 average). These NOx performance levels are very consistent and are an inherent function of each boiler's current combustion control equipment design. MEC identified two possible control options for further reducing NOx emissions from these two units. These are the additional add-on controls of SNCR or SCR:

<u>SNCR</u>

In a selective non-catalytic reduction system, urea or ammonia-based chemicals are injected into the combustion unit. The ammonia (NH₃) in the reagent reacts with the NOx in the flue gas to form elemental nitrogen (N₂). The reaction is very temperature dependent and only occurs in a narrow temperature window that is ideally between 1,600 °F to 1,900 °F. Below those

¹³ 2016 Draft Guidance, at 77 ("A source subject to a federally enforceable emission limit that effectively requires it to apply the most effective control technology for a given PM species or precursor may be screened out of further analysis for that pollutant."); 2019 Final Guidance, at 22-24 ("If a source owner has recently made a significant expenditure that has resulted in significant reductions of visibility impairing pollutants at an emissions unit, it may be reasonable for the state to assume that additional controls for that unit are unlikely to be reasonable for the upcoming implementation period.").

temperatures, the reaction is not initiated. Much above those temperatures, ammonia can be converted into NOx, increasing emissions and ammonia consumption.

A successful SNCR installation requires injection of the reagent at a location within the boiler where the flue gas is in the optimal temperature range and with sufficient residence time at that temperature to promote the reaction. The optimum location within a combustion unit can change at different loads, decreasing the average effectiveness of SNCR on units with wide variations in loading, as is the case with these units. SNCR systems are typically designed with multiple injection levels that approximately match the optimum temperature window at varying loads.

In addition to temperature, other site-specific factors can influence the effectiveness of SNCR on NOx control. These influencing variables include mixing, residence time, reagent to NOx ratio, NOx concentration in the flue gas, and allowable ammonia slip levels (unreacted ammonia).

SNCR is considered a technically feasible control option. However, MEC estimates that SNCR would achieve no better than 15% NOx reduction on these units based on three factors. First, SNCRs are less effective on larger boilers because it is more difficult to evenly distribute the reagent throughout the volume of the furnace, particularly towards the center of the furnace. When the reagent is not evenly distributed, ammonia slip increases for a given level of NOx reduction, which limits the practical ability to achieve greater NOx reduction efficiencies. Second, widely varying loads likewise inhibits mixing and necessary reaction conditions by affecting flue gas flow patterns and optimal flue gas temperature locations, increasing the difficulty associated with determining the proper amount of reagent to inject, and the optimum location of those injections. Although multiple injection locations can be employed, the locations are typically fixed by boiler geometry. It is not possible to optimize reagent injection and mixing at all load conditions, and the impact of this is an increase in ammonia slip, thus reducing the NOx reduction potential. Third, removal efficiencies are typically lower at units that already have relatively low pre-control NOx concentrations, since there is less NOx available for generating the chemical reactions intended with SNCR. Unlike a technology such as SCR, the driving force for SNCR-type reactions falls off quickly when the baseline NOx concentration falls below about 0.2 lb/MMBtu.

All three of these factors are likely to reduce the effectiveness of SNCR at these boilers—they are larger than most (726 and 812 MW, compared to the average utility boiler with SNCR of about 350 MW), they have operated, and are expected to continuing operating, at widely varying loads (the units are often called to ramp from low to high load on a daily basis to inversely follow the increased penetration of renewable energy generation), and pre-control NOx is well below the industry average (0.18-0.22 lb/mmbtu, compared to more typical utility boiler SNCR application of about 0.4 lb/mmBtu). A removal efficiency of 15% for SNCR is not only consistent with these site-specific characteristics, it is consistent with MEC's experience with SNCR removal at other similar facilities.

<u>SCR</u>

An SCR system utilizes similar chemical reactions as discussed above for an SNCR system. However, the presence of a catalyst facilitates the preferred chemical reactions and allows them to occur at lower operating temperatures and at much higher efficiencies.

A nitrogen-based reagent such as ammonia or urea is injected into the flue gas ductwork. The gases mix with the reagent and then enter a reactor module containing a specialized catalyst typically composed of active metals such as vanadium and tungsten. The reagent selectively reacts with the NOx in the presence of the catalyst and oxygen and converts to elemental nitrogen. An SCR system is typically capable of achieving 70% to 90% removal of NOx. This increased effectiveness comes at a significantly increased capital and operating cost than SNCR.

SCR is considered a technically feasible NOx control option for these boilers and is assumed to be capable of achieving 0.05 lb/MMBtu, which is the lowest NOx emissions limit for SCR in the RBLC database.

Table 7 below shows the current actual NOx emissions performance of these boilers and the NOx estimated to be achievable with the two candidate control options

	Louisa Unit 101	Walter Scott Jr. Unit 3
NOx Actual Average Performance	0.184 lb/MMBtu	0.223 lb/MMBtu
NOx with SNCR	0.157 lb/MMBtu	0.181 lb/MMBtu
NOx with SCR	0.05 lb/MMBtu	0.05 lb/MMBtu

Table 7 – Actual and Projected NOx Emission Rates

6.2 Analysis of Four Statutory Factors for NOx Controls

The previous section identified the control technologies that are technically feasible to further lower the emissions of NOx from the coal-fired boilers at MEC's Louisa Generating Station and Walter Scott Jr. Energy Center. There are no technically feasible control options for further lowering the emissions of the Walter Scott Jr. Unit 4, which is already well-controlled. For the other two units, two options were identified as being technically feasible for further reducing NOx emissions. These technically feasible options are

- Selective Non-Catalytic Reduction (SNCR); or
- Selective Catalytic Reduction (SCR).

These options are analyzed in this section relative to the four statutory factors.

6.2.1 Factor 1 - Cost of Implementing Emission Controls

For technically feasible control options, the first of the four factors to be evaluated is the reasonableness of the cost of the control option. The economic metric detailed in this section is the control's cost-effectiveness relative to its emissions reduction. High \$/ton values indicate that a control measure is not cost-effective. Another economic metric presented in Section 7.0 of this report is the cost-effectiveness in units of \$/visibility improvement.

Table 8 below shows the current baseline emissions for these two boilers and the 2028 emissions projected with each of the two identified technically feasible control options.

Unit	Current Baseline NOx (tons/yr)	Option 1 Projection with SNCR (tons/yr)	Option 2 Projection with SCR (tons/yr)
Louisa Unit 101	3,774	3,208	1,025
Walter Scott Jr. Unit 3	5,030	4,275	1,128

Table 8 – Projected Emissions with Each NOx Control Option

Option 1: SNCR

The capital costs and operating costs for SNCR for these units are based on the EPA's SNCR Retrofit Cost Tool Calculation Spreadsheet which follows the cost methodology outlined in the EPA's Control Cost Manual¹⁴. A retrofit factor of 1.0 was used for these units, which assumes that retrofit of SNCR would not have any significant site-specific cost complications. MEC considers the use of this methodology and assumptions to be conservative compared to MEC's actual experience on other units. Therefore, actual SNCR retrofit costs may be higher than assumed in this analysis. Details of these capital and operating cost estimates are provided in Attachment A.

Option 2: SCR

The capital and annual operating costs for SCR for these units were estimated using cost estimating spreadsheets developed by the EPA for this purpose, which follow the methodology and formulas for SCR cost estimates in the EPA's Control Cost Manual.¹⁵ A retrofit factor of 1.0

¹⁴ EPA Air Pollution Control Cost Manual, Section 4 (NOx Controls) Chapter 1: "Selective Noncatalytic Reduction," April 2019 and spreadsheet available at <u>https://www.epa.gov/airmarkets/retrofit-cost-analyzer#:~:text=The%20Retrofit%20Cost%20Analyzer%20(RCA,were%20developed%20to%20inform%20modelinghttps://www.epa.gov/airmarkets/retrofit-cost-analyzer#:~:text=The%20Retrofit%20Cost%20Analyzer%20(RCA,were%20developed%20to%20inform%20modeling.</u>

¹⁵ <u>EPA Air Pollution Control Cost Manual</u>, Section 4 (NOx Controls) Chapter 2: "Selective Catalytic Reduction," April 2019, and spreadsheet available at <u>https://www.epa.gov/economic-and-cost-analysis-air-pollution-regulations/cost-reports-and-guidance-air-pollution</u>

was used for these units, which assumes that retrofit of SCR would not have any significant sitespecific complications. This approach is conservative because actual retrofit costs may be higher.

Tables 9 and 10 below summarize the control cost evaluations for SNCR and SCR for improved NOx control of these two boilers. Each of these options is a stand-alone control option.

SNCR	Louisa Unit 101	Walter Scott Jr. Unit 3
Capital Costs	\$14,175,300	\$ 13,851,200
Annual Capital Recovery	\$1,429,000	\$1,396,300
Annual Operating Costs	\$2,192,000	\$2,844,000
Total Annual Costs	\$3,621,000	\$4,240,300
NOx Reduction tons/yr	566	755
Cost-Effectiveness \$/ton	\$6,398	\$5,616

 Table 9 – SNCR Retrofit Cost Effectiveness (NOx Option 1)

Table 10 – SCR Retrofit Cost Effectiveness (NOx Option 2)

SCR	Louisa Unit 101	Walter Scott Jr. Unit 3
Capital Costs	\$236,140,160	\$238,436,408
Annual Capital Recovery	\$20,709,492	\$20,910,873
Annual Operating Costs	\$3,562,450	\$3,860,815
Total Annual Costs	\$24,271,942	\$24,771,688
NOx Reduction tons/yr	2,739	3,849
Cost-Effectiveness \$/ton	\$8,862	\$6,436

For annualization of the capital expenditures, MEC assumed an interest rate of 7.862% as explained in Section 5.2.1. For equipment life, MEC assumed 20 years for SNCR and 30 years for SCR, which is consistent with the EPA Control Cost Manual typical life for these types of controls.

The above NOx control options range in cost-effectiveness from approximately \$5,600/ton to \$8,800/ton. These values are relatively expensive on a dollar per ton basis and extremely expensive from a total capital investment standpoint. Many states have used \$5,000/ton as a screening cutoff for excluding further evaluation of controls in this and previous RHR reviews.

As such, the statutory factor for the cost of compliance weighs against a determination that these control options are necessary to make reasonable progress toward visibility improvements.

As a sensitivity case, MEC also considered whether the cost effectiveness of SNCR would change significantly if the analysis assumed SNCR could achieve 20% control of NOx instead of the 15% removal efficiency projected due to the site-specific characteristics identified above. That sensitivity analysis concluded that a 20% removal efficiency assumption would not significantly improve the cost-effectiveness of SNCR—the cost-effectiveness on this basis for Louisa would be \$5,660/ton and Walter Scott Jr Unit 3 would be \$5,120/ton. These values aren't significantly different because, although NOx reductions would be higher, the cost would also be higher, due to, increase the operating costs (reagent injection, waste costs, water costs, etc.).

6.2.2 Factor 2 - Time Necessary to Install Controls

MEC estimates that SNCR could be implemented within three years and SCR would be implemented within five years from the date the control requirements become effective. This time is needed to design, permit, procure, install, and startup the new system. Additionally, the installation of either of these controls will require the units to be out of service. Therefore, the implementation schedule would need to accommodate regional electricity demands and be coordinated with the maintenance shutdowns of other regionally affected utilities.

6.2.3 Factor 3 - Energy and Non-air Quality Impacts of Controls

Both of the control options evaluated have some impacts as described below. However, these impacts do not weigh heavily for or against these controls options as possible reasonable progress control measures.

- Both SNCR and SCR utilize some form of ammonia as a reagent to promote the conversion of NOx to elemental nitrogen and water. As a result of imperfect mixing between the flue gas and the reagent, a greater than stoichiometric amount of reducing agent must be injected in order for the NOx reduction target to be achieved. The excess ammonia remains unreacted in the process and is emitted out the stack as ammonia "slip". Ammonia emissions associated with SCR are typically between 2 to 10 ppm and with SNCR are between 10 to 20 ppm. Ammonia emissions can combine with other pollutants to form fine particulate matter.
- Ammonia for these processes can be provided using either anhydrous ammonia, aqueous ammonia, or urea. Storage and use of these forms of ammonia, especially anhydrous ammonia, can raise significant safety concerns. However, with proper system design and operation, these safety issues are manageable.
- Retrofitting SCR would result in an increase in the parasitic electrical load of the station.
 SCR systems require that auxiliary power for the ancillary systems that support the SCR.
 Additionally, placement of the SCR catalyst grid in the exhaust flow path of the boiler causes backpressure, which must be overcome by supplying additional power to the existing flue

gas fan systems. SNCR systems would also have some smaller auxiliary power consumption.

6.2.4 Factor 4 - Remaining Useful Life of Facility

Because no specific retirement date is yet planned, this analysis assumes that the units may be operational for the life of the equipment comprising the control options under evaluation. Thus, the statutory factor for remaining useful life does not weigh for or against either control option. However, the assumption that the units will be operating for 20 years at current levels of utilization is considered very conservative.

6.3 Conclusions of NOx Four Factor Evaluation

At the request of the DNR, this Four Factor Analysis was prepared for NOx emissions for MEC Louisa Unit 101 and Walter Scott Jr. Units 3 and 4.

Walter Scott Jr. Unit 4 is equipped with SCR for NOx control, as well as low NOx burners and overfire air. This boiler's current NOx performance averages 0.054 lb NOx per MMBtu. This extremely high level of performance is consistent with the lowest limits in the EPA's RBLC database (see Attachment C), which also use SCR. Operation of a well-performing SCR system is the highest level of NOx control available. Accordingly, there are no technically feasible better NOx control options for Walter Scott Jr. Unit 4. Therefore, no further NOx emission reductions from this unit are feasible for the second regional haze planning period.

Louisa Unit 101 and Walter Scott Jr. Unit 3 are controlled with low NOx burners and overfire air for NOx control. The NOx performance of these boilers currently average 0.184 lb/MMBtu and 0.223 lb/MMBtu, respectively, for Unit 101 and Unit 3 (2017-2019 average). MEC identified two possible control options for further reducing NOx emissions from these two units: SNCR or SCR. While both options are technically feasible, they are both very expensive.

SNCR capital costs for each unit are approximately \$14 million dollars and total annual costs for each unit would exceed \$2 million per year. The resulting cost-effectiveness of SNCR is approximately \$6,400/ton for Unit 101 and \$5,600/ton for Unit 3.

SCR capital costs are over \$230 million per unit with total annual costs of over \$24 million. The resulting SCR cost-effectiveness is approximately \$8,860 for Unit 101 and \$6,400 for Unit 3.

These cost-effectiveness values for SNCR and SCR are higher than are typically required for RHR controls. Therefore, MEC recommends that the DNR conclude that neither SNCR nor SCR are necessary to make reasonable progress in this second regional haze planning period.

7.0 ADDITIONAL CONSIDERATIONS - VISIBILITY IMPACTS

The goal of the RHR is to improve visibility in Class I areas. Accordingly, when evaluating possible emissions reduction projects or programs, it is appropriate to consider the degree to which individual control options might contribute towards the goal of improving visibility. Although states have a statutory requirement to consider the four "statutory factors" addressed in the earlier portion of this report, the statute, EPA's RHR, and EPA's guidance also allow consideration of visibility impacts of candidate control options. This section of the report addresses the potential visibility benefits of the candidate control options for SO₂ and NOx control at Louisa and Walter Scott Jr. As explained below, because the units at Louisa and Walter Scott Jr. are extremely far away from any Class I area, modeling indicates that further improvements to their emission controls would have little visibility benefits at any of the regional Class I areas.

7.1 EPA Guidance Regarding Considerations of Visibility Impacts

The EPA issued draft regional haze guidance in 2016 and finalized that guidance in August 2019.¹⁶ Both versions of the guidance and a recent July 2021 clarification memo¹⁷ all allow a state, as part of its consideration of emission controls, the discretion to consider the visibility benefits of candidate control options. The EPA's guidance states the following:

2016 Draft Guidance:

[G]iven that the goal of the regional haze program is to improve visibility, the EPA believes that states may consider visibility in addition to the four statutory factors when making their reasonable progress determinations, as long as they do so in a reasonable fashion."

2019 Final Guidance

Because the goal of the regional haze program is to improve visibility, it is reasonable for a state to consider whether and by how much an emission control measure would help achieve that goal.

EPA interprets the CAA and the Regional Haze Rule to allow a state reasonable discretion to consider the anticipated visibility benefits of an emission control measure along with the other factors when determining whether a measure is necessary to make reasonable progress.

2021 Clarification Memo

EPA has interpreted the CAA and RHR as allowing states to consider visibility alongside the four statutory factors when determining the emission reduction measures that are necessary to make reasonable progress.

¹⁶ <u>https://www.epa.gov/sites/production/files/2019-08/documents/8-20-2019</u> - regional haze guidance final guidance.pdf.

¹⁷ EPA Memorandum, Clarifications Regarding Regional Haze State Implementation Plans for the Second Implementation Period, Peter Tsirigotis, EPA, July 8, 2021.

Consequently, a control option that has insignificant or very small Class I visibility benefits and a relatively high cost can be rejected as unnecessary to make reasonable progress.

The preamble to the 1999 Regional Haze Rule (64 FR 35730) provides helpful context by specifying that an impact of less than 0.1 deciview constitutes a "no degradation" visibility change. Natural background visibility in most areas is about 10 -14 deciviews, so a 0.1 deciview impact is only about 1% of the 2064 natural visibility goal.

As background, it is also helpful to understand the two common parameters used to characterize the visibility impairment:

- **Light Extinction (bext, Mm**⁻¹) is the reduction in light due to scattering and absorption as it passes through the atmosphere. Light extinction is directly proportional to pollutant particulate and aerosol concentrations in the air and is expressed in units of inverse megameters or Mm⁻¹.
- **Deciview (DV)** is a unitless metric of haze that is proportional to the logarithm of the light extinction. Deciview correlates to a person's perception of a visibility change, with a change of 1 deciview being barely perceptible. This perceptibility threshold is ten times higher than the "no degradation" value of 0.1 DV referenced above.

While DV is the best parameter to relate the significance of a perceived visibility change, modeling produces results in the form of light extinction (Mm⁻¹). Light extinction is directly proportional to pollutant concentrations.

7.2 Approach to Understanding RHR Visibility Impacts of Iowa Sources

The visibility impacts to Class I areas from potential reductions of SO₂ or NOx emissions at the Louisa Generating Station and Walter Scott Jr. Energy Center can be estimated by analyzing the results of recent visibility modeling. The most useful modeling for this purpose for lowa sources is the modeling recently completed by the Lake Michigan Air Directors Consortium (LADCO), which is the Great Lakes/Upper Midwest Regional Planning Organization (RPO) for regional haze. Although lowa is not in the geographic area covered by this RPO, LADCO included lowa emissions in their visibility modeling. Additionally, LADCO "tagged" lowa statewide emissions in their modeling, which allows the identification of portions of the model predicted visibility impact of each haze species (e.g., sulfates and nitrates) attributable to all Iowa emission sources. The LADCO modeling did not tag individual Iowa facilities, but instead grouped all state of Iowa's emissions impacts into a single group for impact apportionment purposes. As a result of this grouping, their modeling provides only a single impact value for each haze species reflecting the combined the impact of all lowa statewide sources. Therefore, to use these lowa statewide impact results to estimate the impacts of specific facilities requires making some assumptions regarding the apportionment of the impacts based upon a proportion of precursor emissions for various sectors.

The most straightforward impact apportionment assumption would be to assume that the impacts of individual lowa sources are directly proportional to their emissions. Because lowa

sources are a long distance from any Class I area, the "per ton" impact of statewide emissions should be a reasonable approximation of the "per ton" visibility impact of any source within the state, regardless of its specific location or emission point characteristics. However, MEC has employed more conservative apportionment assumptions discussed below and further detailed in Attachment B.

7.3 Estimated Louisa and Walter Scott Visibility Impacts

The key data used to generate a conservative estimate of the potential impact of Louisa and Walter Scott emissions to Class I regional haze are a) the LADCO lowa apportionment results shown below in Table 11 and b) the emissions rates of lowa sources used in LADCO's modeling summarized below in Table 12.

Table 11 Modeled Impacts (Mm⁻¹) of All Iowa Emissions by LADCO for 2028 (20% Most Impaired)

Modeled Iowa Total Impacts Mm ⁻¹	Sulfate	Nitrate		
Boundary Waters Canoe Area	0.400	0.460		
Voyageurs NP	0.440	0.320		
Isle Royale NP	0.650	0.650		
Seney Wilderness Area	0.590	0.800		
	Maximum Impacts are Highlighted			

Table 12 Iowa Emissions Modeled By LADCO for 2028 Projection

Projected 2028 Emissions Modeled by LADCO	SO2 (Tons/yr)	Emiss. % of Anthro. Sources	NOx (Tons/yr)	Emiss. % of Anthro. Sources
All Iowa Projected 2028 (tons/yr)	36,287		136,635	
All Iowa Anthropogenic (exclude fire and biogenic)	35,538		96,398	
All Iowa Point Sources only	34,786	98%	40,651	42%
All Iowa EGU Emissions	28,002	79%	21,442	22%
Louisa Tons/yr (modeled)	5,605	16%	3,403	4%
Walter Scott Tons/yr (modeled)	9,897	28%	6,025	6%

To provide an estimate of very conservative worst-case possible visibility impact from these two power plants, MEC has in effect treated them as if they were the only power plants in the state and that all statewide power plant visibility impacts were attributable to just these two plants. The details of these assumptions are as follows:

1) First, although fire and biogenic sources were included in the LADCO modeling, MEC has conservatively ignored their share of the visibility impacts (attributing any impact of these emissions to anthropogenic sources.)

- 2) Next, it is assumed that lowa statewide nitrate and sulfate impacts attributable to all EGU's as a group is proportional to the total of all electrical generating units (EGUs) emissions relative to all statewide emissions. Since there are multiple EGU sources, and they are located throughout the state, this straight-proportional assumption is reasonable.
- 3) Next, it is assumed that the visibility impact of all EGUs from "step 2" is 100% attributable to just Louisa and Walter Scott Generating Stations, even though they represent only a fraction of the total EGU emissions. This is clearly an extremely conservative assumption.
- 4) Lastly, the split of the total EGU impacts between Louisa and Walter Scott are based on their emissions relative to each other only.

Table 13 below shows the results of these assumptions for Louisa and Walter Scott visibility impacts. This conservative approach results in 79% of the statewide sulfate impacts assumed attributable to these two power plants even though they contribute only 44% of the statewide anthropogenic SO₂ emissions. Likewise, these assumptions allocate 22% of the statewide nitrate impacts to these two power plants even though they represent only 10% of the statewide anthropogenic NOx emissions (and only 7% of the total statewide NOx). These are very conservative assumptions and actual impacts are expected to be much lower.

Conservative Assumption of Max Impact	Sulfate (Mm-1)	Resultant Plant Sulfate Impact. % of Statewide	Nitrate (Mm-1)	Resultant Plant Nitrate Impact. % of Statewide
Max. Statewide All Iowa Impacts (Mm-1)	0.65		0.80	
Louisa Impact (Very Conserv. Assumed) Walter Scott (Very Conserv. Assumed)	0.19 0.33	28% <u>50%</u> 79%	0.06 0.11	8% <u>14%</u> 22%

Table 13 Very Conservative Assumed Potential Impact of Louisa and Walter Scott

Dividing these conservative estimates of these power plant visibility impacts by their modeled emissions provides an estimated visibility impact per ton of emissions.

- 3.30 x 10-5 Sulfate Mm-1/ton SO₂, and
- 1.89 x 10-5 Nitrate Mm-1/ton NOx

The above factors can then be used to estimate the cost-effectiveness of each MEC candidate control options in units of dollars/visibility improvement.

Table 14 below shows each of the MEC NOx and SO₂ candidate control options discussed earlier in this report and their visibility impacts calculated with the above factors. The visibility improvements noted in Table 14 for each candidate control option are very small both individually, as well as collectively, and are each well below the "no degradation" benchmark of

0.1 DV. This indicates that the visibility benefits from these control options would be inconsequential.

Additionally, dividing the annual costs for each control by that control's visibility benefits yields cost-effectiveness values that are extraordinarily expensive for all options except the option to improve the existing Dry flue gas desulfurization (FGD) system. The other control options would cost between \$300 million to \$1.5 billion dollars per Mm-1. These costs per unit of visibility improvement are more than an order of magnitude higher than were considered reasonable as Best Available Retrofit Technology (BART) during the RHR first decadal review¹⁸, which were typically less than \$8 million/Mm-1.

Table 14 – Cost of Candidate Controls Relative to Visibility Benefits

Candidate Control Improvements		Total Annualized Costs (\$/yr)	Emissions Reduction (tons/yr)	Maximum Visibility Improv. (Mm ⁻¹)	Maximum Visibility Improv. (DV)	Cost Effectiveness (\$/Mm ⁻¹)	Cost Effectiveness (\$/DV)
Louisa Generating Statio	n (Unit	101)					
Dry FGD Improvement	SO_2	\$1,102,000	3,903	0.13	0.046	\$8,550,000	\$24,110,000
Wet FGD Increm. Impr.	SO ₂	\$41,020,000	819	0.03	0.010	\$1,515,960,000	\$4,272,920,000
SNCR ¹	NOx	\$3,621,000	566	0.01	0.004	\$338,970,000	\$883,170,000
SCR ²	NOx	\$24,271,942	2,739	0.05	0.020	\$469,520,000	\$1,225,860,000
Walter Scott Jr. Energy Center (Unit 3)							
Dry FGD Improvement	SO ₂	\$1,248,000	5,785	0.19	0.068	\$6,530,000	\$18,430,000
Wet FGD Increm. Impr.	SO ₂	\$39,915,000	902	0.03	0.011	\$1,339,380,000	\$3,765,570,000
SNCR	NOx	\$4,240,300	755	0.01	0.006	\$297,570,000	\$770,960,000
SCR	NOx	\$24,771,688	3,849	0.07	0.028	\$341,000,000	\$891,070,000

¹ Selective non-catalytic reduction

² Selective catalytic reduction

As previously stated, MEC is offering to implement operating improvements to the existing Dry FGD systems at both Louisa (Units 101) and Walter Scott (Unit 3) to assist with reasonable progress under the RHR. This control measure provides the vast majority of the available visibility benefit and is also the most cost-effective of all the control options. In contrast, the other identified candidate NOx and SO₂ control measures for Louisa Generating Station and

¹⁸ Compilation of BART analyses generated in 2009 by the National Park services showed the majority of emissions controls proposed had a cost per DV of less than \$20 million/DV which corresponds to approximately \$8 million/Mm-1. National Park Service letter to Minnesota Pollution Control Agency regarding BART proposals for EGUs dated Sept. 3, 2009, p. 6.

https://www.fws.gov/refuges/AirQuality/docs/Comments/MN%20-%2002-02-12%20Signed%20NPS%20Comments%20RH%20SIP.pdf

Walter Scott Jr. Energy Center sources provide very little visibility benefit, are not cost-effective options to improve visibility as demonstrated above, and are very expensive based on their \$/ton costs discussed in earlier sections.

8.0 SUMMARY

At the request of the DNR, a Four Factor Analysis was prepared for NOx and SO₂ emissions for coal-fired boilers at the Louisa Generating Station and the Walter Scott Energy Center. The following is a summary of the key findings of this analysis for the three coal-fired boilers at these facilities:

Walter Scott Jr. Unit 4 is already equipped with SCR for NOx control and a very effective Dry FGD system for control of SO₂. These controls were required as BACT when this unit was permitted and remain consistent with the lowest limits in the EPA's RBLC database. Accordingly, there are no technically feasible better control options for Walter Scott Jr. Unit 4. Therefore, no further NOx or SO₂ emission reductions from this unit are feasible.

Louisa Unit 101 and Walter Scott Jr. Unit 3 both have low NOx burners and overfire air for NOx control and Dry FGD systems for SO₂ control. MEC identified two possible control options for further reducing NOx emissions from these two units:

- Selective Non-Catalytic Reduction (SNCR); or
- Selective Catalytic Reduction (SCR).

Additionally, MEC identified two possible control options for reducing SO₂ emissions:

- Operational Improvements to Existing Dry FGD system: or
- Wet FGD system.

All of the above options are technically feasible and were further evaluated with respect to the four statutory factors and other relevant considerations.

MEC estimates that implementing operational improvements to the existing Dry FGD system can be achieved at a modest increased operating cost. This SO₂ control option would have a cost-effectiveness below \$300 per ton and is capable of lowering SO₂ emissions from both Louisa Unit 101 and Walter Scott Jr. Unit 3 to 0.10 lb/MMBtu SO₂. This improvement over current performance equates to 9,688 ton/yr SO₂ emissions reduction (combined both units) at current average firing rates. MEC recommends that the DNR include these operating improvements to lower SO₂ emissions from these units in its regional haze SIP for the second planning period.

The other NOx and SO₂ control options for Unit 101 and Unit 3 are extremely expensive both from a total cost perspective and particularly in comparison to their insignificant benefit to visibility in Class I areas.

Further lowering of SO₂ emissions would be possible by replacing the existing SO₂ controls with a Wet FGD system. This could improve these units' performance to approximately 0.06 lb/MMBtu. However, the average cost-effectiveness of this option is over \$6,000/ton, and its incremental cost-effectiveness (vs. the DFGD option) is over \$44,000/ton. These costs weigh against including this control option in the SIP. Additionally, as discussed Section 7, the

AECOM Imagine it. Delivered.

additional SO₂ control provided by replacing the existing DFGD system with a wet FGD system would result in very little visibility benefit and have a cost-effectiveness of over \$1,300,000,000/Mm⁻¹. This is orders of magnitude more expensive than would be considered reasonable, confirming that a wet-FGD system is not considered appropriate for RHR progress this decadal period.

Lowering NOx emissions would be possible by either implementation of SNCR or SCR. The cost-effectiveness per ton of NOx of these options range from \$5,616/ton to \$8,862/ton. These cost-effectiveness values for SNCR and SCR are higher than are typically required for RHR controls. Additionally, these NOx controls would result in very little benefit to Class I visibility because these sites are so far away from any Class I area. The visibility cost-effectiveness of these additional NOx controls are over \$290,000,000/Mm⁻¹, which is significantly more expensive than would be considered reasonable.

Based on MEC's Four Factor Analysis, MEC concludes that the only technically feasible control option that could reasonably be included in the Iowa regional haze SIP for the Louisa Generation Station Unit 101 and Walter Scott Jr. Energy Center Unit 3 would be operational improvements to the existing Dry FGD system. Both boilers could reasonably achieve improved performance of 0.10 lb/MMBtu (30-boiler operating day rolling average). This option will provide approximately 9,688 tons/yr of SO₂ emissions reduction (total both units). Since this option does not require the installation of new equipment, MEC recommends that the DNR make the proposed emission limitation effective within six months of EPA approval of the Iowa regional haze SIP (to allow time for testing and optimization of the system).

Attachment A

Cost Estimate Details of Technical Feasible Control Options

Attachment A-1 Capital and Operating Costs for SNCR - Louisa Unit 101

Below Calculation Methodology Utilizes EPA Cost Retrofit Tool.

https://www.epa.gov/airmarkets/retrofit-cost-analyzer#:~:text=The%20Retrofit%20Cost%20Analyzer%20(RCA,were%20developed%20to%20inform%20modeling

Variable	Designation	Units	Value	Calculation				
Boiler Type	BT		Wall	✓ < User Input				
EPC Project?			FALSE					
Unit Size	А	(MW)	812	< User Input				
Retrofit Factor	В		1.00	< User Input (An "average" retrofit has a factor = 1.0)				
Heat Rate	С	(Btu/kWh)	9676.6	< User Input				
NOx Rate	D	(lb/MMBtu)	0.1842	< User Input				
SO2 Rate	E	(lb/MMBtu)	0.292	< User Input				
Type of Coal	F		Bituminous	✓ User Input				
Coal Factor	G		1	Bit = 1.0, PRB = 1.05, Lig = 1.07				
Heat Rate Factor	Н		0.96766	C/10000				
Heat Input	I	(Btu/hr)	7.86E+09	A*C*1000				
Capacity Factor	J	(%)	59	< User Input				
NOx Removal Efficiency	К	(%)	15	< User Input				
NOx Removed	L	(lb/hr)	217	D*I/10^6*K/100				
Urea Rate (100%)	М	(lb/hr)	944	L/UF/46*30; If Boiler Type = CFB or D>0.3 THEN UF = 0.25 ELSE UF = 0.15				
Water Required	N	(lb/hr)	17934	M*19				
Heat Rate Penalty Include in VOM?	V	(%)	0.27	1175*N/I*100				
Aux Power Include in VOM?	0	(%)	0.05	0.05 default value				
Dilution Water Rate	Р	(1000 gph)	2.15	N*0.1199/1000				
Urea Cost (50% wt solution)	Q	(\$/ton)	350	< User Input (default EPA value)				
Aux Power Cost	R	(\$/kWh)	0.06	< User Input (default EPA value)				
Dilution Water Cost	S	(\$/klb)	1	< User Input (default EPA value)				
Operating Labor Rate	Т	(\$/hr)	60	< User Input (Labor cost including all benefits)(default EPA value)				
Replacement Coal Cost	U	(\$/hr)	2	< User Input (default EPA value)				
Correcton for Elevation Added	by AECOM -	following EPA C	CM methodolo	gy				
Site Elevation	EL	feet	581	< User Input				
Atmospheric Pressure	PSIA	PSIA	14.40	2116x[(59-(0.00356x EL)+459.7)/518.6] ^{5.256} x (1/144)				

Site Elevation	EL	feet	581	< User Input
Atmospheric Pressure	PSIA	PSIA	14.40	2116x[(59-(0.00356x EL)+459.7)/518.6] ^{5.256} x (1/144)
Elevation Factor	ELEVF		1.021	14.7 psia / P

Below Chemical Engineering Plant Cost Index used to adjust Capital to current year \$

541.7 CEPCI 2016

607.5 CEPCI 2019

EPA Initial Capital Costs Equations are all based on 2016 dollars Capital \$2016 Capital \$2019 Comments

Capital Cost Calcuation

Includes - Equipment, intallation, buildings, foundations, electrical, and retrofit difficulty.

- BMS (\$) = BT*B*G*220000*(A*H)^0.42; IF CFB then BT = 0.75, ELSE BT = 1)
- BMA (\$) = IF E>= 3 and F = Bituminous, THEN 69000*(B)*(A*G*H)^0.78, ELSE 0 BMB (\$) = BT*(L^0.12)*320000*(A)^0.33; (IF CFB then BT = 0.75, ELSE BT = 1)

BM (\$) = BMS + BMA + BMB BM (\$/kW) =

Total Project Cost

A1 = 10% of BM A2= 10% of BM A3 = 10% of BM

\$ \$ \$	3,692,000 - 5,568,000	\$ \$ \$	-	SNCR (injectors, blowers, DCS, reagent system) cost Air heater modif./SO3 control (Bituminous only and >= 3 lb/MMBtu) Balance of plant costs (piping, site upgrades, water treatment for the dilution water, etc)
\$	9,260,000	\$		Total base module cost including retrofit factor
\$	11 926,000 926,000	\$	1,038,500 1,038,500	Base cost per kW Engineering and Construction Management costs Labor adjustment for 6 x 10 hour shift premium, per diem, etc
\$	926,000	\$	1,038,500	Contractor profit and fees

CECC (\$/kW) = 15 17 Capital, engineering and construction cost subtotal per kW B1 = 5% of CECC \$ 602,000 \$ 675,100 Owners costs including all "home office" costs (owners engineering, management, and procuement adxitiles) TPC' (\$) - Includes Owner's Costs CECC + B1 \$ 12,640,000 \$ 14,175,300 Total project cost without AFUDC TPC' (\$) - Includes Owner's Costs S - \$ - AFUDC (Zero for less than 1 year engineering and construction cycle) C1 = if EPC = TRUE, 15% of (CECC + B1), else 0 \$ - \$ - EPC fees of 15% TPC (\$) ECC + B1 + B2 + C1 \$ 12,640,000 \$ 14,175,300 Total project cost TPC (\$) KW yr) = (No operator time assumed)'2080'T/(A'1000) \$ - Fixed O&M additional operating labor costs FOMM (\$kW yr) = 0.03'r(FOMO + 0.4'FOMM) \$ 0.14 Fixed O&M additional administrative labor costs FOM (\$kW yr) = FOMO +FOMM+FOMA \$ 0.14 Fixed O&M costs Fixed O&M costs FOM (\$kW yr) = FOMO +FOMM+FOMA \$ 0.14 Total Fixed O&M costs Fixed O&M costs VOM (\$kW yr) = FOMO +FOMM+FOMA \$ 0.41 Variable O&M costs for Urea
TPC (\$) - Includes Owner's Costs = CECC + B1 \$ 12,640,000 \$ 14,175,300 Total project cost without AFUDC TPC (\$/kW) - Includes Owner's Costs \$ 12,640,000 \$ 14,175,300 Total project cost without AFUDC B2 = 0% of (CECC + B1) \$ - \$ - AFUDC (Zero for less than 1 year engineering and construction cycle) C1 = if EPC = TRUE, 15% of (CECC + B1), else 0 \$ - \$ - EPC fees of 15% TPC (\$) = CECC + B1 + B2 + C1 16 117 Total project cost 17 FDM (S/kW yr) = (No operator time assumed)*2080*T/(A*1000) \$ - \$ 14,175,300 Total project cost per kW Fixed O&M Cost FOMM (\$/kW yr) = (0.012*BM)/(B*A*1000) \$ 0.14 Fixed O&M additional amintenance material and labor costs FOMM (\$/kW yr) = FOMO + FOMM+FOMA \$ 0.14 Fixed O&M cost Fixed O&M costs Variable O&M Cost \$ 0.14 Fixed O&M costs for Urea VOMR (\$/kW yr) = FOMO + FOMM+FOMA \$ 0.41 Variable O&M costs for Urea VOMR (\$/kW hr) = PS/A \$ 0.01 Variable O&M costs for dilution water VOMR (\$/MWh) = P*S/A \$ 0.03 Variable O&M costs for dilution adarting and costs for dilution a
TPC' (\$/kW) - Includes Owner's Costs 16 17 Total project cost per kW without AFUDC B2 = 0% of (CECC + B1) \$ - \$ - AFUDC (Zero for less than 1 year engineering and construction cycle) C1 = if EPC = TRUE, 15% of (CECC+B1), else 0 \$ - \$ EPC fees of 15% TPC (\$) = CECC + B1 + B2 + C1 \$ 12,640,000 \$ 14,175,300 Total project cost TPC (\$/kW) = 16 17 Total project cost 17 Total project cost FXed 0&M Cost \$ 12,640,000 \$ 14,175,300 Total project cost FOMO (\$/kW yr) = (No operator time assumed)*2080*T/(A*1000) \$ - Fixed 0&M additional operating labor costs FOMM (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) \$ 0.14 Fixed 0&M additional administrative labor costs FOMA (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Fixed 0&M costs Variable 0&M Cost \$ 0.01 Yariable 0&M costs for Urea VOINT (\$/MWh) = M*0/(A*1000) \$ 0.41 Variable 0&M costs for Urea VOINT (\$/MWh) = 0*710 \$ 0.03 Variable 0&M costs for dilution water
B2 = 0% of (CECC + B1) \$ - \$ - AFUDC (Zero for less than 1 year engineering and construction cycle) C1 = if EPC = TRUE, 15% of (CECC+B1), else 0 \$ - \$ - EPC fees of 15% TPC (\$) = CECC + B1 + B2 + C1 1 12,640,000 \$ 14,175,300 Total project cost TPC (\$) = CECC + B1 + B2 + C1 16 17 Total project cost 17 FOMO (\$/kW yr) = (No operator time assumed)*2080*T/(A*1000) \$ - Fixed O&M additional operating labor costs FOMM (\$/kW yr) = (0.012*BM)((B*A*1000) \$ - Fixed O&M additional additional operating labor costs FOMM (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) \$ 0.14 Fixed O&M additional administrative labor costs FOM (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Fixed O&M cost Variable 0&M Cost \$ 0.14 Total Fixed O&M costs Variable 0&M Cost \$ 0.14 Variable O&M costs for Urea VOMM (\$/MWh) = N*Q/(A*1000) \$ 0.41 Variable O&M costs for dilution water VOMM (\$/MWh) = 0*R*10 \$ 0.00 Variable O&M costs for dilution water
C1 = if EPC = TRUE, 15% of (CECC+B1), else 0 \$ \$
TPC (\$) = CECC + B1 + B2 + C1 TPC (\$/kW) = \$ 12,640,000 \$ 14,175,300 Total project cost 16 17 Total project cost per kW Fixed O&M Cost FOMO (\$/kW yr) = (No operator time assumed)*2080*T/(A*1000) FOMM (\$/kW yr) = (0.012*BM)/(B*A*1000) FOMM (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) \$ - Fixed O&M additional operating labor costs 0.00 Fixed O&M additional operating labor costs FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) FOM (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Fixed O&M additional administrative labor costs FOM (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Total Fixed O&M costs Variable O&M Cost VOMR (\$/MWh) = M*Q/(A*1000) VOMM (\$/MWh) = P*S/A \$ 0.41 Variable O&M costs for Urea VoMM (\$/MWh) = P*S/A VOMP (\$/MWh) = 0*R*10 \$ 0.00 Variable O&M costs for dilution water VoMP (\$/MWh) = 0*R*10 \$ 0.03
TPC (\$/kW) = 16 17 Total project cost per kW Fixed O&M Cost FOMO (\$/kW yr) = (No operator time assumed)*2080*T/(A*1000) \$ - Fixed O&M additional operating labor costs FOMM (\$/kW yr) = (0.012*BM)/(B*A*1000) \$ 0.14 Fixed O&M additional maintenance material and labor costs FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) \$ 0.00 Fixed O&M additional administrative labor costs FOM (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Total Fixed O&M costs Variable O&M Cost VolMR (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Variable O&M Cost VOMR (\$/MWh) = M*Q/(A*1000) \$ 0.41 VOMR (\$/MWh) = P*S/A \$ 0.00 Variable O&M costs for Urea VOMP (\$/MWh) = O*R*10 \$ 0.03 Variable O&M costs for dilution water
Fixed O&M Cost FOMO (\$/kW yr) = (No operator time assumed)*2080*T/(A*1000) \$ - Fixed O&M additional operating labor costs FOMM (\$/kW yr) = (0.012*BM)/(B*A*1000) \$ 0.14 Fixed O&M additional maintenance material and labor costs FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) \$ 0.00 Fixed O&M additional administrative labor costs FOM (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Total Fixed O&M costs Variable O&M Cost VOMR (\$/MWh) = M*Q/(A*1000) \$ 0.14 VOMR (\$/MWh) = SYA \$ 0.41 Variable O&M costs for Urea VOMM (\$/MWh) = P*S/A \$ 0.00 Variable O&M costs for dilution water VOMP (\$/MWh) = 0*R*10 \$ 0.33 Variable O&M costs for additional administrative labor costs for dilution water
FOMO (\$/kW yr) = (No operator time assumed)*2080*T/(A*1000) \$ - Fixed O&M additional operating labor costs FOMM (\$/kW yr) = (0.012*BM)/(B*A*1000) \$ 0.14 Fixed O&M additional maintenance material and labor costs FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) \$ 0.00 Fixed O&M additional administrative labor costs FOM (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Fixed O&M costs Variable O&M Cost - - - VOMR (\$/MWh) = M*Q/(A*1000) \$ 0.41 Variable O&M costs for Urea VOMM (\$/MWh) = P*S/A \$ 0.00 Variable O&M costs for dilution water VOMP (\$/MWh) = O*R*10 \$ 0.03 Variable O&M costs for additional auxiliary power required.
FOMM (\$/kW yr) = (0.012*BM)/(B*A*1000) \$ 0.14 Fixed O&M additional maintenance material and labor costs FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) \$ 0.00 Fixed O&M additional administrative labor costs FOM (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Total Fixed O&M costs Variable O&M Cost VOMR (\$/MWh) = M*Q/(A*1000) \$ 0.41 Variable O&M costs for Urea VOMM (\$/MWh) = P*S/A \$ 0.00 Variable O&M costs for dilution water VOMP (\$/MWh) = O*R*10 \$ 0.03 Variable O&M costs for additional auxiliary power required.
FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) \$ 0.00 Fixed O&M additional administrative labor costs FOM (\$/kW yr) = FOMO +FOMM+FOMA \$ 0.14 Total Fixed O&M costs Variable O&M Cost VOMR (\$/MWh) = M*Q/(A*1000) \$ 0.41 Variable O&M costs for Urea VOMM (\$/MWh) = P*S/A \$ 0.00 Variable O&M costs for dilution water VOMP (\$/MWh) = 0*R*10 \$ 0.03 Variable O&M costs for additional auxiliary power required.
FOM (\$/kW yr) = FOMO +FOMM+FOMA\$0.14Total Fixed O&M costsVariable O&M CostVOMR (\$/MWh) = M*Q/(A*1000)\$0.41Variable O&M costs for UreaVOMR (\$/MWh) = P*S/A\$0.00Variable O&M costs for dilution waterVOMP (\$/MWh) = O*R*10\$0.03Variable O&M costs for additional auxiliary power required.
Variable O&M Cost VOMR (\$/MWh) = M*Q/(A*1000) \$ 0.41 Variable O&M costs for Urea VOMM (\$/MWh) = P*S/A \$ 0.00 Variable O&M costs for dilution water VOMP (\$/MWh) = O*R*10 \$ 0.03 Variable O&M costs for additional auxiliary power required.
VOMR (\$/MWh) = M*Q/(A*1000)\$0.41Variable O&M costs for UreaVOMM (\$/MWh) = P*S/A\$0.00Variable O&M costs for dilution waterVOMP (\$/MWh) = O*R*10\$0.03Variable O&M costs for additional auxiliary power required.
VOMM (\$/MWh) = P*S/A\$0.00Variable O&M costs for dilution waterVOMP (\$/MWh) = O*R*10\$0.03Variable O&M costs for additional auxiliary power required.
VOMP (\$/MWh) = O*R*10 \$ 0.03 Variable O&M costs for additional auxiliary power required.
VOMB (\$/MWh) = 0.001175*N*U/A \$ 0.05 Variable O&M costs for heat rate increase due to water injected into the boiler
VOM (\$/MWh) = VOMR + VOMP + VOMP\$0.49Total Variable O&M costs
Annual Capacity Factor = 59%
Annual MWhs = 4,196,741
Annual Heat Input MMBtu = 40,610,182
Capital Recovery Factor Calculation Interest Rate
Annual Avg NOx Emission Rate, $lb/MMBtu = 0.15657$ $0.10081 = i (1 + i)^n / (1 + i)^n - 1$ 7.862%
Where n = Equipment Life and i= Interest Rate Equipment Life
Annual Capital Recovery Factor = 0.101 sncr 2016\$ 2019 \$ 20 Years
Annual Capital Cost (Including AFUDC), \$ = 1,274,000 \$ 1,429,000 Capital costs escalated to 2019\$ with CEPCI above
Annual FOM Cost, \$ = 115,000 \$ 115,000
Annual VOM Cost, \$ = 2,077,000 \$ 2,077,000 Total Annual SNCR Cost, \$ = 3,466,000 3,621,000
$101a1 \text{ Annual SNOR COSt, } \varphi = 0,400,000 \qquad 3,021,000$
Baseline Emissions Estimate 3774 TPY
Projected TPY NOx Reduction 566 Baseline Emissions times assumed Percent
Total SNCR Cost, \$/ton = 6,398 \$/Ton

Below Calculation Methodology Utilizes EPA Cost Retrofit Tool.

https://www.epa.gov/airmarkets/retrofit-cost-analyzer#:~:text=The%20Retrofit%20Cost%20Analyzer%20(RCA,were%20developed%20to%20inform%20modeling

Variable	Designation	Units	Value	Calculation
Boiler Type	BT		Wall 🔻	< User Input
EPC Project?			FALSE	
Unit Size	A	(MW)	726	< User Input
Retrofit Factor	В		1.00	< User Input (An "average" retrofit has a factor = 1.0)
Heat Rate	С	(Btu/kWh)	9870	< User Input
NOx Rate	D	(lb/MMBtu)	0.223	< User Input
SO2 Rate	E	(lb/MMBtu)	0.357	< User Input
Type of Coal	F		Bituminous	User Input
Coal Factor	G		1	Bit = 1.0, PRB = 1.05, Lig = 1.07
Heat Rate Factor	Н		0.987	C/10000
Heat Input	I	(Btu/hr)	7.17E+09	A*C*1000
Capacity Factor	J	(%)	72	< User Input
NOx Removal Efficiency	К	(%)	15	< User Input
NOx Removed	L	(lb/hr)	240	D*I/10^6*K/100
Urea Rate (100%)	М	(lb/hr)	1042	L/UF/46*30; If Boiler Type = CFB or D>0.3 THEN UF = 0.25 ELSE UF = 0.15
Water Required	N	(lb/hr)	19800	M*19
Heat Rate Penalty Include in VOM?	V	(%)	0.32	1175*N/I*100
Aux Power Include in VOM?	0	(%)	0.05	0.05 default value
Dilution Water Rate	Р	(1000 gph)	2.37	N*0.1199/1000
Urea Cost (50% wt solution)	Q	(\$/ton)	350	< User Input (default EPA value already in downloaded spreadsheet)
Aux Power Cost	R	(\$/kWh)	0.06	< User Input (default EPA value already in downloaded spreadsheet)
Dilution Water Cost	S	(\$/klb)	1	< User Input (default EPA value already in downloaded spreadsheet)
Operating Labor Rate	Т	(\$/hr)	60	< User Input (Labor cost including all benefits)(default EPA value)
Replacement Coal Cost	U	(\$/hr)	2	< User Input (default EPA value already in downloaded spreadsheet)
Correcton for Elevation Adde	ed by AECO <mark>M -</mark>	following EPA C	CM methodolog	у
Site Elevation	EL	feet	1089	< User Input
Atmospheric Pressure	PSIA	PSIA	14.14	2116x[(59-(0.00356x EL)+459.7)/518.6] ^{5.256} x (1/144)
Elevation Factor	ELEVF		1.040	14.7 psia / P

Below Chemical Engineering Plant Cost Index used to adjust Capital to current year \$

607.5 CEPCI 2019

Capital \$2016 Capital \$2019 Comments

EPA Initial Capital Costs Equations are all based on 2016 dollars

Capital Cost Calcuation

Includes - Equipment, intallation, buildings, foundations, electrical, and retrofit difficulty.

- BMS (\$) = ELEVF* BT*B*G*220000*(A*H)^0.42; IF CFB then BT = 0.75, ELSE BT = 1) BMA (\$) = IF E>= 3 and F = Bituminous, THEN 69000*(B)*(A*G*H)^0.78, ELSE 0
- BMA (\$) = IF E>= 3 and F = Bituminous, THEN 69000*(B)*(A*G*H)^0.78, ELSE 0 BMB (\$) = BT*(L^0.12)*320000*(A)^0.33; (IF CFB then BT = 0.75, ELSE BT = 1)

BM (\$) = BMS + BMA + BMB

BM (\$/kW) =

\$ 3,618,000
 \$ 4,057,500
 \$ NCR (injectors, blowers, DCS, reagent system) cost
 \$ - \$ - Air heater modif/SO3 control (Bituminous only and >= 3 lb/MMBtu)
 \$ 5,430,000
 \$ 6,089,600
 Balance of plant costs (piping, site upgrades, water treatment for the dilution water, etc...)
 \$ 9,048,000
 \$ 10,147,100
 Total base module cost including retrofit factor
 14 Base cost per kW

^{541.7} CEPCI 2016

Total Project Cost		-	005 000		• • • • • • • • • • • • • • • • • • •		
A1 = 10% of BM		\$. , ,	Engineering and Construction Management costs	
A2= 10% of BM		\$,			Labor adjustment for 6 x 10 hour shift premium, per c	liem, etc
A3 = 10% of BM		\$	905,000	9	\$ 1,014,900	Contractor profit and fees	
CECC (\$) = BM + A1 + A2 + A3		\$	11.763.000	9	\$ 13.191.800	Capital, engineering and construction cost subtotal	
CECC (\$/kW) =		•	16			Capital, engineering and construction cost subtotal p	er kW
B1 = 5% of CECC		\$	588,000	9	\$ 659,400	Owners costs including all "home office" costs (owner management, and procuement activities)	rs engineering,
TPC' (\$) - Includes Owner's Costs = CECC + B1		\$	12,351,000	1	\$ 13,851,200	Total project cost without AFUDC	
TPC' (\$/kW) - Includes Owner's Costs			17	7	19	Total project cost per kW without AFUDC	
B2 = 0% of (CECC + B1)		\$; -	9	\$-	AFUDC (Zero for less than 1 year engineering and co	onstruction cycle)
C1 = if EPC = TRUE, 15% of (CECC+B1), else 0		\$; -	9	\$-	EPC fees of 15%	
TPC (\$) = CECC + B1 + B2 + C1		\$	12 351 000		\$ 13 851 200	Total project cost	
TPC (\$/kW) =		·	17.0			Total project cost per kW	
Fixed O&M Cost							
FOMO (\$/kW yr) = (No operator time assumed)*2080*T/(A*1000)		\$				Fixed O&M additional operating labor costs	
FOMM (\$/kW yr) =(0.012*BM)/(B*A*1000)		\$			assumed same	Fixed O&M additional maintenance material and labor	or costs
FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM)		\$	6 0.00)		Fixed O&M additional administrative labor costs	
FOM (\$/kW yr) = FOMO +FOMM+FOMA		\$	6 0.15	5		Total Fixed O&M costs	
Variable O&M Cost							
VOMR (\$/MWh) = M*Q/(A*1000)		\$	0.50)		Variable O&M costs for Urea	
VOMM ($\%$) = P*S/A		\$	0.00)		Variable O&M costs for dilution water	
VOMP (\$/MWh) = O*R*10		\$	0.03	5		Variable O&M costs for additional auxiliary power rec	quired.
VOMB (\$/MWh) = 0.001175*N*U/A		\$	0.06	;		Variable O&M costs for heat rate increase due to	
						water injected into the boiler	
						T	
VOM (\$/MWh) = VOMR + VOMW + VOMP + VOMM		\$	0.60			Total Variable O&M costs	
Annual Capacity Factor =	72%						
Annual MWhs =	4,579,027						
Annual Heat Input MMBtu =	45,194,998						
						Capital Recovery Factor Calculation	Interest Rate
Annual Avg NOx Emission Rate, lb/MMBtu =	0.18955				0.10081	$= i (1+i)^n / (1+i)^n - 1$	7.86%
						Where n = Equipment Life and i= Interest Rate	Equipment Life
Annual Capital Recovery Factor =		SNCR 2016\$	2019 \$				20 Years
Annual Capital Cost (Includin	0 ,, .	1,245,000 \$ 110,000 \$			Capital costs esca	alated to 2019\$ with CEPCI above	
Annual FOM Cost, \$ =							
	VOM Cost, \$ =	2,734,000 \$		_			
Total Annual S	NCR Cost, \$ =	4,089,000	4,240,300				
Baseline Emissi	ons Estimate		5030	0			
Projected TPY					approx. at remov	al efficiency = 15%	
-	R Cost, \$/ton =		5,616	_		· ·	

Attachment A-3 Louisa Unit 101 SCR Cost Estimate

Data Inputs									
Enter the following data for your combustion unit:									
Is the combustion unit a utility or industrial boiler? Utility Is the SCR for a new boiler or retrofit of an existing boiler? Retrofit Please enter a retrofit factor between 0.8 and 1.5 based on the level of diffic	▼	What type of fuel does the unit burn?							
projects of average retrofit difficulty.	1								
Complete all of the highlighted data fields:									
What is the MW rating at full load capacity (Bmw)?	812 MW	Provide the following information for coal-fired boilers: Type of coal burned: Sub-Bituminous							
What is the higher heating value (HHV) of the fuel?	8,597 Btu/lb	Enter the sulfur content (%S) = 0.240 percent by weight							
What is the estimated actual annual MWhs output?	4,224,041 MWhs	For units burning coal blends:	_						
Enter the net plant heat input rate (NPHR)	9.677 MMBtu/MW	Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided. Fraction in							
If the NPHR is not known, use the default NPHR value: Plant Elevation	Fuel Type Default NPHR Coal 10 MMBtu/MW Fuel Oil 11 MMBtu/MW Natural Gas 8.2 MMBtu/MW 581 Feet above sea level 581 Feet above sea level	Coal TypeCoal Blend%SHHV (Btu/lb)Bituminous01.8411,841Sub-Bituminous00.418,826Lignite00.826,685							
		For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows 85 and 86 on the Cost Estimate tab. Please select your preferred method:							

Enter the following design parameters for the proposed SCR:

Attachment A-3 Louisa Unit 101 SCR Cost Estimate

Number of days the SCR operates $(t_{\scriptscriptstyle SCR})$	365 days	Number of SCR reactor chambers (n_{scr})	1
Number of days the boiler operates (\boldsymbol{t}_{plant})	365 days	Number of catalyst layers (R _{layer})	3
Inlet NO _x Emissions (NOx _{in}) to SCR	0.184 lb/MMBtu	Number of empty catalyst layers (R _{empty})	1
Outlet NO _x Emissions (NOx _{out}) from SCR	0.05 lb/MMBtu	73% Lowest in RBLC Ammonia Slip (Slip) provided by vendor	<mark>5</mark> ppm
Stoichiometric Ratio Factor (SRF) *The SRF value of 1.05 is a default value. User should enter actual value, if know	1.050	Volume of the catalyst layers (Vol _{catalyst}) (Enter "UNK" if value is not known) Flue gas flow rate (Q _{fluegas}) (Enter "UNK" if value is not known)	UNK Cubic feet
Estimated operating life of the catalyst $(\mathrm{H}_{\mathrm{catalyst}})$	24,000 hours		750 °F
Estimated SCR equipment life * For utility boilers, the typical equipment life of an SCR is at least 30 years.	30 Years*	Gas temperature at the SCR inlet (T) Base case fuel gas volumetric flow rate factor (Q _{fuel})	E16 ft ³ /min AAAABtu/haur
Concentration of reagent as stored (C _{stored})	29 percent*	*The reagent concentration of 29% and density of 56 lbs/cft are default	
Density of reagent as stored (ρ_{stored})	56 lb/cubic feet*	values for ammonia reagent. User should enter actual values for reagent,	
Number of days reagent is stored $(t_{storage})$	14 days	If different from the default values provided. Densities of ty	pical SCR reagents:
		50% urea solu 29.4% aqueou	
Select the reagent used	Ammonia 🗨		

Enter the cost data for the proposed SCR:

Desired dollar-year	2019	
CEPCI for 2019	607.5 Enter the CEPCI value for 2019 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)	7.862 Percent	From OAQPS Cost Manual Example, which is consistent or less than MidAmeri. internal cost of capital.
Reagent (Cost _{reag})	0.293 \$/gallon for 29% ammonia*	* \$0.293/gallon is a default value for 29% ammonia. User should enter actual value, if known.
Electricity (Cost _{elect})	0.0660 \$/kwh	EIA 2019 average Industrial Sector Electricity Cost in Iowa (Commericial and Residential costs are higher)
Catalyst cost (CC _{replace})	\$/cubic foot (includes removal and disposal/regeneration of existing 227.00 catalyst and installation of new catalyst	* \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, if known.
Operator Labor Rate	60.00 \$/hour (including benefits)*	* \$60/hour is a default value for the operator labor rate. User should enter actual value, if known.
Operator Hours/Day	4.00 hours/day*	* 4 hours/day is a default value for the operator labor. User should enter actual value, if known.
	for the horizontal control of the former former for a state of the sta	

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

0.005
0.03
Data Sources for Default Values Used in Calculations:

Data Element Reagent Cost (\$/gallon)		Sources for Default Value U.S. Geological Survey, Minerals Commodity Summaries, January 2017	If you used your own site-specific values, please enter the value used and the reference source Facilities would use 19% solution. Assume price of 19% is 19/29*
Reagent Cost (5/gallon)		U.S. Geological Survey, Minerals Commonly Summaries, January 2017 (https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2017-nitro.pdf	price of 29%
Electricity Cost (\$/kWh)	0.0361	U.S. Energy Information Administration. Electric Power Annual 2016. Table 8.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	
Percent sulfur content for Coal (% weight)		Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
Higher Heating Value (HHV) (Btu/lb)		2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
Catalyst Cost (\$/cubic foot)		U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6 Using the Integrated Planning Model. Office of Air and Radiation. May 2018. Available at: https://www.epa.gov/airmarkets/documentation-epas-power- sector-modeling-platform-v6.	

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	Bmw x NPHR =	7,858	MMBtu/hour
Maximum Annual MW Output (Bmw) =	Bmw x 8760 =	7,113,120	MWhs
Estimated Actual Annual MWhs Output (Boutput) =		4,224,041	MWhs
Heat Rate Factor (HRF) =	NPHR/10 =	0.97	
Total System Capacity Factor (CF _{total}) =	(Boutput/Bmw)*(tscr/tplant) =	0.594	fraction
Total operating time for the SCR (t _{op}) =	CF _{total} x 8760 =	5202	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	72.8	percent
NOx removed per hour =	NOx _{in} x EF x Q _B =	1052.94	lb/hour
Total NO _x removed per year =	$(NOx_{in} \times EF \times Q_B \times t_{op})/2000 =$	2,738.69	tons/year
NO _x removal factor (NRF) =	EF/80 =	0.91	
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	4,229,352	acfm
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	195.17	/hour
Residence Time	1/V _{space}	0.01	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.05	
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =	< 3	lbs/MMBtu
Elevation Factor (ELEVF) =	14.7 psia/P =	1.02	
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.4	psia
Retrofit Factor (RF)	Retrofit to existing boiler	1.00	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
	(interest rate)(1/((1+ interest rate) ^Y -1), where $Y = H_{catalyts}/(t_{SCR} x$		
	24 hours) rounded to the nearest integer	0.3084	Fraction
Catalyst volume (Vol _{catalyst}) =			
catalyst volume (volcatalyst) =	2.81 x Q_B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	21,670.62	Cubic feet
Cross sectional area of the catalyst $(A_{catalyst}) =$	q _{flue gas} /(16ft/sec x 60 sec/min)	4,406	ft ²

neight of each catalyst layer (n _{laver}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3 feet	
	0		2

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	5,066	ft ²
Reactor length and width dimensions for a square	10.5	71.2	foot
reactor =	(A _{SCR})	/1.2	leet
Reactor height =	$(R_{layer} + R_{empty}) \times (7ft + h_{layer}) + 9ft$	48	feet

Reagent Data:

Type of reagent	used
-----------------	------

Molecular Weight of Reagent (MW) = 17.03 g/mole Density = 56 lb/ft³

Parameter	Equation	Calculated Value	Units
Reagent consumption rate (m _{reagent}) =	$(NOx_{in} \times Q_B \times EF \times SRF \times MW_R)/MW_{NOx} =$	409	lb/hour
Reagent Usage Rate (m _{sol}) =	m _{reagent} /Csol =	1,411	lb/hour
	(m _{sol} x 7.4805)/Reagent Density	188	gal/hour
Estimated tank volume for reagent storage =	(m _{sol} x 7.4805 x t _{storage} x 24)/Reagent Density =	63,400	gallons (storage needed to store a 14 day reagent supply rounded to t

Capital Recovery Factor:

Parameter	Equation	Calculated Value
Capital Recovery Factor (CRF) =	$i(1+i)^{n}/(1+i)^{n} - 1 =$	0.0877
	Where n = Equipment Life and i= Interest Rate	

Ammonia

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	A x 1,000 x 0.0056 x (CoalF x HRF) ^{0.43} =	4578.51	kW
	where A = Bmw for utility boilers		

Cost Estimate

Total Capital Investment (TCI)

TCI for Coal-Fired Boilers

TCI = $1.3 \times (SCR_{cost} + RPC + APHC + BPC)$

Capital costs for the SCR (SCR _{cost}) =	\$167,880,492	in 2019 dollars
Reagent Preparation Cost (RPC) =	\$3,603,022	in 2019 dollars
Air Pre-Heater Costs (APHC)* =	\$0	in 2019 dollars
Balance of Plant Costs (BPC) =	\$10,162,763	in 2019 dollars
Total Capital Investment (TCI) =	\$236,140,160	in 2019 dollars

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emits equal to or greater than 3lb/MMBtu of sulfur dioxide.

For Coal-Fired Boilers:

	SCR Capital Costs (SCR _{cost})	
For Coal-Fired Utility Boilers >25 MW:		
	$SCR_{cost} = 310,000 \text{ x} (NRF)^{0.2} \text{ x} (B_{MW} \text{ x} HRF \text{ x} CoalF)^{0.92} \text{ x} ELEVF \text{ x} RF$	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	$SCR_{cost} = 310,000 \times (NRF)^{0.2} \times (0.1 \times Q_B \times CoalF)^{0.92} \times ELEVF \times RF$	
SCR Capital Costs (SCR _{cost}) =		\$167,880,492 in 2019 dollars
	Reagent Preparation Costs (RPC)	
For Coal-Fired Utility Boilers >25 MW:		
	RPC = 564,000 x (NOx _{in} x B_{MW} x NPHR x EF) ^{0.25} x RF	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	RPC = 564,000 x (NOx _{in} x Q _B x EF) ^{0.25} x RF	
Reagent Preparation Costs (RPC) =		\$3,603,022 in 2019 dollars
	Air Pre-Heater Costs (APHC)*	
For Coal-Fired Utility Boilers >25MW:		
	APHC = 69,000 x (B _{MW} x HRF x CoalF) ^{0.78} x AHF x RF	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	APHC = 69,000 x (0.1 x Q ₈ x CoalF) ^{0.78} x AHF x RF	
Air Pre-Heater Costs (APH _{cost}) =		\$0 in 2019 dollars

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emit equal to or greater than 3lb/MMBtu of sulfur dioxide.

Balance of Plant Costs (BPC)			
For Coal-Fired Utility Boilers >25MW:			
	BPC = 529,000 x (B _{MW} x HRFx CoalF) ^{0.42} x ELEVF x RF		
For Coal-Fired Industrial Boilers >250 MMBtu/hour:			
	BPC = 529,000 x $(0.1 \times Q_B \times CoalF)^{0.42}$ ELEVF x RF		
Balance of Plant Costs (BOP _{cost}) =		\$10,162,763 in 2019 dollars	

Annual Costs

Total Annual Cost (TAC) TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$3,545,654 in 2019 dollars
Indirect Annual Costs (IDAC) =	\$20,726,288 in 2019 dollars
Total annual costs (TAC) = DAC + IDAC	\$24,271,942 in 2019 dollars

Direct Annual Costs (DAC)

DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)

Annual Maintenance Cost =	0.005 x TCI =	\$1,180,701 in 2019 dollars
Annual Reagent Cost =	m _{sol} x Cost _{reag} x t _{op} =	\$287,301 in 2019 dollars
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$1,571,955 in 2019 dollars
Annual Catalyst Replacement Cost =		\$505,697 in 2019 dollars
For coal-fired boilers, the following method	s may be used to calcuate the catalyst replacement cost.	
Method 1 (for all fuel types):	$n_{scr} x Vol_{cat} x (CC_{replace}/R_{layer}) x FWF$	* Calculation Method 1 selected.
Method 2 (for coal-fired utility boilers):	B _{MW} x 0.4 x (CoalF) ^{2.9} x (NRF) ^{0.71} x (CC _{replace}) x 35.3	
Direct Annual Cost =		\$3,545,654 in 2019 dollars

Indirect Annual Cost (IDAC)

IDAC = Administrative Charges + Capital Recovery Costs

Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	\$16,796 in 2	2019 dollars
Capital Recovery Costs (CR)=	CRF x TCI =	\$20,709,492 in 2	2019 dollars
Indirect Annual Cost (IDAC) =	AC + CR =	\$20,726,288 in 2	2019 dollars
		Direct Annual + Administr.	\$3,562,450

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$24,271,942 per year in 2019 dollars
NOx Removed =	2,739 tons/year
Cost Effectiveness =	\$8,862 per ton of NOx removed in 2019 dollars

Data Inputs				
Enter the following data for your combustion unit:				
Is the combustion unit a utility or industrial boiler? Utility Is the SCR for a new boiler or retrofit of an existing boiler? Retrofit	 ▼ ▼ 	What type of fuel does the unit burn?		
Please enter a retrofit factor between 0.8 and 1.5 based on the level of diffic projects of average retrofit difficulty.	ulty. Enter 1 for 1			
Complete all of the highlighted data fields:				
What is the MW rating at full load capacity (Bmw)?	777 MW	Provide the following information for coal-fired boilers: Type of coal burned:		
What is the higher heating value (HHV) of the fuel?	8,827 Btu/lb	Enter the sulfur content (%S) = 0.240 percent by weight		
What is the estimated actual annual MWhs output?	4,576,617 MWhs	For units burning coal blends:		
		Note: The table below is pre-populated with default values for HHV and %S. Please enter the actual values for these parameters in the table below. If the actual value for any parameter is not known, you may use the default values provided.		
Enter the net plant heat input rate (NPHR) If the NPHR is not known, use the default NPHR value:	9.87 MMBtu/MW Fuel Type Default NPHR Coal 10 MMBtu/MW Fuel Oil 11 MMBtu/MW	Fraction inCoal TypeCoal Blend%SHHV (Btu/lb)Bituminous01.8411,841Sub-Bituminous00.418,826Lignite00.826,685		
Plant Elevation	Natural Gas 8.2 MMBtu/MW	Please click the calculate button to calculate weighted average values based on the data in the table above.		
	·	For coal-fired boilers, you may use either Method 1 or Method 2 to calculate the catalyst replacement cost. The equations for both methods are shown on rows 85 and 86 on the Cost Estimate tab. Please select your preferred method:		

Enter the following design parameters for the proposed SCR:

Number of days the SCR operates (t_{SCR})	365 days	Number of SCR reactor chambers ((n _{scr})	1
Number of days the boiler operates (t_{plant})	365 days	Number of catalyst layers (R _{layer})		3
Inlet NO _x Emissions (NOx _{in}) to SCR	0.223 lb/MMBtu	Number of empty catalyst layers (F	R _{empty})	1
Outlet NO _x Emissions (NOx _{out}) from SCR	0.05 lb/MMBtu	78% Lowest in RBLC Ammonia Slip (Slip) provided by ve	endor	5 ppm
Stoichiometric Ratio Factor (SRF)	1.050	Volume of the catalyst layers (Vol _{ca} (Enter "UNK" if value is not known)		UNK Cubic feet
*The SRF value of 1.05 is a default value. User should enter actual value, if known.		Flue gas flow rate (Q _{fluegas}) (Enter "UNK" if value is not known))	UNK acfm
Estimated operating life of the catalyst $({\rm H}_{\rm catalyst})$	24,000 hours			
Estimated SCR equipment life * For utility boilers, the typical equipment life of an SCR is at least 30 years.	30 Years*	Gas temperature at the SCR inlet (т)	750 °F
* For utility bollers, the typical equipment life of an SCR is at least 30 years.		Base case fuel gas volumetric flow	rate factor (Q _{fuel})	516 ft³/min-MMBtu/hour
Concentration of reagent as stored (C _{stored})	29 percent*	*The reagent concentration of 29% and density of 56 lbs/cft are default		
Density of reagent as stored (ρ_{stored})	56 Ib/cubic feet*	values for ammonia reagent. User should enter actual values for reagen if different from the default values provided.		
Number of days reagent is stored $(t_{storage})$	14 days	in different nom the default values provided.	Densities of typical S	
			50% urea solution 29.4% aqueous NH_3	71 lbs/ft ³ 56 lbs/ft ³
Select the reagent used Amm	nonia 🔻			

Desired dollar-year	2019	
CEPCI for 2019	607.5 Enter the CEPCI value for 2019 541.7 2016 CEPCI	CEPCI = Chemical Engineering Plant Cost Index
Annual Interest Rate (i)		From OAQPS Cost Manual Example, which is consistent or less than MidAmeri. internal cost of capital.
Reagent (Cost _{reag})	0.293 \$/gallon for 29% ammonia* converted to 19% equiv.	* \$0.293/gallon is a default value for 29% ammonia. User should enter actual value, if known.
Electricity (Cost _{elect})	0.0660 \$/kWh	
Catalyst cost (CC _{replace})	\$/cubic foot (includes removal and disposal/regeneration of existing 227.00 catalyst and installation of new catalyst	* \$227/cf is a default value for the catalyst cost based on 2016 prices. User should enter actual value, if known.
Operator Labor Rate	60.00 \$/hour (including benefits)*	\$60/hour is a default value for the operator labor rate. User should enter actual value, if known.
Operator Hours/Day	4.00 hours/day*	* 4 hours/day is a default value for the operator labor. User should enter actual value, if known.

Note: The use of CEPCI in this spreadsheet is not an endorsement of the index, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Maintenance and Administrative Charges Cost Factors:

Maintenance Cost Factor (MCF) = Administrative Charges Factor (ACF) =

0.005
0.03

Data Sources for Default Values Used in Calculations:

Data Element Reagent Cost (\$/gallon)			If you used your own site-specific values, please enter the value used and the reference source
	. , ,	(https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2017-nitro.pdf	
Electricity Cost (\$/kWh)	0.0361	U.S. Energy Information Administration. Electric Power Annual 2016. Table 8.4. Published December 2017. Available at: https://www.eia.gov/electricity/annual/pdf/epa.pdf.	0.66 \$/KWh EIA 2019 average Industrial Sector Electricity Cost in Iowa (Commericial and Residential costs are higher)
Percent sulfur content for Coal (% weight)	0.41	Average sulfur content based on U.S. coal data for 2016 compiled by the U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
Higher Heating Value (HHV) (Btu/lb)	8,826	2016 coal data compiled by the Office of Oil, Gas, and Coal Supply Statistics, U.S. Energy Information Administration (EIA) from data reported on EIA Form EIA-923, Power Plant Operations Report. Available at http://www.eia.gov/electricity/data/eia923/.	
Catalyst Cost (\$/cubic foot)		U.S. Environmental Protection Agency (EPA). Documentation for EPA's Power Sector Modeling Platform v6 Using the Integrated Planning Model. Office of Air and Radiation. May 2018. Available at: https://www.epa.gov/airmarkets/documentation-epas-power- sector-modeling-platform-v6.	

SCR Design Parameters

The following design parameters for the SCR were calculated based on the values entered on the Data Inputs tab. These values were used to prepare the costs shown on the Cost Estimate tab.

Parameter	Equation	Calculated Value	Units
Maximum Annual Heat Input Rate (Q _B) =	Bmw x NPHR =	7,669	MMBtu/hour
Maximum Annual MW Output (Bmw) =	Bmw x 8760 =	6,806,520	MWhs
Estimated Actual Annual MWhs Output (Boutput) =		4,576,617	MWhs
Heat Rate Factor (HRF) =	NPHR/10 =	0.99	
Total System Capacity Factor (CF _{total}) =	(Boutput/Bmw)*(tscr/tplant) =	0.672	fraction
Total operating time for the SCR (t _{op}) =	CF _{total} x 8760 =	5890	hours
NOx Removal Efficiency (EF) =	(NOx _{in} - NOx _{out})/NOx _{in} =	77.6	percent
NOx removed per hour =	NOx _{in} x EF x Q _B =	1326.74	lb/hour
Total NO _x removed per year =	(NOx _{in} x EF x Q _B x t _{op})/2000 =	3,907.31	tons/year
NO _x removal factor (NRF) =	EF/80 =	0.97	
Volumetric flue gas flow rate (q _{flue gas}) =	Q _{fuel} x QB x (460 + T)/(460 + 700)n _{scr} =	4,127,768	acfm
Space velocity (V _{space}) =	q _{flue gas} /Vol _{catalyst} =	183.78	/hour
Residence Time	1/V _{space}	0.01	hour
Coal Factor (CoalF) =	1 for oil and natural gas; 1 for bituminous; 1.05 for sub- bituminous; 1.07 for lignite (weighted average is used for coal blends)	1.05	
SO ₂ Emission rate =	(%S/100)x(64/32)*1x10 ⁶)/HHV =	< 3	lbs/MMBtu
Elevation Factor (ELEVF) =	14.7 psia/P =	1.04	
Atmospheric pressure at sea level (P) =	2116 x [(59-(0.00356xh)+459.7)/518.6] ^{5.256} x (1/144)* =	14.1	psia
Retrofit Factor (RF)	Retrofit to existing boiler	1.00	

* Equation is from the National Aeronautics and Space Administration (NASA), Earth Atmosphere Model. Available at https://spaceflightsystems.grc.nasa.gov/education/rocket/atmos.html.

Catalyst Data:

Parameter	Equation	Calculated Value	Units
Future worth factor (FWF) =	(interest rate)(1/((1+ interest rate) ^Y -1), where $Y = H_{catalyts}/(t_{SCR} x$ 24 hours) rounded to the nearest integer	0.3084	Fraction
Catalyst volume (Vol _{catalyst}) =	2.81 x Q _B x EF _{adj} x Slipadj x NOx _{adj} x S _{adj} x (T _{adj} /N _{scr})	22,459.96	Cubic feet
Cross sectional area of the catalyst $(A_{catalyst}) =$	q _{flue gas} /(16ft/sec x 60 sec/min)	4,300	ft ²

Height of each catalyst layer (H _{layer}) =	(Vol _{catalyst} /(R _{layer} x A _{catalyst})) + 1 (rounded to next highest integer)	3	feet
---	--	---	------

SCR Reactor Data:

Parameter	Equation	Calculated Value	Units
Cross sectional area of the reactor (A _{SCR}) =	1.15 x A _{catalyst}	4,945	ft ²
Reactor length and width dimensions for a square	(A) \0.5	70.3	foot
reactor =	(A _{SCR})	70.5	leet
Reactor height =	(R _{layer} + R _{empty}) x (7ft + h _{layer}) + 9ft	48	feet
		29	

Reagent Data:

Type of reagent used	Ammonia	Molecular Weight of Reagent (MW) =	17.03 g/mole
		Density =	56 lb/ft ³

 Parameter
 Equation
 Calculated Value
 Units

 Reagent consumption rate (m_{reagent}) =
 (NOX_{in} × Q₈ × EF × SRF × MW_R)/MW_{NOX} =
 516
 lb/hour

 Reagent Usage Rate (m_{sol}) =
 m_{reagent}/Csol =
 1,778
 lb/hour

 (m_{sol} × 7.4805)/Reagent Density
 238
 gal/hour

 Estimated tank volume for reagent storage =
 (m_{sol} × 7.4805 x t_{storage} × 24)/Reagent Density =
 79,900
 gallons (storage needed to store a 14 day reagent supply rounded to to the store a 14 day reagent supply rounded to to the store a 14 day reagent supply rounded to to the store a 14 day reagent supply rounded to to the store a 14 day reagent supply rounded to to the store a 14 day reagent supply rounded to the store a 14 day reagent supply

Capital Recovery Factor:

Parameter	Equation	0.293
Capital Recovery Factor (CRF) =	$i(1+i)^{n}/(1+i)^{n} - 1 =$	0.0877
	Where n = Equipment Life and i= Interest Rate	

Other parameters	Equation	Calculated Value	Units
Electricity Usage:			
Electricity Consumption (P) =	$A \times 1,000 \times 0.0056 \times (CoalF \times HRF)^{0.43} =$	4418.52	kW
	where A = Bmw for utility boilers		

Cost Estimate

Total Capital Investment (TCI)

TCI for Coal-Fired Boilers		
For Coal-Fired Boilers:		
	$TCI = 1.3 x (SCR_{cost} + RPC + APHC + BPC)$	
Capital costs for the SCR (SCR _{cost}) =	\$169,348,621	in 2019 dollars
Reagent Preparation Cost (RPC) =	\$3,817,356	in 2019 dollars
Air Pre-Heater Costs (APHC)* =	\$0	in 2019 dollars
Balance of Plant Costs (BPC) =	\$10,246,644	in 2019 dollars
Total Capital Investment (TCI) =	\$238,436,408	in 2019 dollars

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emits equal to or greater than 3lb/MMBtu of sulfur dioxide.

	SCR Capital Costs (SCR _{cost})	
For Coal-Fired Utility Boilers >25 MW:		
	$SCR_{cost} = 310,000 \text{ x} (NRF)^{0.2} \text{ x} (B_{MW} \text{ x} HRF \text{ x} CoalF)^{0.92} \text{ x} ELEVF \text{ x} RF$	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	$SCR_{cost} = 310,000 \times (NRF)^{0.2} \times (0.1 \times Q_B \times CoalF)^{0.92} \times ELEVF \times RF$	
SCR Capital Costs (SCR _{cost}) =		\$169,348,621 in 2019 dollar
	Reagent Preparation Costs (RPC)	
For Coal-Fired Utility Boilers >25 MW:	0.25	
	RPC = 564,000 x (NOx _{in} x B _{MW} x NPHR x EF) ^{0.25} x RF	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	RPC = 564,000 x (NOx _{in} x Q _B x EF) ^{0.25} x RF	
Reagent Preparation Costs (RPC) =		\$3,817,356 in 2019 dollar
	Air Pre-Heater Costs (APHC)*	
For Coal-Fired Utility Boilers >25MW:		
,	APHC = 69,000 x (B_{MW} x HRF x CoalF) ^{0.78} x AHF x RF	
or Coal-Fired Industrial Boilers >250 MMBtu/hour:		
	APHC = 69,000 x (0.1 x $Q_B x \text{ CoalF})^{0.78}$ x AHF x RF	
Air Pre-Heater Costs (APH _{cost}) =	\$	0 \$0 in 2019 dollar

* Not applicable - This factor applies only to coal-fired boilers that burn bituminous coal and emit equal to or greater than 3lb/MMBtu of sulfur dioxide.

Balance of Plant Costs (BPC)	
For Coal-Fired Utility Boilers >25MW:	
BPC = 529,000 x (B _{MW} x HRFx CoalF) ^{0.42} x ELEVF x RF	
For Coal-Fired Industrial Boilers >250 MMBtu/hour:	
BPC = 529,000 x (0.1 x $Q_B x$ CoalF) ^{0.42} ELEVF x RF	
Balance of Plant Costs (BOP _{cost}) =	\$10,246,644 in 2019 dollars

Annual Costs

Total Annual Cost (TAC) TAC = Direct Annual Costs + Indirect Annual Costs

Direct Annual Costs (DAC) =	\$3,843,881 in 2019 dollars
Indirect Annual Costs (IDAC) =	\$20,927,807 in 2019 dollars
Total annual costs (TAC) = DAC + IDAC	\$24,771,688 in 2019 dollars

Direct Annual Costs (DAC) DAC = (Annual Maintenance Cost) + (Annual Reagent Cost) + (Annual Electricity Cost) + (Annual Catalyst Cost)			
Annual Maintenance Cost =	0.005 x TCI =	\$1,192,182 in 2019 dollars	
Annual Reagent Cost =	m _{sol} x Cost _{reag} x t _{op} =	\$409,894 in 2019 dollars	
Annual Electricity Cost =	$P \times Cost_{elect} \times t_{op} =$	\$1,717,688 in 2019 dollars	
Annual Catalyst Replacement Cost =		\$524,117 in 2019 dollars	
For coal-fired boilers, the following method	ds may be used to calcuate the catalyst replacement cost.		
Method 1 (for all fuel types):	$n_{scr} \times Vol_{cat} \times (CC_{replace}/R_{layer}) \times FWF$	* Calculation Method 1 selected.	
Method 2 (for coal-fired utility boilers):	B _{MW} x 0.4 x (CoalF) ^{2.9} x (NRF) ^{0.71} x (CC _{replace}) x 35.3		
Direct Annual Cost =		\$3,843,881 in 2019 dollars	

Indirect Annual Cost (IDAC) IDAC = Administrative Charges + Capital Recovery Costs			
Administrative Charges (AC) =	0.03 x (Operator Cost + 0.4 x Annual Maintenance Cost) =	• •	2019 dollars
Capital Recovery Costs (CR)= Indirect Annual Cost (IDAC) =	CRF x TCl = AC + CR =	\$20,910,873 in \$20,927,807 in	
		Direct Annual + Administr.	\$3,860,815

Cost Effectiveness

Cost Effectiveness = Total Annual Cost/ NOx Removed/year

Total Annual Cost (TAC) =	\$24,771,688 per year in 2019 dollars
NOx Removed =	3,849 tons/yr 2017-2019 MMBtu at 0.05 lb/mmbtu
Cost Effectiveness =	\$6,436 per ton of NOx removed in 2019 dollars

SO2 Control Option Costs

Attachment A-5.1 Summary of SO2 Control Options for MEC Facilities

	Louisa U	Init 101	Walter Scot	t Jr. Unit 3
	Improved D-FGD	W-FGD	Improved D-FGD	W-FGD
Current Baseline Emissions (Tons/Yr)	5952	5952	8041	8041
Emissions With Control (Tons/yr)	2049	1230	2256	1354
lb/MMBtu with Controls	0.1	0.06	0.1	0.06
Capital Cost (\$)	n/a	\$398,140,000	n/a	\$370,150,000
Capital Cost Recovery (\$/yr)	n/a	\$40,136,000	n/a	\$37,314,000
Annual O&M (\$/yr)	\$1,102,000	\$1,986,000	\$1,248,000	\$3,849,000
Total Annualized Costs(\$/yr)	\$1,102,000	\$42,122,000	\$1,248,000	\$41,163,000
Emissions Reduction (Tons/yr)	3,903	4,722	5,785	6,687
Cost Effectiveness (\$/Ton)	\$282	\$8,920	\$216	\$6,160
Incremental Cost-Effectiveness (\$/ton)	n/a	\$50,090	n/a	\$44,250

SO2 Control Option Costs

Attachment A-5.2 Capital and Operating Costs for Wet FGD - Louisa Unit 101

This spreadsheet calculates the total costs for a new Wet FGD system, and then subtracts the existing operating costs for the existing DFGD system

Below Calculation Methodology Utilizes EPA Cost Retrofit Tool.

https://www.epa.gov/airmarkets/retrofit-cost-analyzer#:~:text=The%20Retrofit%20Cost%20Analyzer%20(RCA,were%20developed%20to%20inform%20modeling

Variable	Designation	Units	Value	Calculation
EPC Project?			FALSE	
Wastewater Treatment		Phys Chem-Biologi	cal 🗸	
Unit Size	A	(MW)	812	< User Input (Greater than 100 MW)
Retrofit Factor	В		1.00	< User Input (An "average" retrofit has a factor = 1.0)
Heat Rate	С	(Btu/kWh)	9679	< User Input
SO2 Rate	D	(lb/MMBtu)	0.502	< User Input
Type of Coal	E		Bituminous 💌	< User Input
Coal Factor	F		1	Bit = 1.0, PRB = 1.05, Lig = 1.07
Heat Rate Factor	G		0.9679	C/10000
Heat Input	Н	(Btu/hr)	7.86E+09	A*C*1000
Capacity Factor	I	(%)	59.4	< User Input
Operating SO2 Removal	J	(%)	88.058	< User Input (Used to adjust actual operating costs)
Design Limestone Rate	K	(ton/hr)	3	17.52*A*D*G/2000 (Based on 98% removal)
Design Waste Rate	L	(ton/hr)	6	1.811*K (Based on 98% removal)
Aux Power				
Include in VOM?	М	(%)	1.17	(1.12e^(0.155*D))*F*G
Makeup Water Rate	N	(1000 gph)	59	(1.674*D+74.68)*A*F*G/1000
Limestone Cost	Р	(\$/ton)	30	< User Input (used default already in EPA spreadsheet)
Waste Disposal Cost	Q	(\$/ton)	30	< User Input (used default already in EPA spreadsheet)
Aux Power Cost	R	(\$/kWh)	0.06	< User Input (used default already in EPA spreadsheet)
Makeup Water Cost	S	(\$/kgal)	1	< User Input (used default already in EPA spreadsheet)
Operating Labor Rate	Т	(\$/hr)	60	< User Input (Labor cost including all benefits)(Default in Sheet)

Costs are all based on 2016 dollars

Capital C	Cost Calcuation		Exa	mple	Comments
	Includes - Equip	ment, intallation, buildings, foundations, electrical, and retrofit difficulty.			
	BMR (\$) =	584000*(B)*((F*G)^0.6)*((D/2)^0.02)*(A^0.716)	\$	67,476,000	Base absorber island cost
	BMF (\$) =	202000*(B)*((D*G)^0.3)*(A^0.716)	\$	19,704,000	Base reagent preparation cost
	BMW (\$) =	106000*(B)*((D*G)^0.45)*(A^0.716)	\$	9,279,000	Base waste handling cost
	BMB (\$) =	1070000*(B)*((F*G)^0.4)*(A^0.716)	\$	127,926,000	Base balance of plant costs including: ID or booster fans, new wet chimney, piping, ductwork modifications and strengthening, minor WWT, etc
	BMWW (\$) =	If type is Bio-Chem, then 10600000*(B)*A/500^0.6), else 0	\$	14,179,388	Base wastewater treatment facility, beyond minor physical/chemical treatment
	BM (\$) = BM (\$/kW) =	BMR + BMF + BMW + BMB + BMWW	\$	238,564,388 294	Total base module cost including retrofit factor Base cost per kW
Total Pro	oject Cost				
	A1 = 10% of BM		\$	23,856,000	Engineering and Construction Management costs
	A2= 10% of BM		\$	23,856,000	Labor adjustment for 6 x 10 hour shift premium, per diem, etc…
	A3 = 10% of BM		\$	23,856,000	Contractor profit and fees

Attachments A-5.1-5.7 SO2 Control Option Costs

	CECC (\$) = BM + A1 + A2 + A3 CECC (\$/kW) =	\$ 310,132,388 382	Capital, engineering and construction cost subtotal Capital, engineering and construction cost subtotal per kW
	B1 = 5% of CECC	\$ 15,507,000	Owners costs including all "home office" costs (owners engineering, management, and procuement activities)
	TPC' (\$) - Includes Owner's Costs = CECC + B1	\$ 325,639,388	Total project cost without AFUDC
	TPC' (\$/kW) - Includes Owner's Costs	401	Total project cost per kW without AFUDC
	B2 = 10% of (CECC + B1)	\$ 32,564,000	AFUDC (Based on a 3 year engineering and construction cycle)
	C1 = 15% of CECC+B1	\$ -	EPC fees of 15%
	TPC (\$) = Includes Owner's Costs and AFUDC = CECC + B1 + B2 + C1	\$ 358,203,388	Total project cost
	TPC (\$/kW) = Includes Owner's Costs and AFUDC	441	Total project cost per kW
Fixed O&	M Cost		
	FOMO (\$/kW yr) = (if MW>500 then 16 additional operators, else 12 operators)*2080*T/(A*1000)	\$ 2.46	Fixed O&M additional operating labor costs
	FOMM (\$/kW yr) =(BM*0.015)/(B*A*1000)	\$ 4.41	Fixed O&M additional maintenance material and labor costs
	FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM)	\$ 0.13	Fixed O&M additional administrative labor costs
	FOMWW (\$/kW yr) =	0	Fixed O&M costs for wastewater treatment facility
	FOM (\$/kW yr) = FOMO +FOMM+FOMA+ FOMWW	\$ 6.99	Total Fixed O&M costs
Variable (D&M Cost		
	VOMR (\$/MWh) = K*P/(A*J)/98	\$ 0.12	Variable O&M costs for limestone reagent
	VOMW $(MWh) = L^{2}(A^{J})/98$	\$ 0.21	Variable O&M costs for waste disposal
	VOMP (\$/MWh) = M*R*10	\$ 0.70	Variable O&M costs for additional auxiliary power required including additional fan power (Refer to Aux Power % above)
	VOMM (\$/MWh) = N*S/A	\$ 0.07	Variable O&M costs for makeup water
	VOMWW (\$/MWh) =	\$ 0.17	Variable O&M costs for wastewater treatment facility
	VOM (\$/MWh) = VOMR + VOMW + VOMP + VOMM + VOMWW	\$ 1.27	Total Variable O&M costs
	Annual Capacity Factor = 59%		

				- 1 2
Ca			4,225,193	Annual MWhs =
0.10081 = i			40,895,646	Annual Heat Input MMBtu =
Wh	rsion	at 100% S conve	10,265	Annual Tons SO2 Created =
	ncy = 88.058%	at removal efficie	9,039	Annual Tons SO2 Removed =
			1,226	Annual Tons SO2 Emission =
Co	a 0.06 floor rate	Value is BELOW	0.060	Annual Avg SO2 Emission Rate, lb/MMBtu =
541.7 201				
602.1 201	Wet FGD 2019\$	Wet FGD 2016\$	0.1008	Annual Capital Recovery Factor =
	40,136,295	36,110,000	g AFUDC), \$ =	Annual Capital Cost (Includir
Not	5,678,000		FOM Cost, \$ =	Annual
(as	5,362,000		VOM Cost, \$ =	Annual
	51,176,295		FGD Cost, \$ =	Total Annual Wet
	Dry FGD Savings		.292 lb/mmbtu)	ng Cost Savings S/D Dry-FGD (at current Performance 0
	(4,423,000)		FOM Cost. \$ =	Annual

Annual Operating Cost Savings S/D Dry-FGD (at current Performance 0.292 lb/mmbtu)		Dry FGD Savings
Annual FOM Cost, \$ =		(4,423,000)
Annual VOM Cost, \$ =		(4,631,000)
Total Annual Wet FGD Cost, \$ =	-	(9,054,000)

Capital Recovery Factor Calculation	Interest Rate
$0.10081 = i (1+i)^{n} / (1+i)^{n} - 1$	7.862%
Where n = Equipment Life and i= Interest Rate	Equipment Life
	20 Years

Converstion from 2016\$ to 2019\$

541.7 2016 CEPCI (Chemical Engineering Plant Cost Index 602.1 2019 CEPCI

Note: Annual O&M Costs are not escalated (assume unit prices reflect current prices)

SO2 Control Option Costs

Lou	sa 101 Wet FGD
Capital Cost	398,140,000
Capital Cost Recovery	40,136,000
Annual O&M	1,986,000
Total Annualized Costs	42,122,000

SO2 Control Option Costs

Attachment A-5.3 Operating Costs Estimate for Existing D-FGD - Louisa Unit 101

This cost estimate is used to estimate the "operating cost credit" for S/D of existing D-FGD if replaced with Wet FGD

Below Calculation Methodology Utilizes EPA Cost Retrofit Tool.

https://www.epa.gov/airmarkets/retrofit-cost-analyzer#:~:text=The%20Retrofit%20Cost%20Analyzer%20(RCA,were%20developed%20to%20inform%20modeling

Variable	Designation	Units	Value	Calculation
EPC Project?			FALSE	
Unit Size	А	(MW)	812	< User Input (Greater than 50 MW)
Retrofit Factor	В		1.00	< User Input (An "average" retrofit has a factor = 1.0)
Heat Rate	С	(Btu/kWh)	9679	< User Input
SO2 Rate	D	(lb/MMBtu)	0.502	< User Input (SDA FGD Estimation only valid up to 3 lb/MMBtu SO2 Rate)
Type of Coal	E		Bituminous 🗸	< User Input
Coal Factor	F			Bit = 1.0, PRB = 1.05, Lig = 1.07
Heat Rate Factor	G		0.9679	C/10000
Heat Input	Н	(Btu/hr)	7.86E+09	A*C*1000
Capacity Factor	I	(%)	59.4	< User Input
Operating SO2 Removal	J	(%)	41.8	< User Input (Used to adjust actual operating costs)
Design Lime Rate	К	(ton/hr)	3	(0.6702*(D^2)+13.42*D)*A*G/2000 (Based on 95% SO2 removal)
Design Waste Rate	L	(ton/hr)	6	(0.8016*(D^2)+31.1917*D)*A*G/2000 (Based on 95% SO2 removal)
Aux Power				
Include in VOM?	М	(%)	1.26	(0.000547*D^2+0.00649*D+1.3)*F*G
Makeup Water Rate	N	(1000 gph)	44	(0.04898*D^2+0.5925*D+55.11)*A*F*G/1000
Lime Cost	Р	(\$/ton)	125	< User Input (used default already in EPA spreadsheet)
Waste Disposal Cost	Q	(\$/ton)	30	< User Input (used default already in EPA spreadsheet)
Aux Power Cost	R	(\$/kWh)	0.06	< User Input (used default already in EPA spreadsheet)
Makeup Water Cost	S	(\$/kgal)	1	< User Input (used default already in EPA spreadsheet)
Operating Labor Rate	Т	(\$/hr)	60	< User Input (Labor cost including all benefits)(Default in Sheet)

Costs are all based on 2016 dollars

		Comments
Fixed O&M Cost		
FOMO (\$/kW yr) = (8 operators)*2080*T/(A*1000)	\$ 1.23	Fixed O&M additional operating labor costs
FOMM (\$/kW yr) =(BM*0.015)/(B*A*1000)	\$ 4.13	Fixed O&M additional maintenance material and labor costs
FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM)	\$ 0.09	Fixed O&M additional administrative labor costs
FOM (\$/kW yr) = FOMO +FOMM+FOMA	\$ 5.45	Total Fixed O&M costs
Variable O&M Cost		
VOMR (\$/MWh) = K*P/(A*J)/98	\$ 0.18	Variable O&M costs for limestone reagent
VOMW (\$/MWh) = L*Q/(A*J)/98	\$ 0.10	Variable O&M costs for waste disposal Variable O&M costs for additional auxiliary power required including
VOMP (\$/MWh) = M*R*10		

SO2 Control Option Costs

VOMM (\$/MWh) = N*S/A		\$	0.05	Variable O&M costs for makeup water
VOM (\$/MWh) = VOMR + VOMW + VOMP + VOMM		\$	1.10	Total Variable O&M costs
Annual Capacity Factor = 5	9%			
Annual MWhs = 4,225,1	93			
Annual Heat Input MMBtu = 40,895,6	46			
Annual Tons SO2 Created = 10,2	65 at 100% S cor	version		
Annual Tons SO2 Removed = 4,2	94 at removal effi	ciency = 41.8	3326693227092%	
Annual Tons SO2 Emission = 5,9	71			
Annual Avg SO2 Emission Rate, lb/MMBtu = 0.2	92 Value is AT or	ABOVE a 0.	06 floor rate	
Annual Capital Recovery Factor = n/a	Wet FGD			
Annual Capital Cost (Including AFUDC), S		Facility is e	existing - no new c	apital
Annual FOM Cost, S	= 4,423,000			
Annual VOM Cost, S	= 4,631,000	1		
Total Annual D-FGD Cost, S	= 9,054,000	Estimated	Operating costs o	f Existing DFGD operating to current 0.292 lb/mmbtu control

SO2 Control Option Costs

Attachment A-5.4 Operating Costs Estimate for Existing D-FGD - Louisa Unit 101

This cost estimate is used to estimate the Increased costs to improve the performance of the existing D-FGD from 0.292 to 0.1 lb/mmbtu

Below Calculation Methodology Utilizes EPA Cost Retrofit Tool.

https://www.epa.gov/airmarkets/retrofit-cost-analyzer #: ":text = The %20 Retrofit %20 Cost %20 Analyzer %20 (RCA, were %20 developed %20 to %20 inform %20 modeling with the form %20 model of %20 to %20 model of %20 model of

Variable	Designation	Units	Value	Calculation
EPC Project?			FALSE	
Unit Size	A	(MW)	812	< User Input (Greater than 50 MW)
Retrofit Factor	В		1.00	< User Input (An "average" retrofit has a factor = 1.0)
Heat Rate	С	(Btu/kWh)	9679	< User Input
SO2 Rate	D	(lb/MMBtu)	0.502	< User Input (SDA FGD Estimation only valid up to 3 lb/MMBtu SO2 Rate)
Type of Coal	E		Bituminous 🗸	< User Input
Coal Factor	F			Bit = 1.0, PRB = 1.05, Lig = 1.07
Heat Rate Factor	G		0.9679	C/10000
Heat Input	Н	(Btu/hr)	7.86E+09	A*C*1000
Capacity Factor	Ι	(%)	59.4	< User Input
Operating SO2 Removal	J	(%)	80.1	< User Input (Used to adjust actual operating costs)
Design Lime Rate	к	(ton/hr)	3	(0.6702*(D^2)+13.42*D)*A*G/2000 (Based on 95% SO2 removal)
Design Waste Rate	L	(ton/hr)	6	(0.8016*(D^2)+31.1917*D)*A*G/2000 (Based on 95% SO2 removal)
Aux Power	М	(%)	1.26	(0.000547*D^2+0.00649*D+1.3)*F*G
Makeup Water Rate	N	(1000 gph)	44	(0.04898*D^2+0.5925*D+55.11)*A*F*G/1000
Lime Cost	Р	(\$/ton)	125	< User Input (used default already in EPA spreadsheet)
Waste Disposal Cost	Q	(\$/ton)	30	< User Input (used default already in EPA spreadsheet)
Aux Power Cost	R	(\$/kWh)	0.06	< User Input (used default already in EPA spreadsheet)
Makeup Water Cost	S	(\$/kgal)	1	< User Input (used default already in EPA spreadsheet)
Operating Labor Rate	Т	(\$/hr)	60	< User Input (Labor cost including all benefits)(Default in Sheet)

	TPC (\$) = Includes Owner's Costs and AFUDC = CECC + B1 + B2 + C1	\$ 335,708,000	Total project cost
	TPC (\$/kW) = Includes Owner's Costs and AFUDC	413	Total project cost per kW
Fixed O&	M Cost		
	FOMO (\$/kW yr) = (8 operators)*2080*T/(A*1000)	\$ 1.23	Fixed O&M additional operating labor costs
	FOMM (\$/kW yr) =(BM*0.015)/(B*A*1000)	\$ 4.13	Fixed O&M additional maintenance material and labor costs
	FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM)	\$ 0.09	Fixed O&M additional administrative labor costs
	FOM (\$/kW yr) = FOMO +FOMM+FOMA	\$ 5.45	Total Fixed O&M costs
Variable (D&M Cost		
	VOMR (\$/MWh) = K*P/(A*J)/98	\$ 0.35	Variable O&M costs for limestone reagent
	VOMW (MWh) = L*Q/(A*J)/98	\$ 0.19	Variable O&M costs for waste disposal Variable O&M costs for additional auxiliary power required including
	VOMP (\$/MWh) = M*R*10	\$ 0.76	additional fan power (Refer to Aux Power % above)
	VOMM (\$/MWh) = N*S/A	\$ 0.05	Variable O&M costs for makeup water

SO2 Control Option Costs

VOM

/MWh) = VOMR + VOMW + VOMP + VOMM			\$	1.36	Total Variable O&M costs
Annual Capacity Factor =	59%				
Annual MWhs =	4,225,193				
Annual Heat Input MMBtu =	40,895,646				
Annual Tons SO2 Created =	10,265	at 100% S convers	sion		
Annual Tons SO2 Removed =	8,220	at removal efficien	cy = 80.079	6812749004%	
Annual Tons SO2 Emission =	2,045		-		
Annual Avg SO2 Emission Rate, lb/MMBtu =	0.100	Value is AT or ABO	OVE a 0.06	floor rate	
-					
Annual Capital Recovery Factor = n	a	Wet FGD			
Annual Capital Cost (Including	AFUDC), \$ =	-	Facility is e	xisting - no new	capital
Annual F	OM Cost, \$ =	4,423,000			
Annual V	OM Cost, \$ =	5,733,000			
Total Annual D-F	GD Cost, \$ =	10,156,000	Estimated	Operating cost	ts of Existing DFGD operating to 0.1 lb/mmbtu control
Estimated cost from separate spre	adsheet (Atta	chment A-5.3) of [-FGD oper	ating at curren	t 0.292 lb/mmbtu performance
Annual F	OM Cost, \$ =	4,423,000			
Annual V	OM Cost, \$ =	4,631,000			
	GD Cost, \$ =		Estimated (Operating costs	

Increased Cost to improve existing SDA Dry FGD from 0.292 to 0.1 lb/mmbtu performance Total Increased Annual D-FGD Cost, \$ = 1,102,000

SO2 Control Option Costs

Attachment A-5.5 Capital and Operating Costs for Wet FGD - WSEC Unit #3

Below Calculation Methodology Utilizes EPA Cost Retrofit Tool.

https://www.epa.gov/airmarkets/retrofit-cost-analyzer#:~:text=The%20Retrofit%20Cost%20Analyzer%20(RCA,were%20developed%20to%20inform%20modeling

Variable	Designation	Units	Value	Calculation
EPC Project?			FALSE	
Wastewater Treatment		Phys Chem-Biological	•	
Unit Size	А	(MW)	725.8	< User Input (Greater than 100 MW)
Retrofit Factor	В		1.00	< User Input (An "average" retrofit has a factor = 1.0)
Heat Rate	С	(Btu/kWh)	9874	< User Input
SO2 Rate	D	(Ib/MMBtu)	0.483	< User Input
Type of Coal	E		Bituminous 🔻	< User Input
Coal Factor	F		1	Bit = 1.0, PRB = 1.05, Lig = 1.07
Heat Rate Factor	G		0.9874	C/10000
Heat Input	Н	(Btu/hr)	7.17E+09	A*C*1000
Capacity Factor	I	(%)	72	< User Input
Operating SO2 Removal	J	(%)	87.62	< User Input (Used to adjust actual operating costs)
Design Limestone Rate	К	(ton/hr)	3	17.52*A*D*G/2000 (Based on 98% removal)
Design Waste Rate	L	(ton/hr)	5	1.811*K (Based on 98% removal)
Aux Power				
Include in VOM?	М	(%)	1.19	(1.12e^(0.155*D))*F*G
Makeup Water Rate	Ν	(1000 gph)	54	(1.674*D+74.68)*A*F*G/1000
Limestone Cost	Р	(\$/ton)	30	< User Input (used default in EPA spreadsheet)
Waste Disposal Cost	Q	(\$/ton)	30	< User Input (used default in EPA spreadsheet)
Aux Power Cost	R	(\$/kWh)	0.06	< User Input (used default in EPA spreadsheet)
Makeup Water Cost	S	(\$/kgal)	1	< User Input (used default in EPA spreadsheet)
Operating Labor Rate	Т	(\$/hr)	60	< User Input (Labor cost including all benefits)

Costs are all based on 2016 dollars

Capital Cost Calcuation Comments Includes - Equipment, intallation, buildings, foundations, electrical, and retrofit difficulty. 62.967.000 BMR (\$) = 584000*(B)*((F*G)^0.6)*((D/2)^0.02)*(A^0.716) \$ Base absorber island cost BMF (\$) = 202000*(B)*((D*G)^0.3)*(A^0.716) \$ 18,081,000 Base reagent preparation cost BMW (\$) = 106000*(B)*((D*G)^0.45)*(A^0.716) \$ 8,491,000 Base waste handling cost Base balance of plant costs including: ID or booster fans, new wet BMB (\$) = 1070000*(B)*((F*G)^0.4)*(A^0.716) 118.994.000 chimney, piping, ductwork modifications and strengthening, minor \$ WWT, etc... Base wastewater treatment facility, beyond minor physical/chemical BMWW (\$) = If type is Bio-Chem, then 10600000*(B)*A/500^0.6), else 0 13,256,047 \$ treatment BM (\$) = BMR + BMF + BMW + BMB + BMWW \$ 221,789,047 Total base module cost including retrofit factor BM (\$/kW) = 306 Base cost per kW **Total Project Cost** A1 = 10% of BM \$ 22,179,000 Engineering and Construction Management costs 22.179.000 A2= 10% of BM \$ Labor adjustment for 6 x 10 hour shift premium, per diem, etc... A3 = 10% of BM \$ 22,179,000 Contractor profit and fees

SO2 Control Option Costs

CECC (\$) = BM + A1 + A2 + A3 CECC (\$/kW) =			\$	288,326,047 397	Capital, engineering and construction cost subtotal Capital, engineering and construction cost subtotal per kW
B1 = 5% of CECC			\$	14,416,000	Owners costs including all "home office" costs (owners engineering, management, and procuement activities)
TPC' (\$) - Includes Owner's Costs = CECC + B1 TPC' (\$/kW) - Includes Owner's Costs			\$	302,742,047 417	Total project cost without AFUDC Total project cost per kW without AFUDC
B2 = 10% of (CECC + B1) C1 = 15% of CECC+B1			\$ \$	30,274,000 -	AFUDC (Based on a 3 year engineering and construction cycle) EPC fees of 15%
TPC (\$) = Includes Owner's Costs and AFUDC = CECC + B1 + B2 + C1 TPC (\$/kW) = Includes Owner's Costs and AFUDC			\$	333,016,047 459	Total project cost Total project cost per kW
Fixed O&M Cost					
FOMO (\$/kW yr) = (if MW>500 then 16 additional operators, else 12 operators)*20	080*T/(A*1000)		\$	2.75	Fixed O&M additional operating labor costs
FOMM (\$/kW yr) =(BM*0.015)/(B*A*1000)			\$ \$	4.58	Fixed O&M additional maintenance material and labor costs
FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM) FOMWW (\$/kW yr) =			\$	0.14 0	Fixed O&M additional administrative labor costs Fixed O&M costs for wastewater treatment facility
FOM (\$/kW yr) = FOMO +FOMM+FOMA+ FOMWW			\$	7.47	Total Fixed O&M costs
Variable O&M Cost					
VOMR (\$/MWh) = K*P/(A*J)/98			\$	0.11	Variable O&M costs for limestone reagent
VOMW (\$/MWh) = L*Q/(A*J)/98			\$	0.20	Variable O&M costs for waste disposal
					Variable O&M costs for additional auxiliary power required including
VOMP (\$/MWh) = M*R*10			\$	0.72	additional fan power (Refer to Aux Power % above)
VOMM (\$/MWh) = N*S/A			\$ \$	0.08 0.17	Variable O&M costs for makeup water
VOMWW (\$/MWh) =			Ф	0.17	Variable O&M costs for wastewater treatment facility
VOM (\$/MWh) = VOMR + VOMW + VOMP + VOMM + VOMWW			\$	1.28	Total Variable O&M costs
Annual Capacity Factor =	72%				
Annual MWhs =	4,577,766				Capital Recovery Factor Calculation Interest Rate
Annual Heat Input MMBtu =	45,200,859				$0.10081 = i (1+i)^n / (1+i)^n - 1 $ 7.862%
Annual Tons SO2 Created =	- /	at 100% S convers		07.000/	Where n = Equipment Life and i= Interest Rate Equipment Life
Annual Tons SO2 Removed = Annual Tons SO2 Emission =	9,565 1,351	at removal efficien	icy = i	87.62%	20 Years
Annual Avg SO2 Emission = Annual Avg SO2 Emission Rate, Ib/MMBtu =	,	Value is BELOW a	a 0 06	S floor rate	Converstion from 2016\$ to 2019\$
	0.000				541.7 2016 CEPCI (Chemical Engineering Plant Cost Index
Annual Capital Recovery Factor =	0.101	Wet FGD 2016\$	Wet	t FGD 2019\$	602.1 2019 CEPCI
Annual Capital Cost (Includin	ıg AFUDC), \$ =	33,571,000		37,314,194	
Annual	FOM Cost, \$ =	5,424,000		6,028,781	Note: Annual O&M Costs are not escalated
Annual Total Annual Wet	VOM Cost, \$ =	5,837,000 44,832,000		6,487,830 49,830,805	(assume unit prices reflect current prices)
	, .			, ,	
Annual Operating Cost Savings to S/D Dry-FGD at current (Dry	-	(From Attachment A-5.6)
	FOM Cost, \$ =			(4,085,000)	
Annual Total Annual Wet	VOM Cost, \$ =			(4,583,000) (8,668,000)	
i otai Annuai Wet	ι Ου Ουσι, φ -			(0,000,000)	

SO2 Control Option Costs

Reduction with Wet-FGD relative to DFGD at 0.357 lb/mmbtu

	WSEC #3
Capital Cost	\$370,150,000
Capital Cost Recovery	\$37,314,000
Annual O&M	\$3,849,000
Total Annualized Costs	\$41,163,000

SO2 Control Option Costs

Attachment A-5.6 Operating Costs Estimate for Existing D-FGD - WSEC Unit #3

This cost estimate is used to estimate the "operating cost credit" for S/D of existing D-FGD if replaced with Wet FGD

Below Calculation Methodology Utilizes EPA Cost Retrofit Tool.

Variable	Designation	Units	Value	Calculation
	Designation	Onits		
EPC Project?			FALSE	
Unit Size	A	(MW)	725.8	< User Input (Greater than 50 MW)
Retrofit Factor	В		1.00	< User Input (An "average" retrofit has a factor = 1.0)
Heat Rate	С	(Btu/kWh)	9874	< User Input
SO2 Rate	D	(lb/MMBtu)	0.483	< User Input (SDA FGD Estimation only valid up to 3 lb/MMBtu SO2 Rate)
Type of Coal	E		Bituminous 🔻	′ < User Input
Coal Factor	F		1	Bit = 1.0, PRB = 1.05, Lig = 1.07
Heat Rate Factor	G		0.9874	C/10000
Heat Input	Н	(Btu/hr)	7.17E+09	A*C*1000
Capacity Factor	I	(%)	72	< User Input
Operating SO2 Removal	J	(%)	26.1	< User Input (Used to adjust actual operating costs)
Design Lime Rate	К	(ton/hr)	2	(0.6702*(D^2)+13.42*D)*A*G/2000 (Based on 95% SO2 removal)
Design Waste Rate	L	(ton/hr)	5	(0.8016*(D^2)+31.1917*D)*A*G/2000 (Based on 95% SO2 removal)
Aux Power				
Include in VOM?	М	(%)	1.29	(0.000547*D^2+0.00649*D+1.3)*F*G
Makeup Water Rate	N	(1000 gph)	40	(0.04898*D^2+0.5925*D+55.11)*A*F*G/1000
Lime Cost	Р	(\$/ton)	125	< User Input (used default already in EPA spreadsheet)
Waste Disposal Cost	Q	(\$/ton)	30	< User Input (used default already in EPA spreadsheet)
Aux Power Cost	R	(\$/kWh)	0.06	< User Input (used default already in EPA spreadsheet)
Makeup Water Cost	S	(\$/kgal)	1	< User Input (used default already in EPA spreadsheet)
Operating Labor Rate	Т	(\$/hr)	60	< User Input (Labor cost including all benefits)(Default in Sheet)

Costs are all based on 2016 dollars

Comments

Fixed O&	M Cost		
	FOMO (\$/kW yr) = (8 operators)*2080*T/(A*1000)	\$ 1.38	Fixed O&M additional operating labor costs
	FOMM (\$/kW yr) =(BM*0.015)/(B*A*1000)	\$ 4.16	Fixed O&M additional maintenance material and labor costs
	FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM)	\$ 0.09	Fixed O&M additional administrative labor costs
	FOM (\$/kW yr) = FOMO +FOMM+FOMA	\$ 5.63	Total Fixed O&M costs
Variable (D&M Cost		
	VOMR (\$/MWh) = K*P/(A*J)/98	\$ 0.11	Variable O&M costs for limestone reagent
	VOMW (\$/MWh) = L*Q/(A*J)/98	\$ 0.06	Variable O&M costs for waste disposal Variable O&M costs for additional auxiliary power required including
	VOMP $(MWh) = M*R*10$	\$ 0.77	additional fan power (Refer to Aux Power % above)
	VOMM (\$/MWh) = N*S/A	\$ 0.06	Variable O&M costs for makeup water

Attachments A-5.1-5.7 SO2 Control Option Costs

VOM (\$/MWh) = VOMR + VOMW + VOMP + VOMM		\$	1.00	Total Variable O&M costs
Annual Capacity Factor = 72%				
Annual MWhs = 4,577,766				
Annual Heat Input MMBtu = 45,200,859				
Annual Tons SO2 Created = 10,916	at 100% S con	version		
Annual Tons SO2 Removed = 2,848	at removal effic	ciency = 26.08	369565217391%	
Annual Tons SO2 Emission = 8,068				
Annual Avg SO2 Emission Rate, lb/MMBtu = 0.357	Value is AT or	ABOVE a 0.0	6 floor rate	
Annual Capital Recovery Factor = n/a	Wet FGD			
Annual Capital Cost (Including AFUDC), \$ =	-	Facility is ex	isting - no new ca	apital
Annual FOM Cost, \$ =	4,085,000			
Annual VOM Cost, \$ =	4,583,000			
Total Annual D-FGD Cost, \$ =	8,668,000	Estimated C	perating costs of	Existing DFGD operating at existing 0.357 lb/mmbtu control

SO2 Control Option Costs

Attachment A-5.7 Operating Costs Estimate for Existing D-FGD - WSEC Unit 3

This cost estimate is used to estimate the Increased costs to improve the performance of the existing D-FGD from 0.357 to 0.1 lb/mmbtu

Below Calculation Methodology Utilizes EPA Cost Retrofit Tool.

https://www.epa.gov/airmarkets/retrofit-cost-analyzer#:~:text=The%20Retrofit%20Cost%20Analyzer%20(RCA,were%20developed%20to%20inform%20modeling

Variable	Designation	Units	Value	Calculation	
EPC Project?			FALSE		
Unit Size	А	(MW)	725.8	< User Input (Greater than 50 MW)	
Retrofit Factor	В		1.00	< User Input (An "average" retrofit has a factor = 1.0)	
Heat Rate	С	(Btu/kWh)	9874	< User Input	
SO2 Rate	D	(lb/MMBtu)	0.483	< User Input (SDA FGD Estimation only valid up to 3 lb/MMBtu SO2 Rate)	
Type of Coal	E		Bituminous 🗸 🔻	< User Input	
Coal Factor	F		1	Bit = 1.0, PRB = 1.05, Lig = 1.07	
Heat Rate Factor	G		0.9874	C/10000	
Heat Input	Н	(Btu/hr)	7.17E+09	A*C*1000	
Capacity Factor	I	(%)	72	< User Input	
Operating SO2 Removal	J	(%)	79.3	< User Input (Used to adjust actual operating costs)	
Design Lime Rate	K	(ton/hr)	2	(0.6702*(D^2)+13.42*D)*A*G/2000 (Based on 95% SO2 removal)	
Design Waste Rate	L	(ton/hr)	5	(0.8016*(D^2)+31.1917*D)*A*G/2000 (Based on 95% SO2 removal)	
Aux Power					
Include in VOM?	М	(%)	1.29	(0.000547*D^2+0.00649*D+1.3)*F*G	
Makeup Water Rate	N	(1000 gph)	40	(0.04898*D^2+0.5925*D+55.11)*A*F*G/1000	
Lime Cost	Р	(\$/ton)	125	< User Input (used default already in EPA spreadsheet)	
Waste Disposal Cost	Q	(\$/ton)	30	< User Input (used default already in EPA spreadsheet)	
Aux Power Cost	R	(\$/kWh)	0.06	< User Input (used default already in EPA spreadsheet)	
Makeup Water Cost	S	(\$/kgal)	1	< User Input (used default already in EPA spreadsheet)	
Operating Labor Rate	Т	(\$/hr)	60	< User Input (Labor cost including all benefits)(Default in Sheet)	

Costs are all based on 2016 dollars

Comments

Fixed O&M Cost			
FOMO (\$/kW yr) = (8 operators)*2080*T/(A*1000)	\$	1.38	Fixed O&M additional operating labor costs
FOMM (\$/kW yr) =(BM*0.015)/(B*A*1000)	\$	4.16	Fixed O&M additional maintenance material and labor costs
FOMA (\$/kW yr) = 0.03*(FOMO + 0.4*FOMM)	\$	0.09	Fixed O&M additional administrative labor costs
FOM (\$/kW yr) = FOMO +FOMM+FOMA	\$	5.63	Total Fixed O&M costs
FOM (\$/kW yr) = FOMO +FOMM+FOMA Variable O&M Cost	\$	5.63	Total Fixed O&M costs
	\$ \$	5.63 0.34	Total Fixed O&M costs Variable O&M costs for limestone reagent

Attachments A-5.1-5.7 SO2 Control Option Costs

VOMP (\$/MWh) = M*R*10 VOMM (\$/MWh) = N*S/A		\$ \$	0.77 0.06	Variable O&M costs for additional auxiliary power required including additional fan power (Refer to Aux Power % above) Variable O&M costs for makeup water
VOM (\$/MWh) = VOMR + VOMW + VOMP + VOMM		\$	1.36	Total Variable O&M costs
	2,260	o S conversion val efficiency = 79.2 AT or ABOVE a 0.		
Annual Capital Recovery Factor = n/a	Wet FG	D		
Annual Capital Cost (Including AF	,	,	s existing - no new	v capital
Annual FOM	, .	,085,000		
Annual VOM Total Annual D-FGD		,217,000	d Operating and	ts of Existing DFGD operating to 0.1 lb/mmbtu control
Total Allitual D-FGD	τος, φ – το	,302,000 EStimat	eu Operating cos	its of Existing DFGD operating to 0.1 ib/ministu control
Estimated cost from separate spreads	heet of SDA FGD	operating at Curre	nt 0.357 lb/mmbt	tu performance
Annual FOM		,423,000		
Annual VOM	Cost, \$ = 4	,631,000		
Total Annual D-FGD	Cost, \$ = 9	,054,000 Estimate	d Operating costs	of Existing DFGD
Increased Cost to improve existing	SDA Dry FGD from	n 0.292 to 0.1 lb/m	mbtu performanc	ce

1,248,000

Total Increased Annual D-FGD Cost, \$ =

Attachment B

LADCO Visibility Analysis - Louisa and Walter Scott Jr. Impacts

Attachment B

VISTA Visibility Modeling - Louisa and Walter Scott Jr. Impacts

Visibility Emissions Estimates for Iowa sources were generated by LADCO for 2028.

Emissions Info and Visibility Modeling Results are available at the following website:

- https://www.ladco.org/reports/technical-support/ladco-regional-haze-tsd-second-implementation-period/

Table B-1 Iowa Emissions Modeled By LADCO for 2028 Projection

		Emiss. % of		
Projected 2028 Emissions Modeled by LADCO	SO2 (Tons/yr)	Anthro. Sources	NOx (Tons/yr)	Emiss. % of Anthro. Sources
All Iowa Projected 2028 (tons/yr)	36,287		136,635	
All Iowa Anthropogenic (exclude fire and biogenic)	35,538		96,398	
All Iowa Point Sources only	34,786	98%	40,651	42%
All Iowa EGU Emissions	28,002	79%	21,442	22%
Louisa Tons/yr (modeled)	5,605	16%	3,403	4%
Walter Scott Tons/yr (modeled)	9,897	28%	6,025	6%

- Emissions data from LADCO file: 2028_LADCO_V1b_county_monthly_report_OzoneHaze_12092020.xlsx

- EGU sources designated in modeling as "ptertac" for Eastern Regional Technical Advisory Committee (ERTAC) which is basis of EGU projected emissions. The 2028 project emissions values for Louisa and Walter Scott are similar too, although slightly different, than the base actual baseline emissions for these generating stations.

Table B-2 Modeled Impacts of All Iowa Emissions by LADCO for 2028 (20% Most Impaired)

Modeled Iowa Total Impacts Mm-1	Sulfate	Nitrate					
Boundary Waters Canoe Area	0.400	0.460					
Voyageurs NP	0.440	0.320					
Isle Royale NP	0.650	0.650					
Seney Wilderness Area	0.590	0.800					
Maximum Impacts are Highlighted							

LADCO 2028								
Projection (Mm-1)								
37.32								
41.29								
44.06								
57.95								

- Modeled Iowa Impacts from "PSAT tracers-Most Impaired" tab in LADCO Spreadsheet:

LADCO RegionalHaze 2016 28abc PSAT Charts 05June2021.xlsx

- Sulfate Visibility Impacts are from SO2 Emissions, Nitrate are from NOx.

Table B-3 VERY Conservative Assumed Potential Impact of Louisa and Walter Scott

		Assumed Plant			Assumed Plant	
	Sulfate	Sulfate Impact.	Each Plant's SO2	Nitrate	Nitrate Impact. %	Each Plant's NOx as
Conservative Assumption of Max Impact	(Mm-1)	% of Statewide	as % of Anthro.	(Mm-1)	of Statewide	% of Anthro.
Max. Statewide Iowa Impacts (Mm-1)	0.65			0.80		
Louisa Impact (Very Conserv. Assumed)	0.19	28%	16%	0.06	8%	4%
Walter Scott (Very Conserv. Assumed)	0.33	<u>50%</u>	<u>28%</u>	0.11	<u>14%</u>	<u>6%</u>
		79%	44%		22%	10%
Resultant Assumed Impact per ton	Sulfate Mm-1/tor	so2		Nitrate Mm-1/t	on NOx	
Louisa Impact Mm-1/ton emissions	3.30E-05			1.89E-05		
Walter Scott Mm-1/tons emissions	3.30E-05			1.89E-05		

Because of the long distance from the state of lowa to any Class I area, it would probably be reasonable to assume that an lowa source such as the Louisa Generating Station, which contributes approximately 2% of the statewide NOx emissions, would contribute approximately 2% of the statewide Nitrate visibility impairment. The exact impact of a single source may be slightly higher or lower that this proportional relationship dependent on its specific geographic location or source release characteristics. However, any differences vs. a straight proportional relationship is likely minimal because of the great distances involved to the Class I areas. However, to be very conservative, a worse-case possible impact has been estimated above using the following approach. First, it has been assumed that portion of the lowa statewide nitrate and sulfate impacts attributable to all EGU's as a group is proportional to the total of all EGU emissions relative to all statewide emissions. Then, it is next assumed that the resulting impact of all EGUs is 100% attributable to just Louisa and Walter Scott Generating Stations, even though they represent only a faction of the total EGU emissions. Finally, the assumed split of the impacts are allocated between Louisa and Walter Scott based on their relative emissions. The results of this approach is that 79% of the statewide sulfate impacts are assumed attributable to these two power plants even though they contribute only 44% of the statewide anthropogenic SO2 emissions. Likewise, these assumptions allocate 22% of the statewide Nitrate impacts to these two power plants even though they represent only 10% of the statewide anthropogenic NOx emissions and only 7% of the total state NOx emissions. These are very conservative assumptions and actual impacts are expected to be much lower.

The below Table estimates the visibility benefit for each control option at the MEC facilities based on the above Visibility Factors and estimates the visibility cost-effectiveness of each option by dividing the visibility improvement by the annual cost of the control option.

Table B-4 Visibility Cost-Effectiveness of Each Candidate Control Option (using VERY Conservative Estimate of Visibility Benefit)

Candidate Control Improvements		Total Annual Costs (\$/yr)	Emissions Reduction (tons/yr)	Maximum Visibility Improvement (Mm ⁻¹)	Maximum Visibility Improvement (DV)	Cost Effectiveness (\$/Mm ⁻¹)	Cost Effectiveness (\$/DV)
Louisa Generating Station							
D-FGD Improvement (Proposed)	SO ₂	\$1,102,000	3,903	0.13	0.046	\$8,550,000	\$24,110,000
Wet FGD	SO ₂	\$42,122,000	4,722	0.16	0.055	\$270,000,000	\$761,700,000
Wet FGD Increm. Improv.	SO ₂	\$41,020,000	819	0.03	0.010	\$1,515,960,000	\$4,272,920,000
SNCR	NOx	\$3,621,000	566	0.01	0.004	\$338,970,000	\$883,170,000
SCR	NOx	\$24,271,942	2,739	0.05	0.020	\$469,520,000	\$1,225,860,000
Walter Scott Jr. Energy Center							
D-FGD Improvement (Proposed)	SO ₂	\$1,248,000	5,785	0.19	0.068	\$6,530,000	\$18,430,000
Wet FGD	SO ₂	\$41,163,000	6,687	0.22	0.078	\$186,320,000	\$525,710,000
Wet FGD Increm. Improv.	SO ₂	\$39,915,000	902	0.03	0.011	\$1,339,380,000	\$3,765,570,000
SNCR	NOx	\$4,240,300	755	0.01	0.006	\$297,570,000	\$770,960,000
SCR	NOx	\$24,771,688	3,849	0.07	0.028	\$341,000,000	\$891,070,000

Note: MEC is proposing to implement improvements to the existing Dry FGD system (highlighted above). All other options have negligible visibility benefits and are not economically cost-effective relative to their visibility improvement. These \$/DV and \$/Mm-1 values are more than an order of magnitude higher than costs considered reasonable as BART during the RHR first decadal review. Additionally, a visibility change of 1 deciview is considered barely perceptible and the improvement from the control options above are well below that level. The 1999 RHR preamble described a change of 0.1 DV as the "no degradation" level.

Table B-5 Adjusted Glidepath Goal used to estimated Mm-1 to DV conversion factor

Adjusted Glidepath 2064 Goal	DV	Mm-1	DV/Mm-1	
Boundary Waters Canoe Area	12.12	33.600	0.361	
Voyageurs NP	12.53	35.010	0.358	
Isle Royale NP	13.01	36.730	0.354	Use for SO2
Seney Wilderness Area	14.07	36.730	0.383	Use for NOx

The above table shows the 2064 Adjusted Glidepath Goals for each Class I area in DV and Mm-1. The Isle Royale is Iowa's most impacted area for SO2 and therefore its conversion factor is used for SO2 impacts conversion from Mm-1 to DV in Table B-5. Seney is the most impacted for NOx and its factor is used for NOx improvement conversion in Table B-5.

All above Info is obtained from LADCO website:

https://www.ladco.org/reports/technical-support/ladco-regional-haze-tsd-second-implementation-period/

Attachment C

RACT/BACT/LAER Clearinghouse Database Summary of NOx and SO₂ Controls for Coal-Fired EGU Boilers

Table A-3.1 RBLC Database Search Results for NOx Controls of Coal Fired Boilers > 250 MMBtu/hr

RBLCID	FACILITY _NAME	STATE (Permit Year)	PROCESS_NAME	FUEL	THROUGHPUT		CONTROL_METHOD_DESCRIPTION		I	CASE-BY- CASE BASIS
AZ- 0055	NAVAJO GENERATING STATION	AZ (2012)	PULVERIZED COAL FIRED BOILER	COAL	7725	MMBTU/ H	LOW NOX BURNER (LNB), SEPARATED OVERFIRE AIR (SOFA) SYSTEM,	0.24	0.24 LB/ MMBTU	
CA- 1206	STOCKTON COGEN COMPANY	CA (2011)	CIRCULATING FLUIDIZED BED BOILER	COAL	730	MMBTU/ H	LOW BED TEMPERATUR STAGED COMBUSTION; SELECTIVE NON- CATALYTIC REDUCTION (SNCR)	50	PPM	BACT-PSD
КҮ- 0100	J.K. SMITH GENERATING STATION	KY (2010)	CIRCULATING FLUIDIZED BED BOILER CFB1 AND CFB2	COAL	3000	MMBTU/ H	SNCR	0.07 LB/ MMBTU		BACT-PSD
MI- 0399	DETROIT EDISON MONROE	MI (2010)	Boiler Units 1, 2, 3 and 4	Coal	7624	MMBTU/ H	Staged combustion, low-NOx burners, overfire air, and SCR.	0.08	lb/ MMBTU	BACT-PSD
MI- 0400	WOLVERINE POWER	MI (2011)	2 Circulating Fluidized Bed Boilers (CFB1 & CFB2)	Petcoke /coal	3030	MMBTU/ H EACH	SNCR (Selective Non-Catalytic Reduction)	1	LB/ MW-H	BACT-PSD
MI- 0400	WOLVERINE POWER	MI (2011)	2 Circulating Fluidized Bed Boilers (CFB1 & CFB2) -	Petcoke /coal	3030	MMBTU/ H each	SNCR (Selective Non-Catalytic Reduction)	0.07	lb/ MMBTU	BACT-PSD

Louisa and Walter Scott Jr. Four Factor Analysis

	·		T				<u>т</u>			T1
RBLCID	FACILITY _NAME	STATE (Permit Year)	PROCESS_NAME	FUEL	THROUG	ĴНРUT	CONTROL_METHOD_DESCRIPTION	EMISSION LIMIT		CASE-BY- CASE BASIS
ND- 0026	M.R. YOUNG STATION	ND (2012)	Cyclone Boilers, Unit 1	Lignite	3200	MMBTU/ H	SNCR plus separated over fire air	0.36	lb/ MMBTU	BACT-PSD
ND- 0026	M.R. YOUNG STATION	ND (2012)	Cyclone Boilers, Unit 2	Lignite	6300	MMBTU/ H	SNCR plus separated over fire air	0.35	LB/ MMBTU	BACT-PSD
OK- 0151	SOONER GENERATING STATION	ОК (2013)	COAL-FIRED BOILERS	COAL	550	MW	LOW-NOx BURNERS AND OVERFIRE AIR.	0.15	LB/ MMBTU	BART
OK- 0152	MUSKOGEE GENERATING STATION	OK (2013)	COAL-FIRED BOILER	COAL	550	MW	LOW-NOx BURNERS AND OVERFIRE AIR	0.15	LB/ MMBTU	BART
TX- 0554	COLETO CREEK UNIT 2	TX (2010)	Coal-fired Boiler Unit 2	PRB coal	6670	MMBTU/ H	low-NOx burners with OFA, Selective Catalytic Reduction	0.06	LB/ MMBTU	BACT-PSD
TX- 0556	HARRINGTON STATION UNIT 1 BOILER	TX (2010)	Unit 1 Boiler	Coal	3630	MMBTU/ H	Separated overfire air windbox system; low-NOx burner tips and additional ya control to the burners.	1452	LB/H	BACT-PSD
TX- 0557	LIMESTONE ELECTRIC GENERATING STATION	TX (2010)	LMS Units 1 and 2	Coal	9061	MMBtu/H	Tuning of existing low-NOx firing system to induce deeper state combustion.	0.25	lb/ MMBTU	BACT-PSD

Louisa and Walter Scott Jr. Four Factor Analysis

TX- TENASKA TX- TRAILBLA 0585 ENERGY CENTER		Coal-fired Boiler	Sub- bituminous coal	8307	MMBTU/ H	Selective Catalytic Reduction	0.05	lb/MMBTU	BACT-PSD
--	--	-------------------	----------------------------	------	-------------	-------------------------------	------	----------	----------

Table A-3.2 F	RBLC Database Search	h Results for SO ₂ Controls	s of Coal Fired Boilers >	> 250 MMBtu/hr
---------------	----------------------	--	---------------------------	----------------

RBLCID	FACILITY_NAME	STATE (Year)	PROCESS_NAME	FUEL	THROUGHPUT		CONTROL METHOD DESCRIPTION	EMISSION LIMIT		CASE- BY- CASE BASIS
CA- 1206	STOCKTON COGEN COMPANY	CA (2011)	CIRCULATING FLUIDIZED BED BOILER	COAL	730	MMBTU/H	LIMESTONE INJECTION W/ A MINIMUM REMOVAL EFFICIENCY OF 70% (3-HR AVG) TO BE MAINTAINED AT ALL TIMES	59	LB/H	BACT- PSD
KY-0100	J.K. SMITH GENERATING STATION	КҮ (2010)	CIRCULATING FLUIDIZED BED BOILER CFB1 AND CFB2	COAL	3000	MMBTU/H	LIMESTONE INJECTION (CFB)AND A FLASH DRYER ABSORBER WITH FRESH LIME INJECTION	0.075	lb/ MMBTU	BACT- PSD
MI- 0399	DETROIT EDISON MONROE	MI (2010)	Boiler Units 1, 2, 3 and 4	Coal	7624	MMBTU/H	Wet flue gas desulfurization.	0.107	lb/ MMBTU	BACT- PSD
MI- 0400	WOLVERINE POWER	MI (2011)	2 Circulating Fluidized Bed Boilers (CFB1 & CFB2)	Petcoke /coal	3030	MMBTU/H EACH	Dry flue gas desulfurization (spray dry absorber or polishing scrubber).	303	LB/H	BACT- PSD
MI- 0400	WOLVERINE POWER	MI (2011)	2 Circulating Fluidized Bed Boilers (CFB1 & CFB2) -	Petcoke /coal	3030	MMBTU/H each	Dry flue gas desulfurization (spray dry absorber or polishing scrubber).	0.06	lb/ MMBTU	BACT- PSD
TX-0554	COLETO CREEK UNIT 2	TX (2010)	Coal-fired Boiler Unit 2	PRB coal	6670	MMBTU/H	Spray Dry Adsorber/Fabric Filter	0.06	lb/ MMBTU	BACT- PSD

Louisa and Walter Scott Jr. Four Factor Analysis

TX-0585	TENASKA TRAILBLAZER ENERGY CENTER	TX (2010)	Coal-fired Boiler	Coal	8307	MMBTU/H	Wet limestone scrubber	0.06	LB/ MMBTU	BACT- PSD
TX-0601	GIBBONS CREEK STEAM ELECTRIC STATION	TX (2011)	Boiler	Coal	5060	MMBtu/h	Wet Flue Gas Desulfurization	1.2	lb/ MMBTU	BACT- PSD

Attachment D

MidAmerican Energy Company Most Recent Electric Rate Case

Schedule C – Average Weighted Cost of Capital

Schedule C Page 1 of 1

MIDAMERICAN ENERGY COMPANY 2013 IOWA ELECTRIC RATE CASE RPU-2013-0004 Embedded Average Weighted Average Cost of Capital Twelve Months ending September 30, 2013

Non-Ratemaking Principles Rate Base - Phase-in Proposal

	(a)	(b)	(c)	(d)	(e) Weighted Average
	<u>Component</u>	Amount	<u>Weight</u>	Cost	Cost
1	Long Term Debt	\$3,247,655,195	47.115%	4.355%	2.052%
2	Preferred Stock	\$13,405,084	0.194%	4.411%	0.009%
3	Common Equity	\$3,632,049,622	<u>52.691%</u>	10.000%	5.269%
4	Total	\$6,893,109,901	100.000%		7.329%

Overall WACC, including Ratemaking Principles Rate Base

	(a)	(b)	(c)	(d)	(e) Weighted Average
	Component	Amount	Weight	Cost	<u>Cost</u>
5	Long Term Debt	\$3,247,655,195	47.115%	4.355%	2.052%
6	Preferred Stock	\$13,405,084	0.194%	4.411%	0.009%
7	Common Equity	\$3,632,049,622	<u>52.691%</u>	11.010%	5.80%
8	Total	\$6,893,109,901	100.000%		7.862%

File Name: MEC Settlement Workpapers.xlsx Tab: Sch C