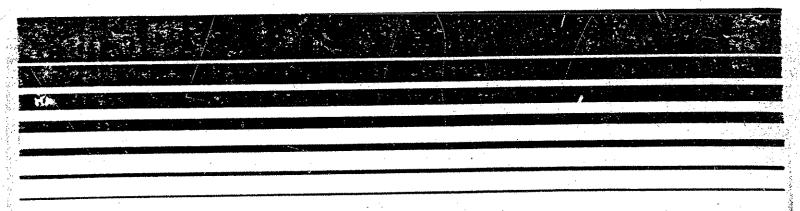


PB82-189572

EPA 450/2-81-078 December 12, 1980


United States
Environmental Protection
Agency

Office of Air Quality Planning and Standards Research Triangle Park NC 27711

Air

SEPA

A Screening Final Procedure for the Report Impacts of Air Pollution Sources on Plants, Soils, and Animals

U.S. Environmental Protection Agency Region VII Information Resource Center 901 N. 5th Street Kansas City, KS 66101

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA 22161

TECHNICAL REPORT DA (Please read Instructions on the reverse before	ATA ore completing
EPA 450/2-81-078	3. RECIPIENT'S ACCESSION NO.
A Screening Procedure for the Impacts of Air	5. REPORT DATE 12/12/80
Pollution Sources on Plants, Soils, and Animals	6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S) A. E. Smith and J. B. Levenson	8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS Argonne National Laboratory	10. PROGRAM ELEMENT NO.
9700 South Cass Avenue	11. CONTRACT/GRANT NO.
Argonne, IL 60439	EPA-IGA-79-D-X0764
Office of Air Quality Planning and Standards	13. TYPE OF REPORT AND PERIOD COVERED Final Report
U.S. Environmental Protection Agency Research Triangle Park, NC 27711	14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES	

16 ABOTOLOT

Section 165 of the Clean Air Act requires preconstruction review of major emitting facilities to provide for the prevention of significant deterioration (PSD) and charges Federal Land Managers (FLMs) with an affirmative responsibility to protect the air quality-related values of Class I areas. Regulations implementing these provisions require an analysis of the impairment to visibility, soils, and vegetation (52.21(o)).

The information and screening procedure presented here provide interim guidance: (1) to aid in determining whether emissions are significant or whether there are significant air quality impacts under Section 52.21(0), and (2) to aid in flagging sources which should be brought to the attention of an FLM under Section 52.21(p).

Impacts on vegetation and soils are the principal areas addressed by the procedure which thus takes a limited view of the possibly broad scope of air quality-related values. A selected review of impacts on fauna has also been included and the odor potential of regulated pollutants is addressed. This procedure is intended for use by air quality engineers and is not a manual for the assessment of impacts on plants, soils, and other air quality-related values such as would be suitable for an ecologistary pocument analysis

a. DESCRIPTORS b.IDENTIFIERS/OPEN ENDED TERMS C. COSATI Field/Group

6F

18. DISTRIBUTION STATEMENT

Release Unlimited

19. SECURITY CLASS (This Report)

None

117

20. SECURITY CLASS (This page)

22. PRICE

A Screening Procedure for the Impacts of Air Pollution Sources on Plants, Soils, and Animals

by

A.E. Smith and J.B. Levenson

Argonne National Laboratory 9700 South Cass Avenue Argonne, II 60439

Contract No. EPA-IGA-79-D-X0764

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Air Quality Planning and Standards Research Triangle Park, North Carolina 27711

December 12, 1980

The guideline series of reports is being issued by the Office of Air Quality Planning and Standards (OAQPS) to provide information to state and local air pollution control agencies; for example, to provide guidance on the acquisition and processing of air quality data and on the planning and analysis requisite for the maintenance of air quality. Reports published in this series will be available – as supplies permit – from the Library Services Office (MD-35), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711; or, for a nominal fee, from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

Publication No. EPA-450/2-81-078

CONTENTS

AC	KNOWLEDGMENTS	. vi
1	INTRODUCTION	. 1
	1.1 Background	. 1
2	OVERVIEW	
3	AIR QUALITY RELATED IMPACT DATA	. 7
	3.1 General	. 7
	3.2.1 General	10
	3.2.3 Synergisms	15
	3.2.4 Screening Concentrations for Soil and Plant Tissue Exposures	16
	3.3 Soils	17
,		
4	TRACE ELEMENT AIR QUALITY DATA	
5	SCREENING PROCEDURE	25
	5.1 Methodology	25
	5.1.1 Description	28
	5.2 Example Screen and Significant Emission Rates	42
	5.2.1 Example Screen	42 44
AP	PENDIX A: ESTIMATES OF MAXIMUM GROUND LEVEL CONCENTRATIONS	49
AP)	PENDIX B: POLLUTANT SENSITIVITIES OF PLANT SPECIES	59
AP	PENDIX C: TRACE ELEMENT AIR QUALITY DATA	71
AP	PENDIX D: EFFECTS OF DEPOSITED PARTICULATE MATTER	107
DE.	FERENCES	.111

TABLES

5.6 Significant Emission Rates for Direct Acting Pollutants	•		13
Air Concentrations			Į
to Ambient Criteria. 3.3 Synergisms of Gaseous Pollutants 3.4 Screening Concentrations for Exposure of Vegetation to Pollutant Concentrations in Soil and Tissue. 3.5 Range of Endogenous Soil Concentrations of Selected Elements 3.6 Plant:Soil Concentration Ratios. 3.6 Dietary Trace-Element Concentrations Toxic to Animals. 5.1 Steps in Screening Procedure 5.2 Pollutants and Averaging Times 5.3 Ambient Screening Concentrations 5.4 Solubilities of Endogenous Trace Elements. 5.5 Equivalent Exogenous Soil Screening Concentrations 5.6 Significant Emission Rates for Direct Acting Pollutants. 5.7 Significant Emission Rates for Trace Elements. 5.8 Summary of Representative Stacks A.1 Dispersion Coefficient Parameters and Maximum			
3.3 Synergisms of Gaseous Pollutants		•	14
Pollutant Concentrations in Soil and Tissue. 3.5 Range of Endogenous Soil Concentrations of Selected Elements . 3.5 Plant:Soil Concentration Ratios			16
3.5 Range of Endogenous Soil Concentrations of Selected Elements			17
3.5 Plant:Soil Concentration Ratios. 3.6 Dietary Trace-Element Concentrations Toxic to Animals. 5.1 Steps in Screening Procedure. 5.2 Pollutants and Averaging Times. 5.3 Ambient Screening Concentrations. 5.4 Solubilities of Endogenous Trace Elements. 5.5 Equivalent Exogenous Soil Screening Concentrations. 5.6 Significant Emission Rates for Direct Acting Pollutants. 5.7 Significant Emission Rates for Trace Elements. 5.8 Summary of Representative Stacks. A.1 Dispersion Coefficient Parameters and Maximum			20
3.6 Dietary Trace-Element Concentrations Toxic to Animals. 5.1 Steps in Screening Procedure			22
5.1 Steps in Screening Procedure			23
5.2 Pollutants and Averaging Times			29
5.3 Ambient Screening Concentrations			31
5.4 Solubilities of Endogenous Trace Elements		•	34
5.5 Equivalent Exogenous Soil Screening Concentrations			38
5.6 Significant Emission Rates for Direct Acting Pollutants			40
5.7 Significant Emission Rates for Trace Elements			46
5.8 Summary of Representative Stacks			47
A.l Dispersion Coefficient Parameters and Maximum			
			53
A.2 Averaging Time Conversion Factors			56
B.1 Sulfur Dioxide Sensitivity of Crop Species			61
B.2 Sulfur Dioxide Sensitivity of Natural Vegetation			62
B.3 Ozone Sensitivity of Crop Species			65
B.4 Ozone Sensitivity of Natural Vegetation			66
B.5 Nitrogen Dioxide Sensitivity of Crop Species			68
B.6 Nitrogen Dioxide Sensitivity of Natural Vegetation			
C.1 Air Quality Data for Arsenic			73
C.2 Air Quality Data for Cadmium			75
C.3 Air Quality Data for Chromium			80
C.4 Air Quality Data for Fluoride Ion			84
C.5 Air Quality Data for Lead			85
C.6 Air Quality Data for Manganese			

TABLES (Cont'd)

C.7	Air Quality Data for Selenium	0
C.8	Air Quality Data for Vanadium	12
C.9	Air Quality Data for Zinc	14
	FIGURES	
3.1	SO ₂ Dose-Injury Curves for Plant Species	.2
3.2	NO2 Dose-Injury Curves for Plant Species	.3
3.3	Concentrations of Some Trace Elements Toxic to Terrestrial Plants 1	.8
3.4	Range of Endogenous Concentrations of Trace Elements	1
5.1	Pollutant Pathways	6
5.2	Flowchart of Screening Procedure	0

ACKNOWLEDGMENTS

The authors wish to express their appreciation to K. Robeck and S. Zellmer of the Energy and Environmental Systems Division of Argonne National Laboratory for their help in assembling the data on which the screening concentrations were based and for helpful discussions during the development of the screening procedure.

1.1 BACKGROUND

Section 165 of the Clean Air Act¹ requires preconstruction review of major emitting facilities to provide for the prevention of significant deterioration (PSD) and charges Federal Land Managers (FLMs) with an affirmative responsibility to protect the air quality related values of Class I areas. Regulations² implementing these provisions require:

- An analysis of the impairment to visibility, soils, and vegetation (52.21 (o)) and
- A notice from the EPA Administrator to the appropriate FLM of any permit application from a source whose emissions would affect a Class I area (52.21 (p)).

For sources more than 10 km from any Class I areas, exemptions provide that no analysis of impairment need be done if emission increases are below specified limits.* The analysis should address the impairment due to general secondary growth associated with the source and need not address the impacts on vegetation having no significant commercial or recreational value. For impacts in Class I areas, consultation between EPA and the FLM is required.

1.2 SCOPE

The entire subject of air quality related values and impairment to these values is currently under investigation. For example, although some values related to plants, soils, and visibility are "air quality related values," the term itself remains to be defined in a fashion appropriate to the review of PSD permit applications and air quality reviews. Much of the data required to relate ambient concentrations of pollutants to impairment of these values is currently lacking. However, the requirements of 52.21 (o) and (p) need to be addressed now while additional investigations are being carried out.

^{*}The "de minimis" values are given in Sec. 52.21 (b)(23)(i) of the PSD regulations.²

The information and screening procedure presented here provide interimguidance:

- To aid in determining whether emissions are significant or whether there are significant air quality impacts under Sec. 52.21 (o) and
- To aid in flagging sources which should be brought to the attention of an FLM under Sec. 52.21 (p).

Impacts on vegetation and soils are the principal areas addressed by the procedure which thus takes a limited view of the possibly broad scope of air quality related values. A selected review of impacts on fauna has also been included and the odor potential of regulated pollutants is addressed.

This procedure is intended for use by air quality engineers and is not a manual for the assessment of impacts on plants, soils, and other air quality related values such as would be suitable for an ecologist. A handbook providing for such detailed assessments is being prepared for the FLMs. In keeping with the screening approach, the procedure provides conservative, not definitive results. However, a source which passes through the screen without being flagged for detailed analysis cannot necessarily be considered safe. Species more sensitive to particular pollutants than species considered in this study probably exist. Further research may indicate that averaging times different from those used here are controlling. When available, such information could be easily included in the screening procedure by changing the screening concentrations presented here.

Based on estimates of typical stack parameters, significant emission levels have been estimated. These estimates are not intended to replace source-specific screens, but do indicate what sizes of sources appear most likely to cause significant impacts on plants and soils.

The procedure presented here provides a simple method for assessing the potential a source has for adversely affecting some air quality related values. In particular, the potential for impacts on plants, soils, and animals is assessed. The approach taken is similar to the "de minimis" approach used by EPA in the PSD regulations.³ In the procedure presented here, the minimum levels at which adverse effects have been reported in the literature are used as screening concentrations. These screening concentrations can be concentrations of pollutants in the ambient air, in soils, or in aerial plant tissues. They have been developed by searching the review literature; few original sources have been consulted. The analyst applying this procedure must read the material in Sec. 3 which lists these screening concentrations and provides background on them in order to apply and interpret them appropriately.

Section 5 describes a seven step process for screening a source. The procedure begins by estimating the maximum ambient concentrations caused by the source for the averaging times specified for the screening concentrations. For some pollutants these maxima are compared directly to the screening values. For other pollutants (trace elements) estimates of deposition in the soil and subsequent uptake by plants are made based on an estimate of the maximum annual concentration. The estimated concentrations of the pollutant in the soil and aerial plant parts are then compared to appropriate screening concentrations. Concentrations in excess of any of the screening concentrations would indicate that the source might have adverse impacts on plants, soils, or animals and that the actions required by 40 CFR 52.21 (o) and (p) need to be taken. For situations where modeling results are not available for the source, significant emission levels corresponding to the various screening concentrations are developed in Sec. 5.2. In these cases, emissions in excess of the significance levels would trigger the additional actions.

The estimation of potential impacts on plants, animals, and soils is extremely difficult. The screening concentrations provided here are not necessarily safe levels nor are they levels above which concentrations will necessarily cause harm in a particular situation. Effects data for plants, animals, and soils are under constant revision and reevaluation. There is

good deal of controversy among experts. In addition, this procedure is based upon a simplistic view of extremely complex systems in which single value estimates are not possible and in which the number of variables is extremely large. Many simplifying assumptions have been involved in developing the procedure and are discussed in Sec. 3.

Ideally, the screening procedure should address the impacts of all the pollutants currently regulated under the Clean Air Act, but as shown in Table 2.1, screening concentrations were found for only half the regulated pollutants. Ozone and TSP are discussed in Sec. 3.1. Of the remaining substances for which screening concentrations were not found, methyl mercaptan, dimethyl sulfide, dimethyl disulfide, carbon disulfide, and carbonyl sulfide are regulated because of their odor potentials. Odor is an air quality related value and Sec. 52.21 (b)(23)(i) of the PSD regulations² gives "de minimis" emission levels for reduced sulfur (RS) and total reduced sulfur

Table 2.1 Regulated Pollutants

Screening	Concentrations
Available	Not Available
СО	TSPª
NO ₂	Asbestos
so_2	Sulfuric Acid Mist
Ó ₃ b	Vinyl chloride
Le ad	Methyl Mercaptanc
Mercury	Dimethyl Sulfidec
Beryllium	Dimethyl Disulfidec
Fluoride	Carbon Disulfidec
Hydrogen Sulfide	Carbonyl Sulfidec

^aFraction of TSP present as trace elements treated through deposition and uptake by plants.

bScreening concentration available but no simple procedure for estimating the ozone impact of a single source is currently available.

^cRegulated indirectly as constituents of reduced sulfur or total reduced sulfur.

(TRS) based on odor. RS and TFS include these sulfur compounds. Sources not emitting more than these "de minimis" levels (10 t/yr for both RS and TRS) are not expected to have a significant odor impact and hence should not require any additional review for impacts on air quality related values. If the 10 t/yr "de minimis" level is exceeded, the appropriate FLM might want to evaluate the potential for an odor problem. Whether or not these sulfurcontaining compounds might adversely affect plants, soils, or animals could not be determined. There was one questionable indication that methyl mercaptan might be toxic to plants at concentrations near 150,000 µg/m³, far above likely ambient concentrations. Information for asbestos, sulfuric acid mist, and vinyl chloride was not available in the review literature consulted for this work.

Pollutants which can be screened by this procedure are listed in Table 2.2 according to whether they are screened for potential effects on plants or on animals and according to whether the potential effects are caused directly by concentrations of the pollutant in the ambient air or whether the potential effect is exerted indirectly through the soil or the diet. Absence of a pollutant from a particular column in the table does not necessarily mean that impacts can not result from the pollutant acting through the corresponding pathway. Such absence simply means that no data to provide a suitable screening concentration were found in the review literature consulted.

Table 2.2. Pollutants Screened

	Potentia	l Impacts on	
	Plants	***************************************	Animals
Direct Ambient Impact	Indirect through Deposition and Uptake	Direct Ambient Impact	Indirect through Plants in Diet
SO ₂	Arsenic		Arsenic
03	Boron	Beryllium	
NO ₂	Cadmium		Cadmium
CO	Chromium		•
H ₂ S	Cobalt		Cobalt
Ethylene	Copper		Copper
Fluoride	Fluoride		Fluoride
	Lead	Lead	Lead
	Manganese		Manganese
	Mercury		
	Nickel		Nickel
* * *	Selenium		Se lenium
	Vanadium		Vanad i um
	Zinc		Zinc

The other five sulfur-containing compounds are screened for odor impacts during the "de minimis" determination for RS and TRS.

NOTE: In this chapter and throughout this work, a distinction is made between parts per million by volume (ppmv) and parts per million by weight (ppmw). The former, ppmv, is the unit more familiar to air quality analysts and is used, for example, to express ambient concentrations and standards. The latter, ppmw, or an equivalent (mg/kg, ug/g), is frequently used to express concentrations of elements in soils, plants, and animals. The air quality analyst should be aware of the difference, because the units are not equivalent. The unit ppmv is normally used only in expressing concentrations of components of gaseous mixtures.

3.1 GENERAL

Data to be used in screening impacts on three air quality related values (vegetation and crops, soils, and fauna) are discussed in this section. Vegetation and crops receive the greatest amount of attention, reflecting the availability of data. No direct impacts on soils are defined, such impacts being screened through the potential impacts on vegetation growing in soils which have become contaminated by the deposition of air pollutants. Impacts on fauna are also addressed indirectly with effects being related to the ingestion of plants containing toxic elements taken up from pollutants deposited on soils. Thus, the information presented here represents a preliminary definition of air quality related values and impacts.

Perhaps as important as the areas addressed are several areas not addressed in this procedure. These areas are visibility, acid precipitation, a screen for TSP, and a screen for ozone. Consideration of visibility as an air quality related value is required by regulations (40 CFR 52.21 (o) and (p)). Addressing visibility was beyond the scope of this work. However, EPA has prepared a report to Congress on visibility 6 and draft regulations 7 have been published.

No simple procedure is currently available to deal with the impact of a single source on acid precipitation. Acid precipitation presents a regional problem involving long-range transport which makes the impact of a single-source difficult to isolate. Various adverse effects on vegetation have been noted in areas with low soil buffering capacities and subject to heavy

annual precipitation. Such areas appear to be most susceptible 8,9,10,11 Observed effects include reduced growth, reduced germination of seeds and pollen, accelerated leaching of nutrients, decrease in soil calcium and other bases, and reduced microbial activity, particularly that of nitrifiers and nitrogen-fixers. A major EPA initiative to study acid precipitation is currently underway. Policy and guidance will be formulated as part of this initiative.

Total suspended particulates (TSP) are not considered here. No useable information other than that used to develop the ambient standards (NAAQS) was found in the review literature. Thus, EPA's current procedure for TSP³ should suffice for the review of generic TSP. However, the trace metals in TSP may have greater impacts on vegetation and soils than the total amount of particulates. This section provides information related to specific trace metals.

No simple models are currently available to estimate the impacts on ozone concentrations of emissions of volatile organic compounds (VOC) from a single source. EPA is currently developing means other than modeling to deal with VOC emissions and ozone. It appears likely that an emission management approach will be taken. When this approach has been completed it could probably be used to review new sources for impacts on air quality related values. Meanwhile, the minimum reported concentrations at which vegetative damage occurs are presented here but no method for their use is given and no significance levels for VOC emissions have been developed.

3.2 NATURAL VEGETATION AND CROPS

3.2.1 General

Two pathways by which air pollutants can affect vegetation are considered here. The first is the direct exposure of a plant to a gaseous pollutant in the ambient air. The second involves indirect exposure to trace elements through deposition of the pollutant in the soil and later uptake by the plant. For each pathway certain qualifications and cautions should be kept in mind in order to avoid interpreting the values presented here either as absolutely safe levels for all plants or as levels which could never be exceeded without damaging vegetation. The following discussions are not intended to be exhaustive and details required by specialists are not given. The intent is to

provide the air quality analyst with a feeling for the difficulty of estimating screening concentrations for plants and the complexity of making detailed assessments of impacts on vegetation. References 8, 9, 12, and 13 may be consulted for additional details and guidance to primary source material.

Effects of pollutants can be classified as acute or chronic. Acute effects result from short-term (e.g., 3-hr) exposures to relatively high concentrations. Chronic effects result from exposures to lower concentrations for times of from months to several years. Most of the effects data for plants comes from experiments conducted under acute conditions of exposure with some limited information on chronic exposures. Thus, the data may not adequately reflect impacts which take years or decades to develop.

The values presented here represent the ambient levels at which visible damage or growth retardation may occur or the observed minimum levels at which injury and mortality to plants have been reported. These numbers are generally the lowest values consistently reported in the literature on plant response to controlled exposures of single pollutants. Both field and greenhouse studies have been used in developing the data. Experiments which demonstrated only physiological changes (e.g., a change in respiration rate) without associated visible damage or effects on growth, weight, or yield were not considered in this compilation.

The majority of the studies were performed on crops and other economically important species; for lack of sufficient data, it is assumed here that native plant species are affected at similar concentrations. In addition, assessment of the data on crops is difficult because of the number of horticultural varieties available for many of the species tested. In the process of selecting desirable attributes in different varieties, the species' original sensitivity or resistance to the element being tested may have been inadvertently altered, making general conclusions about the sensitivity of the species as a whole difficult.

Effects from simultaneous exposure to two or more pollutants have been ignored in the majority of the studies. Exposure to a single pollutant at a time is not the usual situation. Particular combinations and concentrations of pollutants may act either synergistically or antagonistically under certain conditions. Such situations are seldom clearly predictable with

current information and the screening procedure presented here does not deal with them. A limited discussion of synergisms is pesented in Sec. 3.2.3.

Each species exhibits a specific range of tolerance which may be higher, lower, broader, or narrower than another species. In addition to the variation in tolerance between species, every individual of a given population has an intrinsic tolerance to environmental stress. Therefore, the population exhibits a characteristic range of tolerance so that all members of the population would not necessarily respond to pollutant levels that would adversely affect some members.

Species vary in the way they take up, metabolize, eliminate, and accumulate elements. Species also vary in the way they respond to different elemental forms. For example, As³⁺ is generally thought to be more toxic to plants than As⁵⁺. The values presented here do not make such distinctions nor could they be made based on the review literature.

Finally, the response of species and individuals depends upon a number of uncontrolled variables. Changes in these variables might alter the sensitivity of the plant. These variables include: age (stage of development), health and vigor, season of year, temperature, light intensity, soil type, moisture content of soil, pH of soil, humidity, wind speed, and the presence of other elements.

3.2.2 Screening Concentrations for Ambient Exposures

Table 3.1 presents the suggested screening values for seven gaseous pollutants. These values represent the minimum concentrations at which adverse growth effects or tissue injury in exposed vegetation were reported in the literature. Data for some other gases could not be included because the critical specification of averaging time was missing. Where information was available, separate values are given for sensitive, intermediate, and resistant plants. Species belonging to each of these groupings are given in Appendix B for SO₂, NO₂, and ozone. Figure 3.1 displays graphically the variation in experimental determinations of the minimum SO₂ concentration at which effects occur. Figure 3.2 presents a similar display for NO₂. For both pollutants there is reasonable but not perfect agreement between the graphical data and the screening concentrations recommended in Table 3.1. The use of the data from the table rather than interpolation from the curves is

Table 3.1 Screening Concentrations for Exposure to Ambient Air Concentrations^{a,b}

		Hini	num Reported Leve	(ppmv) ^c	
•		V	egetation Sensitiv	rity	
Pollutant	Averaging Time	Sensitive ^d	Intermediate	Resistant	Reference
SO ₂	l hr	.35(917)		_	. 14
-	3 hrs 1 yr	.30(786)	.80(2096) 007(18)	5.0(13100)	16 17
03 ^e .	l hr	.20(392)	.35(686)	.55(1078)	18
•	4 hrs	.10(196)	.15(294)	.35(686)	18
	8 hrs	.06(118)	.15(294)	.30(588)	18
NO ₂	4 hrs	2.0(3760)	5.0(9400)	9.0(16920)	19
	8 hrs	2.0(3760)	4.0(7520)	8.0(15040)	19
	l mo		30(564)		'£
	l y r		0510(94-188)		20
C08	l wk	1000 (1,800,000)	-	10,000 (18,000,000)	21
H ₂ s	4 hrs	20.0-60.0 (28,000-84,000)	**	400 (560,000)	22
Ethyleneh	3-4 hrs		04(47)		24
•	24 hrs		001(1.2)	<u> </u>	25
Fluorine	10 days		(0.5-10)		26
Beryllium ⁱ	l mo		(0.01)		27
Leadj	3 mo		(1.5)		. 28

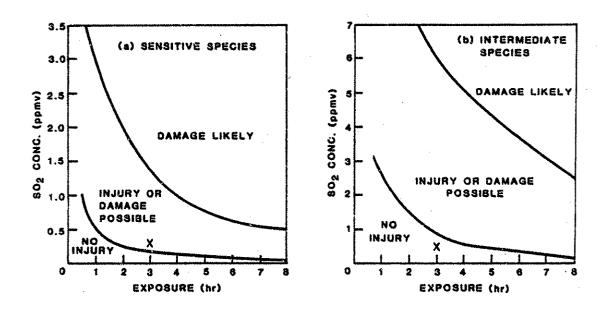
^{*}All values except beryllium and lead refer to effects on vegetation.

bMinimum reported levels at which visible damage or growth effects to vegetation may occur.

CValues in parentheses are ug/m3 at 20°C and 1 atm.

dThese values should be used in the screening procedure unless it is known that only intermediate or resistant plants will be affected.

^eThe values for 20% injury are reported here, since they correspond closely with other values in the literature.


^fBased on generalization of results of a number of studies.

Skeversible decreases in photosynthetic rate have been shown to occur at significantly lower levels but effects on growth have not been demonstrated.

hEthylene " ... is the only hydrocarbon that should have adverse effects on vegetation at ambient concentration of 1 ppm or less." (Ref. 23).

ineshap value to protect public health. Very toxic to humans and presumably to some animals also.

JNAAQS value to protect public health.

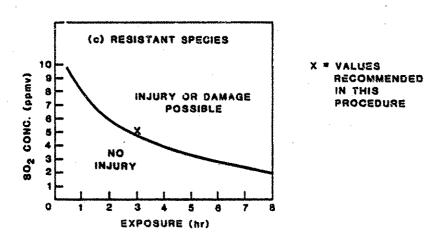


Fig. 3.1 SO₂ Dose-Injury Curves for Plant Species (From Ref. 8 as adapted from Ref. 29)

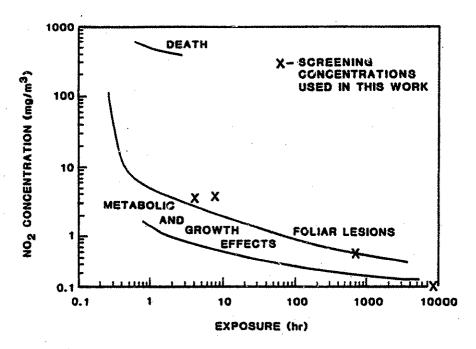


Fig. 3.2 NO₂ Dose-Injury Curves for Plant Species (From Ref. 8)

recommended, since the curves are based on attempts to fit theoretical doseresponse curves to experimental data whereas the tabulated screening concentrations are based directly on experimental results.

Several points are worth noting about the chosen screening concentrations. First, the significant variation between the values for the various sensitivity groupings should be noted. With this large variation it appears unlikely that use of any values but those for sensitive vegetation could be justified in a screening procedure, given the large number of species for which information is not available.

Second, the tabulated concentrations should be compared to NAAQS, PSD increments, and likely ambient concentrations. Table 3.2 summarizes these comparisons for the cases where they can be made. For pollutant/averaging times not tabulated, either no corresponding NAAQS or PSD increment exists or it appears that the screening concentration could be exceeded under certain circumstances. For the criteria pollutants, the NAAQS appear to protect against vegetative damage except possibly for 3-hr and annual SO₂ exposures. For the 3-hr exposure, the screening concentration exceeds the applicable PSD

Tuble 3.2 Screening Concentrations of Gaseous Pollutants
Compared to Ambient Criteria

	Averaging	Vegetation Sensitivity			
Pollutant	Time	Sensitive	Intermediate	Resistant	
so ₂	3 hr	< NAAQS ^a > PSD ^b	> NAAQS ^a > PSD ^b	c c	
	1 yr				
03	1 hr	> naaqsf	> NAAQSf	> naaqsf	
NO ₂	4 hr	***	c	c	
2	8 hr	-	C	c	
	1 yr		—— ≈ NAAQS\$——		
CO	l wk	c	- '	c	

 $^{^{}a}SO_{2}$ 3-hr NAAQS = .50ppmv (1300 µg/m³).

 $8NO_2$ annual NAAQS = 0.05ppmv (100 μ g/m³).

increments and for the annual exposure, it exceeds the Class I increment. However, the screening correntration should be compared to the total SO₂ concentration including background whereas the PSD increment does not include background. Thus, a source could cause an SO₂ concentration less than the increment while the total SO₂ concentration (source plus background) could exceed the screening concentration. With the exception of the following it appears that possible adverse impacts to vegetation resulting from direct exposure to ambient concentrations of criteria pollutants are already covered by existing programs for NAAQS attainment:

- SO2 exposures at 1 hour, 3 hours, and 1 year,
- Ozone exposures at 4 and 8 hours,

 $^{^{}b}$ SO₂ 3-hr PSD increments (μ g/m³) = 25(Class I), 512(Class II), 700(Class III), 325(Class I variance). These values do not include background.

Screening concentration unlikely to be reached under ambient conditions.

 $^{^{}d}$ SO₂ annual NAAQS = .03 ppmv (80 μ g/m³).

 $^{^{\}rm e}$ SO₂ annual PSD increments ($\mu g/m^3$) = 2(Class I), 20(Class II), 40(Class III), 20(Class I variance). These values do not include background.

 f_{0_3} 1-hr NAAQS = 0.12 ppmv (235 µg/m³).

• Long-term NO2 exposures at 1 month and 1 year.

This observation does not preclude doing a review for impacts on plants, particularly where the minimum values at which effects have been reported are close to being exceeded. It does, however, indicate that the vegetative impact review can be done along with the review for NAAQS or PSD increments. Even in cases where review for NAAQS and PSD increments covers exposures to plants, there may still be the necessity of dealing with trace metal exposures through deposition in the soil or through concentration in plant tissues.

3.2.3 Synergisms

Only a very limited amount of information was available in the review literature consulted regarding synergisms. Three indications of synergism were found:

- SO₂ and NO₂,
- SO₂ and O₃, and
- \bullet SO₂, O₃, and NO₂.

Table 3.3 presents values which could be used as screening concentrations based on the most restrictive values in the references. Where averaging times allow comparison, the screening concentrations for single pollutants in Table 3.1 are greater than the screening concentrations for mixed pollutants in Table 3.3. Given the problems with the data discussed in Secs. 3.1 and 3.2.1, this comparison should not be interpreted as clear evidence of synergism. An additional caution is also in order. Mixtures of gases may act synergistically on some species and antagonistically on others (see, for example, Ref. 18). Thus, the tabulated values should be used to indicate situations where the FLMs should be alerted so that the situation may be evaluated by them. There may be additional synergisms which are not noted in Table 3.3 but which could be added to the table and incorporated in the screening procedure at a later date.

Table 3.3 Synergisms of Gaseous Pollutants (Plants)^a

Pollutants	Concentrations (ppmv)	Exposure	Re ference
SO ₂	.05	l hr	30
NO ₂	.05		
soab	.30	l hr	31
so ₂ b o ₃	.10		
SO2b	.05	4 hr	32
so ₂ ^b o ₃	.05		
s0 ₂	.14	6 hr/day	33
03	.05	for 28	
03 NO2	.10	days	•

The same criteria were used in selecting these values from Ref. 15 as were used in developing Table 3.1.

3.2.4 Screening Concentrations for Soil and Plant Tissue Exposures

Table 3.4 presents suggested screening concentrations for trace elements found to adversely affect plants. Two types of data are presented. One gives a concentration which when present in the soil has been found harmful to The other gives a concentration found to be present in the tissues In considering these values, it should of plants which had been harmed. be remembered that most elements and compounds are not deleterious until they have been complexed in the soil and become suitable for uptake by plants. In addition, many soil characteristics such as pH, composition (sand, clay, loam, organic matter, etc.), moisture content, and cation exchange capacity affect the amount of trace elements available for uptake. In developing the tabulated values, only data taken with the plants growing in soil were considered. Data developed in experiments in which plants were grown in aqueous nutrient solutions were ignored. Conditions of nutrient solution culture are likely to be sufficiently different from natural conditions as to render the results of the experiments misleading for the purposes of this work.

As with the ambient screening concentrations for gases, a great deal of variation is exhibited by the data as shown in Fig. 3.3. For comparison

bAntagonism, as well as synergism, has been reported for mixutes of SO₂ and O₃ (Ref. 18).

Table 3.4 Screening Concentrations for Exposure of Vegetation to Pollutant Concentrations in Soil and Tissue

Minim	um Report	ed Level (ppmw)	
Pollutant Source				
Pollutant	Soil	Tissue	Reference	
Arsenic	3	0.25	9	
Boron	0.5	11	9	
Cadmium	2.5	3	9	
Chromium	8.4	1	9,35	
Cobalta	_	19	. 9	
Copper	40	0.73	9	
Fluoridea	400	310	9	
Lead ^a	1000	126	9	
Manganese	2.5	400	9,36	
Mercury	455		9	
Nickel	500	60	9	
Seleniuma	13	100	9,37	
Vanadium	2.5	40.	38	
Zinc	***	300	9	

aTissue concentrations may affect animals before affecting plants. Compare to toxic levels for animals in Table 3.7.

purposes, this figure includes results based on experiments in nutrient solutions and also shows the values chosen for screening concentrations in this work.

No standards or PSD increments currently apply to these trace elements so no comparisons with other review criteria can be made. It should be noted, however, that the heavy metals listed in Table 3.4 are emitted as particles and become TSP in the atmosphere. To the extent that they contribute to TSP levels, the NAAQS and PSD increments would apply to these trace elements. The connection between such ambient levels and the screening concentrations for soils and tissues is discussed in Sec. 5.

3.3 SOILS

In contrast to the amount of published information on the effects of atmospheric pollutants on plants and animals, very little has been reported on their effects on soils. Research on trace elements in soils, often the same

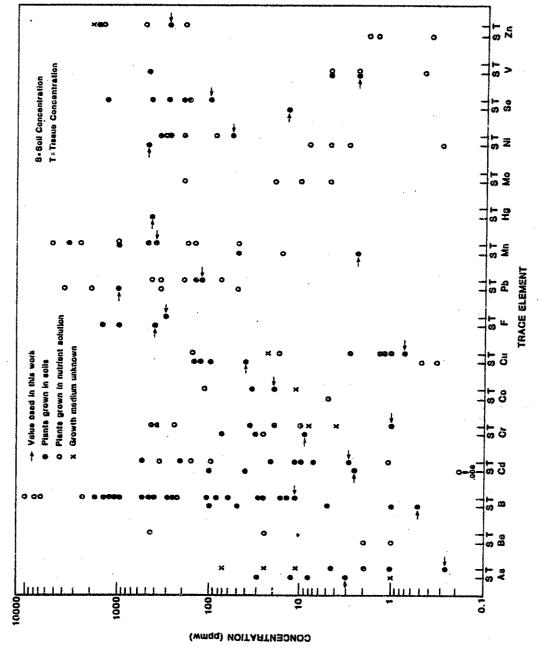


Fig. 3.3 Concentrations of Some Trace Elements Toxic to Terrestrial Plants

elements as atmospheric pollutants, has been directed to notable deficiencies or excesses that limit agricultural crop production. When the amount of an atmospheric pollutant entering a soil system is sufficiently small, the natural ecosystem can adapt to these small changes in much the same way as the ecosystem adapts to the natural weathering processes that occur in all soils. Cultural practices (e.g., liming, fertilization, use of insecticides and herbicides) add elements and modify a soil system more than a small amount of deposited atmospheric pollutant can. The secondary effects of the pollutant appear to impact the soil system more adversely than the addition of the pollutant itself to the soil. For instance, damaging or killing vegetative cover could lead to increased solar radiation, increased soil temperatures, and moisture stress. Increased runoff and erosion add to the problem. indirect action of the pollutant, through changes to the stability of the system, thus may be more significant than the direct effects on soil invertebrates and soil microorganisms. However, the lack of long-term historical data on both the type and amount of atmospheric pollutants as well as the lack of baseline data on soils has made difficult the task of determining the effect of pollutants on soils by monitoring changes associated with exposure to pollutants. A limited number of studies have been carried out on trace element contamination of soils. 39,40 Plant and animal communities appear to be affected before noticeable accumulations occur in the soils. approach used here in which the soil acts as an intermediary in the transfer of deposited trace elements to plants appears reasonable as a first attempt at identifying the air quality related values associated with soils.

When viewing soils in this way it is important to know the endogenous or background concentrations of elements already in the soil of interest, for these endogenous levels may be available for plant uptake. There is, however, a wide variation in the normal concentrations of various trace elements as shown in Table 3.5.8 If extremes in the concentrations are considered, the range of endogenous concentrations becomes even larger (see Fig. 3.4).41 Both references show relatively good agreement on the normal ranges. The tabulated values also provide "average concentrations" which can be used when specific information about the concentrations of trace elements in the region of interest is not available. One of the difficulties with screening for impacts on plants and soils becomes apparent when the endogenous concentrations in Table 3.5 are compared with the screening concentrations for soils in

Table 3.4: the screening values are exceeded for some part of the listed range for nine out of the twelve elements for which screening concentration are given. Fluorine, lead, and mercury are the only elements whose screening values lie above the corresponding endogenous ranges. The default average soil concentration exceeds the screening concenration for boron, manganese, vanadium, and chromium and, for the first three of these four, the entire listed normal range exceeds the screening value. In interpreting this indication, it must be remembered that the screening concentration value represents the lowest value found in the

Table 3.5 Range of Endogenous Soil
Contentrations of
Selected Elementsa

Element	Range (ppmw)	Average Soil Concentration (ppmw)
Arsenic	0.1-40	6.0
Beryllium	1-40	6.0
Boron	2-100	10.0
Cadmium	0.01-7.0	0.06
Chromium	5-3000	100
Cobalt	1-40	8
Copper	2-100	20
Fluoride	30-300	200
Lead	2-100	10
Manganese	100-4000	850
Mercury	0.01-4.0(?)	-
Nickel	10-1000	40
Selenium	0.01-80	0.5
Vanad ium	20-500	100
Zinc	10-300	50

^aBased on Ref. 8.

review literature (see Fig. 3.3) and that not all plant species are as sensitive as the one upon which the value is based. As outlined in Sec. 3.2.1, there are many additional reasons why there is no inherent conflict between screening concentrations and endogenous concentrations above these values. The chief among these are probably the variation in sensitivity between individuals, the variation in sensitivity between species, and the fraction of the endogenous concentration really available for uptake by plants. It should be noted, however, that endogenous concentrations of some elements can make soils toxic to some species. Thus, certain tolerant plants can act as indicator species for the element tolerated; they will be among the species present in soils where the endogenous concentrations of that element exceed levels toxic to more sensitive species. 12

The problem associated with the amount of an element in the soil which is actually taken up into plant tissues can be handled in an approximate fashion by using a plant:soil concentration ratio. Table 3.6 provides two sets of concentration ratios (CR's). One set is recommended for use in this work; the other is based on nonstandard methods using solution cultures

NATURAL SOIL CONCENTRATION (ppmw)

21

but is given to provide some feeling for the large uncertainties associated with this type of work. comparison set of concentration ratios could be used in the screening procedure presented here to provide very conservative estimates of potential impacts. Some elements (boron and cadmium) tend to be concentrated by plants (ratios > 1), that is, concentrations in plant tissues exceed those found in the soil whereas the concentrations of most of the listed elements tend to be less in plant tissue than in the surrounding soil. In any case, these CR's represent ratios of averages⁹ and thus may give results quite different from the true ratio

Table 3.6. Plant: Soil Concentration Ratios

Element	Recommended Value ^a	Comparative Value ^b
Arsenic	0.14	4.2
Boron	5.3	-
Cadmium	10.7	222
Chromium	0.02	250
Cobalt	0.11	87
Copper	0.47	1000
Fluoride	0.03	
Lead	0.45	2
Manganese	0.066	3000
Mercury	0.02-0.5	26
Nickel	0.045	331
Selenium	1.0	4
Vanad ium	0.01	i
Zinc	0.64	40

aBased on Ref. 8.

between plant and soil concentrations in a particular case. However, they appear to be the best means available for estimating uptakes of various elements from the soil.

3.4 FAUNA

The screening concentrations presented here are based on data for terrestrial vertebrates. Data for aquatic species, including fish, were not examined in the literature reviewed. Also, effects on aquatic and terrestrial microorganisms are not considered here. Table 3.7 presents the screening concentration values based on data summarized in Refs. 8 and 9. The tabulated values represent the lowest dietary concentrations found to be harmful. Several factors limited the usefulness of the available data. Some harmful levels were given in terms of average concentrations in the affected animals. Unfortunately no equivalents of the plant:soil CR's were available to go from dietary concentrations to concentrations per unit body weight. In addition, all the data on ambient exposures failed to give averaging times thus rendering it unuseable in this screening procedure. Even for the data upon which

bBased on Ref. 12. Based on nonstandard methods involving solution cultures. See discussion in text.

Table 3.7 is based, there were no indications as to how long the element needed to be ingested in the given concentration before causing the harmful effect. Comparison of the screening concentrations for animal effects (Table 3.7) with the values for plant tissue concentrations (Table 3.4) shows that the values for animals generally exceed those for plant tissue concentra-However, for cobalt, fluortions. ide, lead, and selenium, it appears that plants could accumulate concentrations that would be toxic to some animals before the plants themselves were harmed.

Table 3.7. Dietary Trace-Element
Concentrations Toxic
to Animals^a

Trace Element	Dietary Concentration (ppmw)
Arsenicb	3
Cadmiumb	3
	15
Cobalt	1-3
Copperb	20-30
Fluoride	. 100-300
Lead	80-150
Manganeseb	500-5000
Nickel ^b	1000
Selenium	5-30
Vanad ium	10-500
Zinc	500-1000

aBased on Ref. 8.

For beryllium and lead,

data on ambient air exposures were available in terms of the NESHAP and NAAQS, respectively (see Table 3.1). These values relate to human exposures. Without other indications these same levels have been assumed to be potentially hazardous to at least some animals as well.

bTissue concentrations in plants may affect plants before affecting animals. Compare to plant screening concentrations in Table 3.4.

4 TRACE ELEMENT AIR QUALITY DATA

EPA's Storage and Retrieval of Aerometric Data (SAROAD) system was used as a data base to develop air quality information for trace elements. The information was intended to serve primarily as an aid in estimating background concentrations so minimum concentrations were included. A secondary purpose of the information was to identify locations where high concentrations already exist. For this purpose, maximum concentrations were included. Compilation of available data for all the pollutants discussed here with estimates for all relevant averaging times would not have been feasible so the data search was limited to trace elements including lead. It was also felt that more complete data for the gaseous criteria pollutants would be available locally than could be found in SAROAD. On the other hand, many localities probably lack estimates of trace element concentrations. Since only annual averages are used in screening for trace element impacts, the data search emphasized annual average data. Maximum and minimum short-term observations have been included in the data compilations for informational purposes.

In order to improve coverage, data for 1975-77 inclusive were used. Many locations had data for only one of the three years. As expected, all the data were based on high volume sampler data with 24-hour averaging times. It was also frequently the case that insufficient data was available to allow the calculation of a valid annual average. The available data is presented in Appendix C. No data was found for mercury, boron, cobalt, copper, and nickel. The data is presented by state and county for each pollutant. As can be seen from the tables, the spatial coverage is poor. For counties with data, only the minimum and maximum annual averages from all reporting stations are given. With multiple stations, it is unlikely that both values come from the same location.

In order to avoid possible misinterpretation of the data, it should be kept in mind that SAROAD routinely stores values below the limit of detectability as one-half the minimum detectable limit. In some cases, this will be the value which is listed as the minimum observation. These situations are usually fairly obvious, since the same minimum value will be recorded at a large number of stations.

5 SCREENING PROCEDURE

5.1 METHODOLOGY

5.1.1 Description

A simplified view of the pathways between sources and receptors is presented in Fig. 5.1. This simple view is used here as the basis for screening a source for potential adverse impacts on plants, soils, and animals. Emissions from the source are assumed to disperse in the atmosphere and add to whatever local background concentrations might exist to provide an estimate of the maximum ambient concentration for the averaging times of interest. These ambient concentrations may act along four different pathways. The first two are routes in which the ambient concentrations affect animals or plants directly without any intervening mechanisms. In the third, animals can ingest substances deposited on plants before the substances have been washed off by rain or blown off onto the soil. ingestion is a critical pathway. Appendix D provides a referenced discussion of the literature related to toxicity resulting from this pathway and the potential for harm to animals exists whenever heavy metals are deposited on materials which they ingest. Some start on dealing with this issue was made here in terms of estimating the amount of deposited material but a complete methodology was not developed. However, reviewers should be aware of this potentially critical pathway and the material in Appendix D may be useful in flagging critical situations. In the fourth, a certain amount of the dispersed material is deposited on the soil. As noted in Sec. 3, only the deposition of trace elements is considered here. The deposited trace elements as well as any endogenous concentration of the element are then available for uptake by plants in quantities which may be toxic to the plants themselves or to animals which feed upon the plants.

It is important to realize that this simplified picture leaves out many potentially important pathways and natural processes. For example, there is no provision for the uptake and concentration of substances by plants directly from the air; all such concentration is assumed to be through the soil with uptake by plant roots. No account is taken of removal of deposited substances from the soil by runoff, leaching, or erosion and the

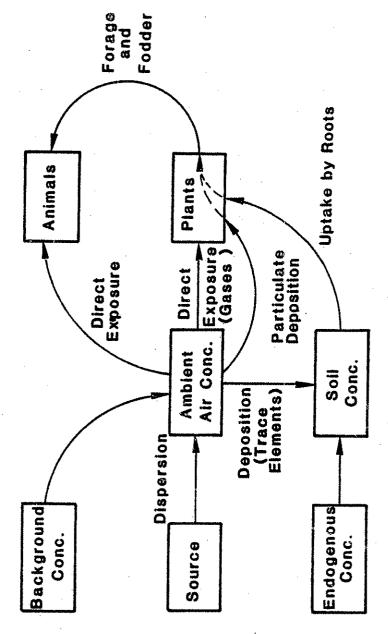


Fig. 5.1 Pollutant Pathways

subsequent deposition of such substances in bodies of water. Also, no account is taken of deposition directly from the air into water. Finally, the effects on animals of ingesting contaminated water have not been addressed.

Screening for a particular source is accomplished in a series of steps. Steps 1 and 2 apply to airborne pollutants; steps 1 and 3-7 apply for trace metals where deposition must be taken into account. Step 8 provides an alternative where modeling results for the source are unavailable.

- Estimate the maximum ambient concentration for averaging times appropriate to the screening concentrations for pollutants emitted by the source and including any background concentrations.
- 2. For exposures to airborne pollutants, check the maxima from Step 1 against the corresponding screening concentrations in Table 3.1 or against the corresponding NAAQS, NESHAP or PSD increments, whichever applicable standard is most restrictive. In addition, the possibility of synergisms should be considered.
- For trace metals, calculate the concentration deposited in the soil from the maximum annual average concentration assuming that all deposited material is soluable and available for uptake by plants.
- 4. Compare the increase in concentration in the soil to the existing endogenous concentration using the average values in Table 3.5 when local data is unavailable. (This provides a supportive indicator, not a primary decision parameter.)
- 5. Calculate the amount of trace element potentially taken up by plants using the CR's in Table 3.6.
- 6. Compare the concentrations from Steps 3 and 5 with the corresponding screening concentrations in Tables 3.4 and 3.7.
- 7. Reevaluate the results of the comparisons in Steps 4 and 6 using estimated solubilities of elements in the soil to provide supportive indications, recognizing that actual solubilities may vary significantly from the estimated values.
- 8. If modeling results are unavailable, the significance levels for emissions developed in Sec. 5.2 may be used to screen the source.

The discussion in Sec. 5.2 also provides an example of the application of the screening procedure. This example develops the significant emission levels for one of the trace elements from an estimate of a source's maximum

annual average concentration. Table 5.1 summarizes these steps and indexes them to the relevant sections, tables, and equations in the text. Figure 5.2 provides a flowchart of the screening procedure showing the more commonly used tables and equations.

5.1.2 Estimating Maximum Concentrations (Step 1)

To estimate the maximum concentration, the maximum air quality impact of the new source must be estimated and added to an appropriate background concentration.

5.1.2.1 Air Quality Modeling

The first step in the screening procedure for air quality related values is to estimate the maximum ambient concentrations of pollutants emitted from the new source for appropriate averaging times. Table 5.2 gives the correspondence between pollutants and the averaging times to be considered for each. Two cases need to be considered. The first arises when the required source-specific concentration estimates are available and the second arises when they are not.

Concentration Estimates Available. When source-specific estimates made by an approved model are available they should be used directly in making the calculations and comparisons called for in Steps 2-7 of Table 5.1. Such a situation would be ideal but such estimates may frequently be unavailable, particularly during early discussions of a permit application.

Concentration Estimates Unavailable. When source-specific estimates of concentrations are unavailable or when they are lacking for some critical averaging times, there are two courses of action:

- Use of a screening technique for air quality impacts if the emission rates and stack parameters are available or
- Use of the significance levels for emissions presented in Sec. 5.2.

If stack parameters are available, some simple techniques of dispersion modeling can be used to screen the source for its air quality impact, remembering that only a screen and not a definitive demonstration is required. Reference 42 provides such techniques developed by EPA for use in new source

Table 5.1 Steps in Screening Procedure

	·	Applic	Applicable Text	
Step	Description	Section	Tables	Equation
	Estimate ambient maxima			
	• Modeling	5.1.2	•	ı
	• background	5.1.2, Appendix C	c.1-c.10	ı
7	Screen for direct exposure	5.1.3	3.1,3.3,5.3	ı
m	Calculate deposited concentration of trace elements ⁸	5.1.3	t	5.1
4	Calculate percentage increases over endogenous concentrations ^b	5.1.3	3.5	5.4
Iń	Calculate tissue concentrations in plants	5.1.3	3.6	in in
.	Screen for potential adverse impacts of trace elements	5.1.3	3.4,3.7,5.5	1
7	Consider effects of trace element solubilityb	5.1.3	3.4,3.7,5.4	5.7.5.8
00	Apply significance emission levelsc	5.2	5.6,5.7	

aReviewers may want to review the information in Appendix D to assess the potential for harm to animals from directly ingesting deposited materials.

^bSupportive indication only, not primary decision parameter.

CUsed only when source-specific modeling results are not available.

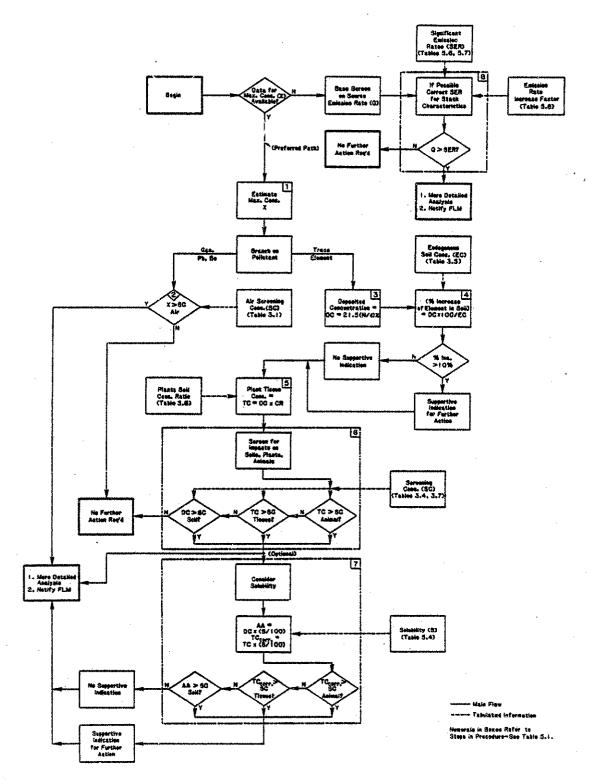


Fig. 5.2 Flowchart of Screening Procedure

Table 5.2 Pollutants and Averaging Times

				Reg	Required Averaging Times	raging	Times			
Pollutant	1 hr	3 hr	4 hr	# # #	24 hr	l wk	1 hr 3 hr 4 hr 8 hr 24 hr 1 wk 10 days 1 mo 3 mo 1 yr	1 mo	3 шо	l yr
502	×	×			ХЗ					qx
NO2	٠		×	×				×		χp
00	X			Ха		×	.*			
H2S	Xa		×	and the second		·				
Ethylene		×		ndina (sambanudi sida and	×					
Fluoride		,		hamminena dazibarena a	Ха		×			
Be								ХЗ		
Pb			٠						ф×	×c
Trace Elements ^d				um unitenem militan						Хe

aFor comparison with criteria not necessarily related to impacts on plants, animals, or soils (NAAQS, NESHAP's, PSD increments).

DApplies to both impacts on plants, animals, soils and other criteria.

calso included in trace element analysis.

drace elements: As, B, Cd, Cr, Co, Cu, F (as fluoride), Pb, Mn, Hg, Ni, Se, V, Zn.

eRequired for use in estimating amount of deposition.

review. These methods were used to develop EPA's significance levels for emissions 42 published as part of the proposed PSD regulations. 43,44

As an alternative, the procedure used in Ref. 45 to estimate air quality impacts can be used as presented in Appendix A. Some expansion of the original procedure was required to cover the range of averaging times needed for this screening procedure. The equations presented in Appendix A are suitable for hand calculation or the development of a simple computer code. The significance levels presented in Sec. 5.2 are based on this procedure.

5.1.2.2 Background Concentrations

The estimation of background concentrations is one of the perennially difficult problems of air quality analysis. Development of new approaches was beyond the scope of this work. The analyst should consult Ref. 46 for guidance on this subject. No attempt was made here to develop information for the gaseous criteria pollutants. For these gases, it was felt that local records would be likely to provide more timely and complete information. In addition, the sheer volume of data available precluded its inclusion in this procedure. No attempt was made to develop background estimates for other than annual averaging times.

For the 14 trace elements (including lead), EPA's SAROAD files were searched as described in Sec. 4. No information was found for mercury, boron, cobalt, copper, and nickel. The tables in Appendix C summarize the information found by state and county. To estimate a background value, the concentrations in the county of interest or nearby counties should be used and the minimum geometric mean picked. This minimum can then be added to the estimated maximum annual concentration from the source being screened. Values of the minimum geometric mean from other areas should be compared with the value chosen. It is possible that some of the tabulated minima may be too high to represent background levels because the monitor providing the data is impacted by a large source and thus is not representative of general background conditions.

It will not be possible to estimate background levels by this method for many locations. In such a situation, the minimum geometric mean may

be selected from among those tabulated in Appendix C and used in a sensitivity analysis to determine if the addition of a background level is likely to raise the predicted concentration above the screening concentration. If it does, then a determination of background will be necessary to allow a clear determination of the source's potential to cause adverse impacts due to trace element deposition.

5.1.3 Screening and Deposition (Steps 2-7)

Screening for Direct Impacts (Step 2). This screen applies to the pollutants listed in Table 3.1 for which data was available on direct impacts of airborne concentrations on plants and animals: SO₂, NO₂, CO, H₂S, ethylene, flourides, Be, and Pb. After the maximum concentrations both with and without background have been calculated, screening is simple. The appropriate maxima are compared to the values given in Table 5.3. Values in excess of the screening concentrations indicate that additional detailed review is required and that the appropriate FLM should be notified. The possibility of synergisms should also be checked at this point. Consideration should be given to the synergisms listed in Table 3.3 but no screen on the values listed there is recommended here. Rather, the information could be used to alert the appropriate FLM to the possibility of a problem arising from synergisms.

Also included in Table 5.3 are the values used in reviewing new sources under other criteria. The value expected to be controlling for each pollutant has been circled in the table under the following assumptions:

- · No background,
- Long averaging times result in lower concentrations than short averaging times, and
- For short averaging times, the concentration is proportional to averaging time raised to the power -0.17.

This observation is made only to give some feeling for what might be expected. It is possible, for example, for a new SO_2 source in a Class III area to be controlled by the 700 $\mu g/m^3$ PSD increment and still need to do a review for plant, soil, and animal impacts if 3-hour background levels are high enough to make the predicted ambient concentration likely to exceed 786 $\mu g/m^3$. Completion of Step 2 would complete the screening for direct impacts from airborne pollutants.

Table 5.3 Ambient Screening Concentrations

The state of the s								*	ab ient	Concent	Ambient Concentration (ug/m3)	3)					
		V						ă.	Hute	nt end A	Pollutent and Averaging Times	4.9					
Screening		502				NO ₂				8		H ₂ S	Ethylene		noride	Pluoride Beryllium	Lead
Criterion	-	9	57	¥	4	0 0	ж	 •	-	80	=	4	3 24		240	*	Ħ
AQRV																	
Screening Concentration ^b	917	786	1	8	18 3,760 ^b 3760 ^b 564 (100	3760b	264	(2)	1	,	1,800,000b 28,000b 47(1.2)	28,000b	<u>;</u>		(§)	(<u>a</u>	(3.5)
NAAQSC, d	1	1,300 365	365	80	•		Ĭ.	100 40,000 (10,000	000,	(10° 000)	1	.1	1			,	
PSD Increment			(1			,			:							
le City	Ĺ	25	S	~	•	ı	1	ı	,	ı	*	ı	•		,	. *	,
1'011	ţ	512	6	20	1	•	•		,	ŧ	•	ı		_	1	ı	ı
Ille, f	į.	200	182	40	•	ı	,	:	,	1	1	ŧ	,		1	1	
Variance	ŧ	325	16		ı	ı	1				•	•	,		1	ı F	1
NESHAPf.h	į	•	1	•		ı	•	1	1	ı	. 1	•			ŧ	(e)	

Note: Gircled values expected to be controlling; see text.

ANumerals: hours
W: 1 week
M: 1 wonth
A: Annual

bambient concentrations this high are unlikely.

C40 CFR 50.

dassed on maximum impact of source plus background.

eRef. 1.

fbased on maximum impact of source alone,

Sincludes the source together with all other sources.

h40 CFR 61.

Calculating Deposited Soil Concentrations (Step 3). Deposition of trace elements is a long-term process extending over the lifetime of the source. The simple procedure used here depends upon an estimate of the maximum annual average concentration from the source as corrected by the addition of a background concentration if known. Reviewers may also want to review Appendix D at this point to assess the potential for harm to animals from direct ingestion of deposited heavy metals (see Sec 5.1.1). The following equation can be used to estimate the maximum concentration in the soil:

$$DC(ppmw) = 21.5 (N/d)\chi$$
 (5.1)

where:

DC = deposited concentration (ppmw),

N = expected lifetime of source (yr),

d = depth of soil through which deposited material
 is distributed (cm), and

X = maximum annual average ambient concentration from the source ($\mu g/m^3$).

The value generally recommended for d is 3 cm.8,9,12 Some work13 has assumed 20 cm for d, but the more conservative value of 3 should be adopted for use in this screening procedure unless site-specific data indicate that greater penetrations of deposited substances are more representative of local conditions. It should also be noted that an estimate of the source's lifetime must be made in order to use Eq. 5.1. In the absence of contrary indications, a value of N = 40 years should provide a reasonable and generally conservative estimate of source lifetimes based on lifetimes equal to twice the time allowed by the Internal Revenue Service for equipment depreciation.45,47 If the source is tied to a resource, the estimated resource lifetime might be used instead of 40 years. For example, a mine-mouth power plant might have a lifetime of N = 100 years based on the life expectancy of the mine or a gas plant might have a lifetime N = 15 years, the expected useful life of the gas field.

Equation 5.1 is simply derived. Consider a volume of soil 1 m^2 in area and d cm deep at the location of the source's annual maximum. The weight of material deposited on this area of 1 m^2 can be calculated as:

The weight of the soil in the volume of interest is

Then the ratio of the weight deposited to the weight of the soil can be used to find the concentration of the deposited material by weight in the soil. Soil densities range from 1-2 gm/cm³ and a value of 1.47 g/cm³ is assumed here as a good average value.¹² If an average value of 1 cm/sec is assumed for the deposition velocity, Eqs. 5.2 and 5.3 can be combined to give

DC = (Weight deposited)/(Weight of soil)

$$= \chi \left(\frac{ug}{m^3}\right) \times 1 \text{ m}^2 \times 1 \frac{cm}{sec} \times \frac{1 \text{ m}}{.01 \text{ cm}} \times 3.1558 \times 10^7 \left(\frac{sec}{yr}\right)$$

$$\times N(yr) \times \frac{1}{d(cm)} \times \frac{.01 \text{ cm}}{m} \times \frac{1}{1 \text{ m}^2} \times \frac{1}{1.47} \left(\frac{cm^3}{g}\right) \times \frac{1}{10^6} \left(\frac{m^3}{cm^3}\right)$$

$$= 21.5 \text{ (N/d) } \chi \left(\frac{ug}{g}\right)$$

$$= 21.5 \text{ (N/d) } \chi \text{ (ppmw)}$$

where conversion factors have been used as appropriate to give consistent units. This result is simply Eq. 5.1. The principal assumptions in this derivation are:

- Deposition velocity of 1 cm/sec,
- Average bulk density of soil = 1.47 gm/cm³,
- Uniform distribution of deposited material throughout the soil volume, and
- All deposited material is retained by the soil, that is, no leaching, surface runoff, or erosion.

Calculate Increase over Endogenous Soil Concentration (Step 4). The purpose of this simple calculation is to provide a supportive indication

geste an lef. 13, an increase over the endogenous concentration of more than 10% over the lifetime of the source could be taken as a possible cause for concern. The percentage increase is simply calculated from

where the deposited concentration (DC) was calculated in Step 3. The average endogenous concentrations from Table 3.5 can be used but data for the area of interest is preferable given the wide range in natural concentrations.

It is not recommended at this time that a source be flagged for further actions based solely on the results of this calculation. The results of the screens in Step 6 are appropriate for that purpose. However, an indicated increase of more than 10% in this step would increase the assurance with which a finding that additional action was necessary could be made.

Calculate Potential Concentrations in Plant Tissue (Step 5). Once the deposited concentration in the soil has been calculated using Eq. 5.1, straightforward application of the plant:soil concentration ratios in Table 3.6 can be used to estimate the concentration in aerial plant parts (tissue concentration)

[Tissue concentration (ppmw)] =
[Deposited concentration (ppmw)] x [Concentration ratio]

or

$$TC (ppmw) = DC (ppmw) \times CR$$
 (5.5)

using TC for tissue concentration and other symbols introduced earlier. Equation 5.5 requires an additional conservative assumption:

• All the deposited material is soluable and available for uptake by plants.

This assumption is almost always violated in practice. Table 5.4 gives the solubilities of some trace elements based on extraction of these elements from endogenous concentrations in the soil. 13 Of course, the solubilities of exogenous deposited elements could differ markedly from these values as could the solubilities of endogenous concentrations in different soils. The solubility of a trace element in the soil depends upon many factors. Among these

Table 5.4 Solubilities of Endogenous Trace Elements^a,b

Element	Solubility (%)c	Emission Rate Increase Factor
Arsenic	9	11
Boron	4.1	~® ##
Cadmium	40	2.5
Chromium	0.004	25,000
Cobalt	0.4	250
Copper	0.1	1,000
Fluoride	*****	- the time
Lead	****	***
Manganese	37	2.7
Mercury	0.8	120
Nickel	0.1	1,000
Selenium	21	4.8
Vanad ium	****	-
Zinc	8	12

aBased on Ref. 13.

are chemical form, temperature, presence of other elements, selective uptake by plants, soil pH, and soil moisture content. The composition of the soil is also an important determinant of solubility, especially the presence of organic matter and clays which can bind trace elements. The point is that a significant portion of the exogenous concentration may be unavailable for uptake by plants, making Eq. 5.5 a conservative estimator.

Screen for Potential Adverse Impacts from Trace Elements (Step 6).

At this point the screen for adverse impacts from the deposition of trace elements is straightforward. The process is similar to that used in Step 2, that is, the comparison of calculated concentrations to tabulated screening concentrations. In this step, however, three comparisons need to be made:

bused in Step 7.

COnly soluable fraction would be available for uptake by plants.

dUsed when Step 8 is required.

- 1. The deposited concentration (DC) is compared to the soil screening concentration in Table 3.4,
- The tissue concentration (TC) is compared to the tissue screening concentration in Table 3.4, and
- 3. The tissue concentration (TC) is compared to the dietary screening concentration for animals in Table 3.7.

A calculated concentration in excess of any one of the three screening concentrations is an indication that a more detailed evaluation may be required for the new source and/or that the FLM should be notified, since there are indications of potential adverse impacts to plant, soils, or animals. In making these three comparisons, the following additional assumptions have been made:

- All deposited forms of an element have the same toxicity,
- The feeding or grazing range of animals is limited to the area exposed to the estimated maximum annual concentration, and
- Most importantly, it is the exogenous incremental burden
 which should be compared with the screening concentration
 values, not the burden which would result from both the
 exogenous and endogenous concentrations.

This last assumption is critical and follows the procedure used in Refs. 12 and 13. The assumption is implicit in Eq. 5.5 where only the deposited concentration (DC) is used to calculate the tissue concentration (TC) and in the three screens as defined above.

The three screens can be compared to see which is the most restrictive. The screening value for concentrations in aerial plant tissues and for concentrations toxic to animals can be converted into equivalent soil concentration values by use of the plant:soil concentration ratios. The dietary concentration potentially toxic to animals can be thought of as the concentration in aerial plant parts that may be toxic to animals. Thus, Eq. 5.5 can be rearranged to give the equivalent deposited concentration (EDC) corresponding to a particular screening tissue concentration (STC):

EDC (ppmw) * STC (ppmw)/CR
$$(5.6)$$

where the STC is either the plant tissue screening concentration from Table 3.4 or the animal screening concentration from Table 3.7. In fact, Eq. 5.6 provides an alternative approach to the screening procedure that is equivalent

to the one presented here. Table 5.5 gives the equivalent deposited concentrations (EDCs) for the trace elements. Based on the CR's and assumptions used here, animals appear to be the critical receptor for cobalt, lead, and selenium while tissue concentrations in plants appear to be critical for arsenic, cadmium, copper, and zinc. For the remaining seven elements, the soil concentration appears to be critical. As long as the screening concentrations and concentration ratios given here are used, Table 5.5 can be used to reduce the number of comparisons required for a screen. For example, cadmium sources need only be screened against the single screening value for plant tissue concentrations, since this screening concentration is shown to be controlling in the table.

Table 5.5 Equivalent Exogenous Soil Screening Concentrations

. •	Equivalent	Deposited Con	centration (ppmw)
Trace Element	Soil ^a	Plant Tissue ^b	An imals ^c
Arsenic	3	1.8d	21
Boron	0.5d	2.1	
Cadmium	2.5	0.28d	1.4
Chromium	8.4d	50	
Cobalt	•••	170	9.1d
Copper	40	1.6d	43
Fluoride	400 ^d	10,300	3,300
Lead	1000	280	180d
Manganese	2.5 ^d	6,100	7,600
Mercury	455d	400	-
Nickel	500 ^d	1,300	22,000
Selenium	13	100	5d
Vanadium	2.5 ^d	-	1,000
Zinc	-	470d	780

^aSame as soil value in Table 3.4.

bEDC = (STC for plants from Table 3.4)/CR.

CEDC = (STC for animals from Table 3.7)/CR.

dControlling value.

Since acute fluoride poisoning in various species of cattle has been well documated, 48 it is surprising that animals do not appear to be critical for fluorides. This may be due to the omission of the critical pollutant pathway involving ingestion by animals of materials deposited on plants prior to these materials being washed off or blown off the plants and carried into the soil. The same indication could be given of course, if the screening concentration value for the effects of soil fluorides on plants were based upon a very sensitive species. Further detailed investigation and more data would be required to determine whether the latter explanation is true or whether there is a deficiency in the procedure outlined here. In either case, the fluoride example serves to illustrate the potential problems involved in screening for impacts on air quality related values.

Consider Effects of Solubilities (Step 7). The assumption that all deposited material is soluable and available for uptake by plants is unlikely ever to be met in practice. If a screen indicates that a further action is needed on a source because its emissions will cause a trace element screening concentration to be exceeded, an attempt may be made to look at the possible effect of reduced solubility on that indication by considering the solubility of the deposited material. This additional consideration should only be used as a supportive indicator; it can only increase confidence in the decision to take further action; it can never reverse such a decision based on the screens in Step 6. That is, the conservative assumption of 100% solubility should be used in making the decision for further action on the source.

If the solubility of a particular trace element is SZ, the amount actually available for uptake (AA) by plants is

OT

$$AA = DC \times (S/100)$$
.

(5.7)

This value for AA should be compared with the soil screening concentrations in Table 3.4. An equation similar to Eq. 5.5 can now be written reflecting

the assumption that only the fraction AA of the deposited concentration is available for uptake.

$$TC_{corr.} = AA \times CR = DC \times (S/100) \times CR = TC \times (S/100)$$
 (5.8)

where TC_{COTT}. stands for the tissue concentration corrected for the solubility of the deposited material. The new values of TC_{COTT}. could be compared with the screening concentrations for plant tissues and animals given in Tables 3.4 and 3.7, respectively.

5.2 EXAMPLE SCREEN AND SIGNIFICANT EMISSION RATES

Section 5.2.1 illustrates the use of Steps 1-7 of the screening procedure through application to a source of nitrogen dioxide and arsenic. Whenever source-specific estimates of maximum concentrations are available or can be generated. Steps 1-7 should be used. Step 8 provides an alternative screening procedure based on the concept of significant emission rates (SER). Section 5.2.2 illustrates the derivation of the SER for arsenic from the results for the example source and describes the use of the SER's for screening. Use of the SER's precludes any consideration of the emission characteristics of the source other than emission rate. Local conditions including background also cannot be taken into account. Application of Steps 1-7 is the preferred procedure.

5.2.1 Example Screen

The example source is assumed to have a plume release height of 30 m (physical stack plus plume rise). It is assumed that the source is subject to PSD review and that it is desired to screen the source for arsenic and nitrogen dioxide among other pollutants. An emission rate of 1 T/yr of arsenic is assumed for this example and estimates of maximum concentrations of NO_2 are available for 4-hour and 8-hour averaging times. Following Table 5.1 or Fig. 5.2, the first step in the procedure is to estimate maximum concentrations for the times listed in Table 5.2. For arsenic, these estimates need to be made. Using the simple modeling procedure outlined in Appendix A, the maximum annual average ground level concentration is found to be $X = 0.1051 \text{ ug/m}^3$. Other appropriate models or techniques could also be used. If an insignificant background is assumed for the example, this result completes Step 1 of the screening procedure for arsenic. For NO_2 , the

available results show maximum ground level concentrations (including background) of $\chi_4 = 51 \text{ µg/m}^3$ and $\chi_8 = 45 \text{ µg/m}^3$ for averaging times of 4 and 8 hours, respectively. (A little foresight will show that estimates need not be made for 1 mo and 1 yr.) These results complete Step 1.

Then in Step 2 of the screening procedure, these maximum concentrations for NO_2 would be compared to the appropriate screening concentrations in Table 3.1 or Table 5.3. For NO_2 , the screening concentration at both 4 and 8 hours is 3760 $\mu g/m^3$. The estimated maxima are for below this value. No calculation need be done for the one month and annual averaging times, since the modeled 4- and 8-hour maxima are already below the corresponding screening concentrations. There would thus be no indication that a more detailed review would be required for NO_2 impacts on plants, soils, and animals.

Since the screen also involves a trace element, the next step is Step 3. If a 10-year lifetime (N=10) is assumed and the recommended value of 3 cm is used for the depth of soil throughout which the deposited arsenic is mixed, Eq. 5.1 gives

DC = 21.5 (N/d)X

= 21.5 (10/3) x (.1051) = 7.53 ppmw as the concentration of arsenic in the soil.

Following with Step 4 and Eq. 5.4,

 $[Z Increase] = 7.53 \times 100/6 = 126Z$

where 6.0 ppmw has been used as the average endogenous soil concentration of arsenic from Table 3.5. Thus, there is a supportive indication that the source should receive further review if Step 6 shows the potential for adverse impacts because the source may increase concentrations of arsenic in the soil by more than 10%. In Step 5, the plant tissue concentration would be calculated from Eq. 5.5:

 $TC = DC \times CR = 7.53 \times 0.14 = 1.05 ppmw.$

Next the screening comparisons are made in Step 6. The DC (*7.53 ppmw) exceeds the soil screening concentration of 3 ppmw for arsenic given in Table 3.4. Similarly, the TC (1.05 ppmw) exceeds the tissue screening concentration of 0.25 ppmw given in Table 3.4. The TC does not exceed the animal-related screening concentration of 3 ppmw given in Table 3.7. There are thus

two indications that this source might adversely affect plants and that further actions need to be taken.

To look at the possible effect of arsenic solubility on these indications, the calculations in Step 7 can be done. For arsenic, Table 5.4 gives a solubility of 9% to account for the limited solubility of arsenic compounds. Equations 5.7 and 5.b give AA = $7.53 \times .09 = 0.68$ ppmw and $TC_{COTT} = 1.05 \times .09 = 0.0945$ ppmw. AA does not exceed the soil screening concentration of 3 ppmw and TC_{COTT} does not exceed the tissue screening concentrations for plants and animals, 0.25 ppmw and 3 ppmw, respectively. Thus, no supportive indication has been found but the original indication that additional detailed work is required on the source is not altered and it is known that solubility effects might be important.

5.2.2 Significant Emission Rates

Basic Levels. This subsection discusses the development of a significant emission rate (SER) for arsenic based on the generic source discussed in Sec. 5.2.1 with a release height of 30 m and an expected lifetime of 10 years. An SER is defined as the minimum emission rate which would cause the source's impact to just equal the screening concentration. That is,

For arsenic in soils and the example source,

$$SER(Soils) = [3/7.53] \times (1 T/yr) = 0.40 T/yr.$$

Arsenic emissions from this source in excess of 0.40 T/yr might be expected to cause a soil concentration in excess of the screening concentration. Similarly, significant emission rates based on plant tissues (TC = 1.05 ppmw) and animal ingestion (TC = 3 ppmw) can also be calculated:

SER(Tissue) =
$$[0.25/1.05] \times (1 \text{ T/yr}) = 0.24 \text{ T/yr}$$
 and
SER(Animals) = $[3/1.05] \times (1 \text{ T/yr}) = 2.8 \text{ T/yr}$.

Such significant emission rates were calculated assuming a 30 m release height as in Ref. 43, a 10-year source lifetime, and the air quality model presented

For pollutants acting along the direct pathways, Table 5.6 in Appendix A. presents the significant emission rates. Table 5.7 presents such rates for When no modeling results or stack parameters such as are trace elements. required by simple air quality screening procedures are available, the source's emission rates can be compared directly with those given in these two tables. As already noted in the discussion of Table 5.3, other criteria may be controlling particularly when background is considered. significant emission rates presented in Table 5.6 can be used to screen for potential adverse impacts to plants, animals, and soils. Other criteria may apply to different stages of the new source review process. When applying the significant emission rates in Table 5.7, only the smallest value need be considered for each pollutant. The values based on exceeding ten percent of the average endogenous soil concentration should again only be used as supportive indicators; the primary decision is based upon exceeding the values based on the criteria for soils, plant tissues, and animals.

The values tabulated in Table 5.7 assume a source lifetime of 10 years. Significant emission rates for other lifetimes for trace elements acting through the deposition pathway are easily calculated:

Thus, for example, if the lifetime of the arsenic source in the above example had been 40 years instead of 10 years, the associated significant emission rate based on the plant tissue screening concentration would have been changed from 0.24 T/yr to

$$(0.24) \times (10/40) = 0.06 \text{ T/yr}.$$

Solubility. As in Step 7, additional supportive indications can be sought by considering the effects of solubility. A corrected significant emission rate can be found from

Table 5.6 Significant Emission Rates for Direct Acting Pollutants^a

								S	ignifica	int Baise	Significant Daission Rate (T/yr)	f/yr)					
·									Polluta	int and A	Pollutant and Averaging Timeb	ineb					
Screening		SO ₂	Ž,	; !		NO ₂	A .			8		H2S	Eth)	Ethylene	Fluoride	Beryllium	Lead
Criterion		m	3 24	~	4	œ	×	*	-	90	3	4	m		240	æ	英
AQRV																	
Concentration	160	160 172	,	171	840	950	950 3,200 950	950	1	•	760,000	6,400 10.0 0.36	10.0	0.36	0.23	0.057	=
NAAQS	ŧ	290	110	760	1,	!	1	950	950 7,000	2,500	ı	i	ı			ı	Ξ
PSD Increment I	•	5.3	2.5	61	ı	ŧ	ı	ı	ı	,	1	ŧ	,		,	i	1
and and	1	110	38	150	ŧ	ı	1	ŧ	1	1	,	ŧ	1	,	•	1	. ,
III	*	150	55	380	ı	ı	ŧ	,		;	,		,	•	• •		
Variance	:	69	28	190	ŧ	ŧ	•	1	•	,	•	•	1	ı		· •	
NESHAP	ı	ľ		1	ı	ŧ	,	1	1	,	.1	ŧ	•	,	•	0.057	•

aBased on 30 m release height and no background.

DNumerals: hours
W: I week
M: I month
A: Annual

Table 5.7 Significant Emission Rates for Trace Elements^a

		Significant	Emission	Rate (T/yr)
		c	riterion	
Trace Element	Soils	Plant Tissue	Animals	10% of Endogenous Soil Concentration ^b
Arsenic	.40	. 24	2.8	.08
Boron	.067	.28	***	.13
Cadmium	.33	.037	.19	.00080
Chromium	1.1	6.7		1.3
Cobalt		23°	1.2	.11
Copper	5.3	.21	5.7	.27
Fluoride	53°	1400°	440°	2.7
Lead	130 d	37d	24d	.13
Manganese	. 33	810c	1000c	110
Mercury	61¢	· <u>-</u>	_	
Nickel	67 ^C	170 ^c	3000°	.53
Selenium		denilera de desirabilità de desirabilità de la compansión de la compansión de la compansión de la compansión d		
Vanadium	.33	-	130c	1.3
Zinc	-	63¢	100¢	. 67

aBased on a 30 m release height, no background, and a source lifetime of 10 years. For a lifetime of N years, divide the tabulated values by (N/10).

These emission rate increase factors are simply (100/S), the reciprocals of the solubilities in percent.

Other Stacks. Even though the stack parameters may not be known exactly, it may be known that the stack is hot or cold. Table 5.8 gives stack parameters for four stacks which might be useful if they are closer to the source's expected stack parameters than the 30 m release height assumed

bFor use as a supportive indicator only; based on a 10% increase over the average values in Table 3.5.

^CExceeds the significant emission level for TSP of 10 T/yr established for PSD (Ref. 3).

dExceeds the significant emission level for lead of 1 T/yr established for PSD (Ref. 3).

Table 5.8. Summary of Representative Stacks

		Stack Paramete	rs	
Stack	Height (m)	Temperature (*K)	Flow (m ³ /sec)	Emission Rate Increase Factor
30 m release	30	293	0	1.00
10 m cold	10	350	4	0.96
10 m hot	. 10	550	4	4.07
30 m cold	30	350	4	3.43
30 m hot	30	550	4	8.93

in Tables 5.6 and 5.7. The volume flow rate of 4 m³/sec is felt to be conservative for major sources unless a large number of stacks are used. Also given in the table are emission rate increase factors for each model stack. A particular factor would be used to adjust the tabulated significant emission rates in Tables 5.6 and 5.7 to correspond more closely to concentrations expected from the proposed source:

APPENDIX A

Estimates of Maximum
Ground Level Concentrations

APPENDIX A

ESTIMATES OF MAXIMUM GROUND-LEVEL CONCENTRATIONS

This appendix develops the procedure used to estimate maximum ground-level concentrations (mglc's) from a single source for averaging times ranging from one hour to one year. The developments presented here follow the presentation in Ref. 45 which can be consulted for additional details. The procedure is useful for screening because the calculations can be done by hand or implemented in a simple computer program. The procedure accounts for stack parameters, plume rise, and meteorological conditions.

A.1 SHORT-TERM ESTIMATES

The familiar Gaussian plume model is the basis for estimating shortterm ground level concentrations.⁴⁹ According to this model the plume centerline concentration is given by

$$\chi(x) = \frac{Q \times 10^6}{\pi u \sigma_y(x) \sigma_z(x)} \exp \left[-1/2 \left(\frac{H}{\sigma_z(x)}\right)^2\right] \qquad (...1)$$

where:

x = Downwind distance from source (m),

X(x) = Ground-level centerline concentration at $x (\mu g/m^3)$,

Q = Source emission rate (g/sec),

u = Wind speed (m/sec),

 $\sigma_v(x)$ = Horizontal dispersion coefficient (m)

 $\sigma_z(x)$ = Vertical dispersion coefficient (m), and

H = Effective stack height (m) = $h_s + \Delta h$ = (Physical stack height) + (Plume rise).

To derive an analytic expression for the mglc, the following commonly used representatives of the two dispersion coefficients are used:

$$\sigma_{y}(x) = ax^{b}$$
 (A.2)

and

$$\sigma_{\mathbf{z}}(\mathbf{x}) = \mathbf{c}\mathbf{x}^{\mathbf{d}}. \tag{A.3}$$

Preceding page blank

The parameters a, b, c, and d depend upon atmospheric stability class and, for σ_z , the downwind distance x. The following expressions for the estimated mglc (x_m) and the corresponding downwind distance x_m may be derived. 50

$$x_m = \frac{AQ \times 10^6}{\pi u} \times \frac{1}{H^{2\alpha}}$$
 (A.4)

and

$$x_{m} = \left[\left(\frac{H^2}{c} \right) \frac{1}{2\alpha} \right]^{1/2d} \tag{A.5}$$

where:

$$\alpha = (b+d)/(2d) \tag{A.6}$$

and

$$A = \frac{c^{2\alpha-1}}{a} (2\alpha)^{\alpha} \exp(-\alpha) \tag{A.7}$$

Values for a, b, c, d, and A are presented in Table A.1.

Both x_m and x_m depend on stability class and wind speed. To estimate these quantities, the plume rise must be estimated because both depend upon the effective stack height H. Plume rise can be estimated using the formulas of Briggs. 52,53

Setting

$$F = g\left(\frac{T - Ta}{T}\right)V \tag{A.8}$$

where:

g = Acceleration of gravity (9.8 m/sec2),

T = Exit gas temperature (*K),

 $T_a = Ambient temperature (*K), and$

V = Exist gas flow rate at temperature T (m³/sec),

it can be shown that

$$\Delta h(n/u) = C/u$$
 for neutral/unstable conditions (A.9)

and

$$\Delta h(s) = D/u^{1/3}$$
 for stable conditions. (A.10)

Table A.1 Dispersion Coefficient Parameters and Maximum Concentration Coefficient

Moderately Stable	E-F (intermediate)	0.0853	0.894	0.0682, 0.227, 1.437	0.814, 0.618, 0.401	0.468, 1.21, 34.7
Moderate	E-F (int	0	Ö	0.0682, (0.814, 0.	0.468, 1.
Neutra!	<u>a</u>	0.150	0.889	0.0856, 0.259, 0.737	0.865, 0.687, 0.564	0.396, 0.955, 3.85
Moderately Unstable	M	0.351	0.867	0.139, 0.0494, 0.0494	0.947, 1.114, 1.114	0.335, 0.188, 0.188
Atmospheric Stability	Corresponding Pasquill-Gifford Stability Class	*	*4	C**, +	+**P	A +

*Estimated from Fig. 3.2, Ref. 49.

**Taken from Table 5, Ref. 51.

[†]The first numbers given for each stability are appropriate at distances between 100 and 500 m, the second numbers at distances between 500 and 5000 m, and the third numbers at distances greater than 5000 m.

Assuming an ambient temperature of 293°K (20°C) and an ambient potential temperature lapse rate (30/3z) of 0.5°K/100 m, representative of moderately stable conditions,

$$F = 9.8 \left(\frac{T-293}{T}\right) V, \tag{A.11}$$

$$C = 21.4F^{0.75} m^2/sec$$
 for $F<55 m^4/sec^3$, (A.12)

$$C = 38.7F^{0.6} m^2/sec \text{ for } F>55 m^4/sec^3, \text{ and}$$
 (A.13)

$$D = 47.2 \text{ pl/3} \text{ m}^{4/3} \text{ sec}^{-1/3}. \tag{A.14}$$

A wind speed corresponding to the mglc can now be found. For meutral and unstable conditions,

$$u_{worst}(n/u) = \frac{b}{d} \frac{C}{h_a}, \tag{A.15}$$

with a corresponding mglc

$$\chi_{\text{worst}}(n/u) = \frac{AQ \times 10^6}{\pi} \cdot \frac{1}{Ch_s^{b/d}} \cdot \frac{(b/d)^{b/d}}{(1+b/d)^{1+b/d}}$$
 (A.16)

For stable conditions

$$\chi_{\text{worst}}(s) = \frac{AQ \times 10^6}{\pi} \cdot \frac{u^{(b-2d)/3d}}{(u^{1/3}h_s + D)^{1+b/d}}$$
 (A.17)

Equation A.17 has no maximum unless b/d is greater than 2. Operationally, this difficulty is solved by setting u = 2 m/sec for the stable case in which case Eqs. A.10 and A.17 become

$$\Delta h(s) = 0.794 D \tag{A.18}$$

and

$$\chi_{\text{worst}}(s) = \frac{AQ \times 10^6}{\pi} \cdot \frac{2^{(b-2d)/3d}}{(1.26 \text{ h}_s+D)^{1+b/d}}$$
 (A.19)

Equations A.15, A.16, and A.19 are the basic equations used to calculate the short-term mglc. The calculations need to be done separately for unstable, neutral, and stable conditions and the maximum value selected for the mglc. In addition, for each stability class, the calculations need to be done for three ranges of downwind distance because of the dependence of c, d, and A on x (see Table A.1). The value chosen for each stability class is the

maximum self-consistent value, that is, the maximum of the values for which the calculated \mathbf{x}_m falls within the range of downwind distances over which the particular c, d, and A values apply.

In implementing this procedure, high worst-case wind speeds are occasionally found which are unlikely to persist for periods of time on the order of hours to one day. On the other hand, low worst-case wind speeds are found which are small enough to render the Gaussian plume formulation inapplicable. To avoid both extremes and still retain a conservative estimate of the mglc, limits are placed on the worst-case wind speed for neutral/unstable conditions such that $0.8 \le u_w \le 30$ m/sec.

Estimates made in this way are appropriate for averaging times of one hour. For averaging times out to about 24 hours, the one-hour estimates can be multiplied by an appropriate conversion factor from Table A.2. These factors represent a power law dependence of concentration on averaging time with an exponent of -0.17:

$$X(t) = X(1)t^{-0.17}$$
 (A.20)

For averaging times between 24 hours and about one month, a recognized simple procedure for estimating the concentration from a single source at one averaging time given the concentration at another averaging time appears to be lacking. Larsen⁵⁴ has developed a method which can be used in multi-source applications. For averaging times less than one month, he finds that for a year's data

$$\chi_{\max}(t) = \chi_{\max}(1 \text{ hr})tq \tag{A.21}$$

where q depends upon the geometric standard deviation of the concentration values. The form of Eq. A.21 with q = -0.17 is exactly the same as that of Eq. A.20. On the basis of this equivalence of mathematical form, the use of Eq. A.20 was extended beyond 24 hours to estimate conversion factors for 4 and 10 days as shown in Table A.2.

A.2 LONG-TERM ESTIMATES

Expected monthly and annual mglc's from a single source are based upon the "sector-averaged" form of Eq. A.1:49,55

Table A.2 Averaging Time Conversion Factors

Averaging Time (hrs)	Conversion Factor
1	1.00a
3	0.83ª
4	0.79ª
8	0.70ª
24	0.58ª
96 (4 da)	0.46b
240 (10 da)	0.39 ^b

aBased on Ref. 49.

$$\chi(x) = \left(\frac{2}{\pi}\right)^{1/2} \frac{fQ \times 10^6}{u\sigma_z(x)\left(\frac{2\pi x}{n}\right)} \exp\left[-1/2\left(\frac{H}{\sigma_z(x)}\right)^2\right]$$
(A.22)

where:

- n = the number of sectors into which the entire 360° range of wind directions is divided and
- f = the fraction of the time during which the wind direction lies in the sector of interest.

Using the same parameterization as above (Eq. A.3),

$$\chi_{m} = \frac{BfQ \times 10^{6}}{vh^{2\beta}} \tag{A.23}$$

where:

$$\beta = (1+d)/2d \tag{A.24}$$

and

$$B = \left(\frac{2}{\pi}\right)^{1/2} \frac{n}{2\pi} c^{2\beta-1} (2\beta)^{\beta} \exp(-\beta). \tag{A.25}$$

To estimate the expected long-term mglc, values of c and d for neutral atmospheric stability and distances between 500 and 5000 m are used and the plume rise is calculated using Eq. A.9. With these assumptions,

⁵See discussion in text.

$$B = 0.256$$
 and $\beta = 1.23$.

Examination of annual wind roses in Ref. 56 indicated that the maximum expected wind direction in a single 22.5° sector (n=16) is about 27% (f=0.27). For monthly wind roses, this maximum persistence is about 45% (f=0.45). The wind speed u used for both the annual and monthly calculations is u=4.4 m/sec, corresponding to the nationwide annual mean wind speed based upon the speeds listed with the annual wind roses. For these conditions Eq. A.23 gives

$$\chi_{\rm m}(yr) = \frac{0.0157 \, Q \times 10^6}{H^{2.46}}$$
 for annual mglc's (A.26)

and

$$\chi_{\rm m}({\rm mo}) = \frac{0.0262 \ {\rm Q \times 10^6}}{{\rm H}^2.46}$$
 for monthly mglc's. (A.27)

APPENDIX B
Pollutant Sensitivities of Plant Species

Table B.i. Sulfur Dioxide Sensitivity of Crop Speciesa

	Sensitiv	ity	
Sensitive	e	Intermediate	Resistant
Alfalfa	Leek	Cotton	Corn
Apple	Lettuce		Sorghum
Barley	Oats		Cantaloupe
Bean, field	Okr a		Citrus spp.
, lima	Onion		
Beet, sugar	Parsley		
, table	Parsnip		
Blackberry	Pea		
Blueberry	Pe ach		
Broccoli	Pear		
Brussels Sprouts	Pepper		
Cabbage	Plum, prune	•	
Carrot	Potato, Irish		
Celery	Potato, sweet		
Chard, Swiss	Pumpkin		*
Cherry, sour	Radish		
, sweet	Raspberry		
Clover	Rye	4	
Clover, sweet	Safflower	•	
Cucumber	Soybean		
Currant, red	Spinach		
Eggplant	Squash	aria manina makamana manana manana makama ina hisabi mahamana hamana hamana amana amana	okarrakarra errokaika kerrana arrana arrana erka arranaka esanikan errana arrana arrana arrana arrana arrana a
Endive	Tobacco		
Gooseberry	Turnip		
Grapes	Wheat		
Kale			•

aCompiled from data in Ref. 16.

Table B.2. Sulfur Dioxide Sensitivity of Natural Vegetationa

Common Name

Scientific Name

Sensitive

Alder, mountain
Aspen, large-toothed
, trembling
Ash, red (green)

, white Birch, gray

, western paper

, white(paper)
, yellow

Blueberry, lowbush Cherry, bitter Fir, subalpine

Grasses-bentgrass
-bluegrass

-desert grass -Ky. bluegrass

-orchard grass -red fescue

Hazel, beaked

, California

Hemlock, mountain Larch, western

Maple, Manitoba

, Rocky Mt. Mulberry, Texas Pine, eastern white

, jack

, red

, Virginia

Rockspirea, creambush Serviceberry, low

, Saskatoon

, Utsh

Sumac, staghorn Tulip tree Willow, black

Almus tenuifolia Populus grandidentata Populus tremuloides Fraxinus pennsylvanica Fraxinus americana Betula populifolia Betula papyrifera commutata Betula papyrifera Betula allegheniensis Vaccinium angustifolium Prunus emarginata Abies lasiocarpa Agrostis palustris Poa annua Oryzopsia hymenoidea Poa pratensis Dactylis glomerata Festuca rubra Corylus cornuta Corylus cornuta californica Tauga mertenaia Larix occidentalis Acer negundo interiue Acer glabrum Morus microphylla Pinus strobus Pinus banksiana Pinus resinosa Pinus virginiana Holodiscus discolor Amelanchier stolonifera Amelanchier alnifolia Amelanchier utaheneie Rhus typhina

Liriodendron tulipifera

Salix nigra

Table B.2. (Cont'd)

Common Name

Scientific Name

Intermediate

Basswood Birch, water Boxelder Chokecherry

Cottonwood, black , eastern

, narrowleaf Dogwood, red osier

Elm, American Fir, blasam , Douglas

, grand Grape, wild Hemlock, western Mahogany, mountain

Maple, Douglas, red

Mountain-ash, western Oak, white Pine, lodgepole

, ponderosa , shortleaf

, western white

Poplar, balsam Sagebrush, big Snowberry, mountain

, Columbia

Spruce, Engelmann , white

Witch hazel

Tilia americana
Betula occidentalis
Acer negundo
Prunus virginiana
Populus trichocarpa
Populus deltoides
Populus angustifolia
Cornus stolonifera
Ulmus americana
Abies balsamea
Pseudotsuga menziesii
Abies grandis
Vitis riparia

Vitis riparia Tsuga heterophylla Cercocarpus montanus Acer glabrum douglasii

Acer rubrum
Sorbus scopulina
Quercus alba
Pinus contorta
Pinus ponderosa
Pinus echinata
Pinus monticola
Populus balsamifera
Artemisia tridentata
Symphoricarpos oreophilus
Symphoricarpos rivularis
Picea engelmannii

Picea, glauca Hamamelis virginiana

Resistant

Black gum
Buck-brush
Buffalo-berry
Ceanothus, redstem
Cedar, western red
, white(arborvitae)
Dogwood, flowering
Fir. silver
, white

Hawthorn, black

Nyssa sylvatica
Ceanothus velutinus
Shepherdia canadensis
Ceanothus sanguineus
Thuja plicata
Thuja occidentalis
Cornus florida
Abies amabilis
Abies concolor
Crataegus douglasii

Table B.2. (Cont'd)

Common Name

Scientific Name

Resistant (cont'd)

Grape, Oregon

Grasses-blue grama

-needle grass

-western wheatgrass

Juniper, common

, Rocky Mt.

, Utah

, Western

Kinnikinnick Locust, black

Mahogany, curl-leaf mt.

Maple, mountain

, silver

, sugar

Oak, gambel

, live

, northern red

, pin

Pine, limber

, pinyon

Poplar, Carolina

Sourwood

Spruce, blue

Squawbush

Sumac, smooth

Sycamore, American

Willow, shrubby

Yew, Pacific

Odostemon aquifolium Bouteloua gracilis

Stipa comata Agropyron emithii

Juniperus communis

Juniperus scopulorum

Juniperus ostaosperma

Juniperus occidentalis

Arctostaphylos uva-ursi

Robinia pseudoacacia

Cercocarpus ledifolius

Acer spicatum Acer saccharinum

Acer saccharum

Quercus gambelii

Quercus virginiana

Quercue rubra

Quercus palustris

Pinus flexilis

Pinus edulis

Populus canadensis

Oxydendron arboreum

Picea pungens

Rhus trilobata

Rhus glabra Platanus occidentalis

Salix tristis

Taxus brevifolia

aCompiled from lists in Refs. 9 and 16.

Table B.3. Ozone Sensitivity of Crop Speciesa

	Sensitivity	
Sensitive	Intermediate	Resistant
Alfalfab bean, pinto , white Broccoli Cloverb Corn, sweet Oatsb Radishc Safflowerc Soybeanb Spinachb Tobacco Tomatob	Bean, bush , lima Beet, table Cabbage Chard, swissd Clover, white sweet Corn, field Cucumberd Potato, Irish Sorghum Squash, summer	Cotton Lettuce Onion

aCompiled from data in Ref. 18.

^bSome cultivars intermediate or resistant.

^cSome cultivars intermediate.

 $^{^{\}mathbf{d}}\mathbf{Some}$ cultivars resistant.

Table B.4. Ozone Sensitivity of Natural Vegetationa

Common Name

Scientific Name

Sensitive

Aspen, trembling Ash, red(green) , white

Cottonwood, black Grasses-bent grass

-blue grass
-brome grass

Oak, gambel , white

Pine, Coulter

, eastern white

, jack , jeffrey , loblolly , Monterey , ponderosa , Virginia

Serviceberry, Saskatoon Sycamore, American

Tulip trae

Populus tremuloides
Frazinus pennsylvanica
Frazinus americana
Populus trichocarpa
Agrostis palustris
Poa annua
Bromus tectorum
Quercus gambelii
Quercus alba
Pinus coulteri

Pinus strobus
Pinus banksiana
Pinus jeffreyi
Pinus taeda
Pinus radiata
Pinus ponderosa
Pinus virginiana
Amelanchier alni

Amelanchier alnifolia Platanus occidentalis Liriodendron tulipifera

Intermediate

Boxelder

Cedar, incense

Grasses-Ky. bluegrass

-perennial rye -red fescue

Oak, black

, pin

, scarlet

Pine, lodgepole

, pitch

, shortleaf

, slash

, sugar

, sugar , Torrey

Redbud Sweetgum Acer negundo

Libocedrus decurrens

Poa pratensis
Lolium perenne
Festuca rubsa
Quercus velutina
Quercus palustris
Quercus coccinea
Pinus contorta
Pinus rigida
Pinus echinata

Pinus elliottii Pinus lambertiana Pinus torreyana

Cercie canadensis

Liquidambar styraciflua

Table B.4. (Cont'd)

Common Name

Scientific Name

Resistant

Tilia americana Basswood Betula papyrifera Birch, white (paper) Nyssa sylvatica Black gum Thuja occidentalis Cedar, white (arborvitae) Cornus florida Dogwood, flowering Abies balsamea Fir, balsalm Pseudotsuga menziesii , Douglas Abies concolor , white Dactylis glomerata Grasses-orchard grass Tsuga canadensis Hemlock Juniperus occidentalis Juniper, western Robinia pseudoacacia Locust, black Acer rubrum Maple, red Acer saccharum , sugar Quercue macrocarpa Oak, mossy-cup Quercus rubra , northern red Quercus imbricaria , shingle Pinus sabiniana Pine, digger, Pinus resinosa , red Sequoia sempervirens Redwood Sequoiadendron giganteum Sequoia Picea mariana Spruce, black Picea pungens , blue Picea glaucaa , white Juglans nigra Walnut, black

^aCompiled from lists in Refs. 18 and 57.

Table B.5. Nitrogen Dioxide Sensitivity of Crop Species^a

Sensitivity	
Intermediate	Resistant
Bean, bush Celery Citrus spp. Corn, sweet Cotton Endive Potato, Irish Rye Strawberry, pine Tomato Wheat	Asparagus Cabbage, red , white Corn, field Cucumber Kale Kohlrabi Onion Sorghum
	Intermediate Bean, bush Celery Citrus spp. Corn, sweet Cotton Endive Potato, Irish Rye Strawberry, pine Tomato

aCompiled from lists in Refs. 19, 20, and 58.

bSome cultivars intermediate or resistant.

Table B.6. Nitrogen Dioxide Sensitivity of Natural Vegetation^a

Common Name

Scientific Name

Sensitive

Grasses-Viper's grass

Scorzonera hispanica

Intermediate

Fir, common silver

, white

Grasses-bluegrass

Spruce, blue

, white

Abies pectinata

Abies alba

Poa annua

Picea pungens

Picea glauca

Resistant

Grasses-Ky. bluegrass

Poa pratensis

aCompiled from tables in Refs. 20 and 58.

APPENDIX C

Trace Element Air Quality Data

		X	HINIMH (U6/H3)	(3)		HAXIMIN (UG/H3)	#3)
STATE		Seo	ARITH	GEO HEAN	900	ARITH	GEO
뫂	BUCHANEII CLAY JEFFERSON	0.0100 0.0100 0.0100			0.0100 0.0100 0.0200	111	! ! !
¥	BEE BEYAR BOINE BRAZOS BROIN CALHOIN CALRON CHABERS	000000000000000000000000000000000000000	0.0200A 0.0300A 0.0300A 0.0300A 0.0300A 0.0200	0.0300 0.0300A 0.0300A 0.0300A 0.0300	0.0200000000000000000000000000000000000	0.0200A 0.0300A 0.0300A 0.0300A 0.0300A 0.0300	0.0300A 0.0300A 0.0300 0.0300 0.0300
	ECTOR ELLIS EL PASO GALVESTON GRAYSON INALE HARRISS	0.0200 0.0200 0.0200 0.0200 0.0200 0.0200	0.0200A 0.0200 0.0200A	0.0300A 0.0200 0.0300A	00000000000000000000000000000000000000	0.0200A 0.0700 0.0200A	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	HANG HIDAGO HOLARD JEFF NAYS LUEDGK KCLERAN	000000000000000000000000000000000000000	0.0200 0.0200 0.02000 	0.0300 0.0300 0.0300 0.0300	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02000 0.02000 0.02000	0.0300 0.0300 0.0300
	HATAGORDA HIOLAND HIOLAND HOORGALERY NOGRE HACOSDOCHES GRANGE POTTER SAH PARRICTO	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0200A 0.0200A 0.0200 0.0200	0.0300A 0.0300A 0.0300A 0.0300		0.0200A 0.0200A 0.0300 0.0300	0.0300A 0.0300A 0.0300A 0.0300A

A HIDICATES ONLY ONE STATION REPORTING

TABLE C-1. ATRIONALITY NATA END ADSENT	
LE C-1, AIR QUALITY DATA	ш
LE C-1. ATR DIMETTY	2
LE C-1. ATR ONLY	ALTA
LE C-1. ATR	
LE C-1.	
1	AIR
TABLE	ئ
	FABLE

		-	THIMM (UG/H3	43)	-	TAXIMM (UG/H)	H3)
			***************************************	? ! !	****		*****
STATE	COUNTY	See	ARITH HEAN	650 HE SH	088	ARITH	SEO HEAN
	HIES	0.0200	0.0300A	0.03004	0.070.0	0.010.0	A ATOMA
	TARRANI	0.0200			5.50		
	TAYLOR	0.0200	6.0300A	5.03004	0.660	A ATABA	A GYDAA
	TITUS	0.0200	0.9200A	D. 0700A	0200	4000	40000
	TOM GREEN	0.0200	1		0.00	1007A	¥2000
	TRAVIS	0.0200	8.0200	00200	900	9020	0 0 0
	עאו עלטה	6 6200			20.0	0.0200	0.000
	1144144	9.00	•	i i	0.020.0	1	! !
	A SUL LUCE A	0.0200	į	;	0.0200	:	* *
	HALKER	0.0200	;	1	0.0200	;	1
		0.0200	*	*	0.0200	1	1
	HICHTIA	0.0200	***	*	0.0200		:
	Z)	0.0200	1	•	0.0600	!	i

0.0001A 0.0001A 1.5670 HAXIMUH (UG/H3) 0.4592 3,6800 TABLE C-2. AIR QUALITY DATA FOR CABILLIN GEO 200000 200000 2000000 HINTHEH (UG/N3) 0.0001A 0.0001A 0.0095 ARITH SHOSHORE STATE 至

A INDICATES ONLY ONE STATION REPORTINS

TABLE C-2. AIR QUALITY DATA FOR CADHIUN

STATE			1	į			980
	COUNTY	\$86	AK!	6E0 HEAL	SBS	ARITH	HEAN
	ITASCA	0.0010	**************************************	****	0.000	***************************************	
	KAIDIVOIL	0.0010	;	•	0.00		1
	KOOCHICHING	0.0010	ţ	;	6.0110	:	1
	LYCH	0.0010	;	!	0.00%	;	*
	MCLEOD	0.0010	į	***	0.0010	;	*
	HILLE LACS	0.0010	***		A 25.55	1	-
	NOTER	0.0010	i	ł	0.00	1	;
	NOBLES	0.0010	*	;	0.000		
	OLISTED	0.00.0	1		0700.0	•	;
	GITEPLATA					ļ	! !
	POLK				0.000	:	1
	ST. JOHS		1	1		İ	1
	SCOTT				2000	<u> </u>	1
	STEERS				9790.0	1	ļ
	LACTIVICATION	2500		!	2010.0	1	1
	ATTACK			•	0.0048	1	ļ
	FEESTHORN	2.2	•	!	0.0020	į	
2	ADATE	0.0010	;	į	6766		
!	AINSAIN	A 40 14			7.00.0	# #	1
	BOWE		! !	•	6.0003	1 1 2	;
	BUCHANAN	7000	}	i	2.0.0	2	!
	DITTE		!	:	0.040	!	ļ
		2.000.a	;	i	0.0062	1	:
	CALLES CA	2.00.0	ŧ ŧ	:	0.0055	1	ŧ ‡
		2000.0	:	;	0.0046	:	;
	CATE DIRAKDEAU	0.0020	:	-	0.0020	* * * *	1
	CLAT	0.0018	i	į	0.0150	1	1
		0.0012	:		0.0066	!	:
	ASTER	0.0024	*	:	0.0079	*	•
-	LETTENSOR	0.0027	1	;	1.4350	1	1
	LIVINGSIN	0.0010	:	:	0.0052	1	
	HARIO	0.4012	*	;	0.0050	:	!
	HEH HADRID	0.0003	1	:	0.0045	•	i
	NODAIIAY	0.90.0	i	1	0.0052	i	;
	PETITS	0.0008	# # #	;	0.0125	;	1
	FIELPS	0.0011	:	!	0.0053	‡ ‡	1
	PLATTE	0.030	:	1	0.0109	į	
	ST. CHARLES	0.0050	***	**	200.0		1
	STE. GENEVIEVE	0.0031	:	*			:
	SCOTT	0.0010		;	3000	!	•
	VERMON	0.0015	1	1	1 200.0		
		•			# · · · ·	1	i i
Ħ	DEER LODGE	0.0100	ļ	į	0.0200	ŧ	!
E	RIO ARRIDA	0.0001	0.0001	0.000	0000	0000	,
					0.0	7000.0	6.6001

			HININGH (UG/HS)	5		HAXINUM (US/II3)	(13)
STATE	COMITY	580	ARITH	GEO NEAN	899	ARITH	GEO
	SAN JUAN	0.0001	0.0002	0.0001	0.2000	0.0002	0.0001
š	OKLAHOHA	0.0001	0.000\$	9,000.0	5.0000	0.2739	0.0012
မွှ	CHARLESTON	0.0020	•		0.0020	į	ļ
4.15	***************************************	0.00			4200		
	BECKER	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	!!		0.0030		
	BLOGAT	0.0010				: 1	
	BRADLEY	0.0010	******	****	0.0010	;	:
	CAIPDELL	0.0010	1	-	0,0040	;	1
	CARTER	0.0010	!	1	0.0010	1	1
	COFFEE	0.0010	.	-	0.0050	1	;
	CURSERLAND	200.0	į		0.0050	•	:
	DYER	0.00.0	:	:	0.0030	;	*
	STORES OF THE PERSON OF THE PE	0.00.0	;	:	0.0070		***
		30 C	:	;	0.0010	1	!
		2000		:	0.0020	ļ	:
	A PERIOD A				2000.0	!	į
					. c.	•	!
	H. I. I.	0.0040	1		0.00		
	HADISON	0.0010	1		2000		
	HARION	0.0010		i	0.00		
	HAURY	0.0010	1	**	0.0030	1	
	MONTGOMERY	0.0010	-	-	0.0100		ļ
	PO TON	0.0010	;	ŧ	0.0030	1	1
	POLK	0.0010		-	0.0370	1	1
	FUTINA	0.0010	;	-	0.0010	-	:
	KDATE	0.0010	;		0.0000	•	*
	ROSERISON	0.0010		i	0.0020	1	;
	RUTHERFORD	0.0010	,	***	0.0010	;	1
	SULLIVAN	6.0010	:	:	0.0030	;	
	SUMIER	0.00	0	:	0.0020	1	ļ
	HARREN	0.0010	1	;	0.0010	1	ļ
	NASILISTON	0.0010	i	7	0.0010	*	1
	HILLIAISON	0.0010	;	1	0.0010	ļ	1
	HISTOR	0.0010	1	:	0.0010	ł	į
×	BEE	0.0300	0.0300A	0.0300A	0.0300	D.0368A	0.0300
	BOJIE Brazorie	0.0300	0.0300A 0.0300	0.0300A 0.0300	0.0300	0.0300A	0.0300A 0.0300A

A INDICATES DRIN CHE STATIGH REPORTING

TABLE C-2. AIR QUALITY DATA FOR CADHUM

		I	HIMIMUM (UG/HS)	(5)	1	14X114H (UG/13)	123
STATE	COUNTY	99	ARITH HEAN	6E0 IIEAN	SBO	ARITH	660 HEAN
	884205	0.0300	0.0300A	0.0300A	0.0300	0.0300A	0.0300A
		0.0380	: :		0.0300	:	1
	CAIERCH	0.0300	0.0300	0.0300	0.0300	0.0300	0.0300
	CHAIBERS	0.0300	1	1	0.0300		
	DALLAS	0.0300	0.0300	P.0300	0.1000	0.0300	0.0300
	UERIOR	0.0300	10020 0	4114 6 62061	0.0300	1000	
		0.0300	F. 0200A	4.020.p	0.0300	U.USUUA	0.6300A
	EL PASO	0.0300	0.0300	0.0300	0.1000	0.0300	0.0300
	GALVESTON GOAV	0.0300	D.0300A	0.0300A	0.100	0.0300A	0.0300A
	GRAYSON	0.0300	* *	1	0.0300	1	
	HALE	0.0300	ţ	;	0.0300	;	:
	HARRIS	0.0001	0.0300	0.0300	9.0300	0.0300	0.0300
	151V	0.020	0010		0.0300		
	HOLARD	0.0300	0.0300A	6.0300 6.0300	0.0300	0.0300 0.0300	0.0300
	JEFF DAVIS	0.0300	1	1	0.0300		
	JEFFERSON	0.0300	0.0300A	0.0300A	0.0300	0.0300A	0.0300A
	LUMBINIK Men Epitaba	0.020			0.0300	i	!
	KINTER	0.0300	1		0.0300	: :	; ;
	HATAGORDA	0.0300	i	i	0.0300	1	1
	HAVERICK HTDI A:D	0.0300	0.0300A	9.0300A	0.0300	0.0300A	0.0300A
	HANTGOLIERY	0.0300		#00ca-a	0.0300	U. U.SUUA	U. 6380A
	HOORE	0.0300	;	1	0.03.0	!	į
•	MACOGRACHES	0.0300	170	:	0.0300	***	1
	ORANGE	0.0300	0.0300A	0.0380 0.0380A	200	0.0360	0.0300
	Potter	0.0300	;	;	0.0300		***
	SAN PAIRICIO	0.0300	‡ 1	;	0.0200	:	•
	SHIII	0.6300	0.03004	0.0100A	0.0300	0.03004	
	TARRANT	0.0300		V	0.0300	400CU-	0.030GA
	TAYLOR	0.0300	0.0300A	0.0300A	0.0300	0.0300A	0.0300A
	TITUS COFFE	6.0300 8.0300	0.0300A	6.0300A	0.0300	0.0300A	0.0300A
	TRAVIS	0.0300	0.0300	0.0300	0.0300	0.070.0	0020
	VAL VERDE	0.0300	;	•	0.0300		
	VICEURIA	0.0308	1 1	-	0.0300	ł	:
	Charles of the charle	2072	ļ	!	0.0200	ŧ	!

A INDICATES ONLY WIE STATION REPORTING

1			ABLE C-2. AIR QUALIT				
			HINTHM (UG/113)			HAXIRAH (UG/H3)	H3.)
STATE	COLATTY	OBS	ARITH	GEO HEAN	Sgo	ARITH	GEO HEAN
	NEBB HICHTA HISE	0.0300 0.0300 0.0300	!!!		0.0300 0.0300 0.0300		
5	ENERY GARFIELD KAHE SAIL JUAN HASHTIGTON	0.0001	0.0001 0.0002A 0.0001	, 45 0.00 1000.00 1000.00 1000.00	0.0001 0.0200 0.0100	0.0003 0.0002 0.0020	0.0001A
				d.00.0	20.0.0	200.0	6.0001

TABLE C-3. AIR QUALITY DATA FOR CHROHIUS

			HTHEREN (UG/H3)	133		HAXINEN (UG/H3)	1133
STATE	COGSITY	083	ARITH	GEO HEAN	SEO	ARITH	GEO NEAN
Ą	APACHE COCOHIND HARITOPA HIGHATE HAVAJO	00000 00000 00000 00000 00000	0.0020 0.0020 0.0020 0.0030	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0500 0.0730 0.0810 0.0300 0.0500	0.0030 0.0050 0.0040 0.0040	0.0020 0.0020 0.0020 0.0020
8	LA PLATA MENTEZURA	0.00 0.00 0.00	0.0020A 0.0030A	0.0010A 0.0010A	0.0500	0.0050A	0.0020A
ğ	ADDRAIN	0.0060	† † † †	11	0.0980	11	11
	BUTCHE BUTCHE BUTCHE BUTCHE	0.0040 0.0050 0.0050	:		0.0170 0.0360 0.0130	!!!	1 1 1
	CALLAIAY CANDEN CAPE GIRARDEAU CLAY	0.0050 0.0040 0.0050	!!!!	1111	0.0670 0.0310 0.0180 0.0180	1 1 1 1	
	JASPER JEFERSON LIVINGSTON HARTON KODANAY PETTIS	0.0050 0.0030 0.0030 0.0050 0.0050 0.0050 0.0050		111111111	0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0110		
	TLAILE ST. CHARLES STG. GRIEVIEVE SCOIT	0.0050 0.0050 0.0050 0.0050		11111	0.0620 0.0080 0.0090 0.0780 0.0130	* ! ! ! !	
H	ALLEN BARTIOLOHEN ELKHART LAKE HOURDE VAUDERBURGH	0.0050 0.0010 0.0020 0.0050 0.0050	111111		6.0270 6.0140 6.0140 6.0160 6.0110		
3	rto arriba Saijuan	0.0010	0.0028A 0.0020	0.0010A 0.0010	0.0500	0.0030A 0.0030	0.0010A 0.0010

A BIDICATES ONLY ONE STATION REPORTING

STATE COMMITY COMMITTEN COMMITTE								
CHARLESTON 0.1530			1	HINIMAN (USA	43)		HAXIIII (UG/113)	/15)
AND TENNING	STATE	COURITY	880	ARITH	6E0 MEAN	SOO	ARITH	GEO HEAN
ANDERSON 0.0010 0.0050	သွ	CHARLESTON	0.1530			0.1530		; ; ; ; ;
BEDFORD BEDF	Z	AMERSON	0.0010	. !	ł	49,000	;	
BLOWN BLOW		BEDFORD	0.0010	*	;	0.0050		
CANTER CANTER 0.0010 0.0050 CANTER 0.0010 0.0050 CANTER 0.0010 0.0050 CANTER 0.0010 0.0050 CURDERLAND 0.0010 0.0050 STESCH 0.0010 0.0050 GERSAH 0.0010 0.0050 GARESAH 0.0010 0.0050 GARESAH 0.0010 0.0050 HEATH 0.0010 0.0050 HEATH 0.0010 0.0050 HAMP 0.0010 0.0050 HAMINY 0.0010 0.0050 HAMINY 0.0010 0.0050 POLK 0.0010 0.0050 SULLINAM 0.0010 0.0050 SULLINAM 0.0010 0.0050 SULLINAM 0.0010 0.0050 <td></td> <td>ELOUNT.</td> <td>0.0010</td> <td>. !</td> <td>;</td> <td>0.0050</td> <td>:</td> <td></td>		ELOUNT.	0.0010	. !	;	0.0050	:	
CARTEREL 0.0010 0.0055 CARTER 0.0010 0.0050 DYER 0.0010 0.0010 0.0050 DYER 0.0010 0.0010 0.0050 DYER 0.0010 0.0010 0.0050 GEBSCH 0.0010 0.0010 0.0050 HERRY 0.0010 0.0010 0.0050 HERRY 0.0010 0.0050 HAURY HAURY 0.0010 0.0050 HAURY HAURY 0.0010 0.0050 HAURY HAURY 0.0010 0.0050 HAURY HAURY 0.0010 0.0050 HAURY 0.0010 0.0010 0.0050		BRADLEY	0.0010	i	;	0.0050	;	1
COFFEE CUBERIAND COFFEE CUBERIAND COFFEE CUBERIAND CONTRIBLE CUBERIAND CONTRIBLE HEARTH CONTRIBLE HEARTH CONTRIBLE HEARTH CONTRICTOR HEARTH HEARTH CONTRIBLE HEARTH HEARTH CONTRIBLE HORD CONTRIBLE HORD CONTRIBLE HORD CONTRIBLE HORD CONTRIBLE HOR		CANFBELL	0.0010	;	;	0.0050	;	
CUEDERLAND CONTREE CUEDERLAND DYER GESSON GESSON GESSON HATBLEN HAT		CARTER	0.0010	-	ì	0.0010	·	
CUBERLAND OVER GIBSON GIBSO		COFFEE	0.0010	***	;	0.0050	;	. ;
DYER 0.0010 0.0056 GEREINE 0.0010 0.0010 HAIDEN 0.0010 0.0010 HEINERY 0.0010 0.0010 LINCULIA 0.0010 0.0010 HADISON 0.0010 0.0050 POLK POLK 0.0010 POLK POLK 0.0010 0.0050 POLK POLK 0.0010 0.0050 ROBERTSON 0.0010 0.0050 0.0050 SULLIKAR 0.0010 0.0010 0.0050 SULLIKAR 0.0		CURBERLAID	0.0010	1	;	0.000	;	
Color Colo		DYER	0.0010	;	;	0.0050	1	
STEFINE C.0010		618SQH	0.0010	***	1111	0.00.0	; ;	
HATBLEN HATBLEN HATBLEN HEIRT HURFIREYS HURFIREYS LINCUIRA HOUND LINCUIRA HADISCAN HALLINA HALLINA HADISCAN HAURY HARREN HARREN HARREN HARREN HASIRIKETON HA		GREENE	0.0010	;	;	2000		1
HEIRY HEIRY HUNDIN HCALIN HCAL		HAIBLEN	0.0010	1	;	2000	•	!
HALLIANISAN 0.0010 0.001		HEIRY	0.0010	į	1	0.000	•	!
LYHCOLH HALITRI HARIOH HARIOH HARITRI		IRREPIREYS	oton a	ļ		2000	£	‡ ‡
HADISCH HADI		Literate	\$100 C			0.000	•	#
HADISCH HADI		HUMA	2000	•	•	D. 00.0	1 4 3	
HAURY HAURY HAURY HAURY HAURY HOUTGAKERY HAURY HOUTGAKERY HOUTGAKERY HAURY HOUTGAKERY HAURY HOUTGAKERY HAURY HAURY HOUTGAKERY HAURY HAURY HAURY HASHINGTON		HADTOOL	20000	!	:	0.0020	***	*
HAURY		101011 101011	200	1	;	0.0020	:	-
HOUTGATERY 0.0010 0.0050 POLK 0.0010 0.0050 POLK 0.0010 0.0050 FUTHAM 0.0010 0.0050 FUTHER 0.0050 FUTH				•	!	0.0020	;	-
PULK FULLIAMENTER 0.0010 0.0050 POLICA FULLIAMENTER 0.0010 0.0050 POLICA FULLIAMENTER 0.0010 0.0050 POLICA FULLIAMENTER 0.0010 0.0050 POLICA FULLIAMENT POLICA FULLIAM		MODELLO	200.0	:	!	0.0020	-	1
POLK FOLK FOLK FOLK FOLK FOLK FOLK FOLK F		COLLEGIER	20.0 20.0	ŧ	;	0.0000	;	1
PUTILAR ROANE ROANE ROANE ROANE ROANE RUTHERFORD 0.0010			0.0010	ţ	1	0.0020	* * *	1
CONTRACT		ZEK	0.0010	:	i	0.0050	;	į
ROBERTSON 0.0010 0.0050 0		ruisa	0.0010	:	1	0.0020	;	1
RUTHER CARD 0.0010 0.0050		KUANE	0.0010	***	;	9,0050	;	:
NUMERFORD 0.0010 0.055 0.055 0.005 0.0		ROSERTSON	0.0010		1	0.0050		
SULLIVAMI SULLIVAMI SULLIVAMI SULLIVAMI HARRER HASHIRIGTON HASHIRIGTON HILLANISON HILLAN		· RUINERFORD	0.0010	1	}	ח יחחקת	;	! !
SALVIER SALV		SULLIVAN	0.0010	***	1	0.0050		!
HARREN 6.0010 0.0050 HARREN 6.0010 0.0050 HASILIGICAN 0.0010 0.0050 HILLSON 0.0010 0.0050 HILLSON 0.0010 0		SHITER	0.0010	:			•	1
HASHIRIGTON 0.0010 0.0010 HILLANSON 0.0010 0.0010 HILLANSON 0.0010 0.0010 HILLANSON 0.0010 0.0010 BEEXAR 0.0200 0.0200 BRAZOS 0.0200 0.0200 BRAZOS 0.0200 0.0200 CALHOUN 0.0200 0.0200		HARREN	0.0010			00000	i 1	1
HILLIANSON 0.0010 0.0010 HILSON 0.0010 0.0010 EEXAR 0.0200 0.0200 ERAZORIA 0.0200 0.0300 ERAZORIA 0.0200 0.0300 ERAZORIA 0.0200 0.0300 ERAZORIA 0.0200 0.0200		HASHINGTON	0100.0	:	}	0.00.0	!	1
HILSON HILSON HILSON HILSON HEE BEE 0.0200 BOHIE BRAZORIA 0.0200 BRAZORIA 0.0200 BRAZORIA 0.0200 BROINI 0.0200 BRAZORIA 0.0200 BROINI 0.0200		HILL TAISON	2000		!	23.0		!
BEE 0.0200 0.0200 BGNISE 0.0200 0.0200 BGNISE 0.0200 0.0900 BRAZOS 0.0200 0.0300 BRAZOS 0.0200 0.0200 CALHOUN 0.0200 0.0200				•	1	0.0010	:	į
BEE 0.0200 0.0200 BEZAR 0.0200 0.0200 BIAZORIA 0.0200 0.0200 BRAZORIA 0.0200 0.0200 0.0200 0.0200 BRAZORIA 0.0200			2100.0	!	-	0.0020	1	1
SECTION SECT	2	L			******			
0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200	¥		0.0200	1	;	0.0200	1	;
0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200		BEZAK	0.6200	***	;	0.0900	•	
0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200		2012	0.0200	***	. [0.00.0	1	
0.0200 0.0200 0.0200 0.0200 0.0200 0.0200		BRAZORIA	0.0200	1	•		}	ļ
0.0200 0.0200 0.0200		BRAZOS	0.0200				*	5 E
0.0200		BD0121			!	00.70	;	ļ
0.0200		TAL LICE AND	0.020.0	i	;	0.0200	-	†
		CHUICAI	0.5500	: 1	ļ	0.0200	;	
	7417	A SEPTEMBER OF LAS MALLE REPRESE	1 Kr. W. 1845					

TABLE C-3. AIR QUALITY DATA FOR CIRCUITUR

		Ξ	HINIMAH (UG/H3)	133	z	HAXIMIN (UG/113)	6
STATE	COLNIY	Sgo	ARITH	GEO	SGO	ARITH	OEO NEAN
	CALERON	0.6200	i		0.2500		
	CHAIGERS	0.0200	:	;	0.0200	:	!
	DALLAS	0.0200	-	-	0.0300	i	;
		0.0200	**	*	0.0200	1	:
	51 1 Te	2020.0	i	*	0.0500	!	!
	0010	0.020.0	:	ŧ	0.0200	1	!
	SE TAUS SALUTATAS	6.629 6.629 6.629	‡	•		1 1	į
		0.020	ł	:	0.1000	;	
	GRAYSON	0.0200	!!	*	0.0200	1	•
	HALE	0.0200	1		00000	: :	{
	HARRIS	0.0010	;	!	0.0700 0.0700 0.0700		!
	HAYS	0.0200	1	-	0.00	1	•
	HIDALGO	0.0200		-	0.0200		
	MONARO	0.0200	!	*	0.0500	:	
	JEFF DAVIS	0.0200	ì	***	0.0200		1
	LEFTERSON	6.933	:	1 2	0.0700	1	,
	EUROPA, N. A.	0.0200	į	•	0.0200	;	-
		2070.0	1	ŧ	0.0200	!	!
	MATAGRADA	0.000	•	1	0.0200	!	-
	HAVERICK		:	‡ ‡	0.0200	Ì	***
	HIDLAID	A 2200	1	1	0.0200	*	
	HOLLTGOLERY	0.00			0.700	i	1
	HOORE	0.0200			0.000	•	ŀ
	NASODOCIIES	0.0200		į	0.000	•	1
•	HUELES	0.0200	:		7.000		*
	ORA (SE	0.0200	;	:	2000		!
	POTTER	0.0200	?	***	0.0800	•	
	SALTAKELIU	0.0200	1	:	0.0700	:	;
	UCAR.	0.200	i	:	0.0200	1	1
	TARRANT	2000	.	-	0.0700	***	-
	TAYLOR	0.000		!	0.0700	;	*
	TAYLOR	, ~		•	0.0200	-	1
	TOH CIPEN			•	0.0200	1	!
	TOAVIS	5 C.	<u>}</u>	:	0.0200	1	. [
	VAL UPOR	0000	1	1	0.0700	***	1
	VICTORIA	9000	: ;	:	0.0200	;	!
	HALKER	0000		ł	0.0200	1	1
	LEGIS	0000		!	0.0200	į	!
	HIGHTA	2000		:	0.0200		:
	HISE	0.00			0.0280	-	1 1
			!	•	0.0200	1	****

A INDICATES CILY ONE STATION REPORTING

	31	GEO HEAN	0.0010 0.0010 0.0020 0.0010
	HAXIMH (US/H3)	ARITH GE	0.0040 0.0010 0.0030A 0.0010A 0.0040 0.0020 0.0030 0.0030
R CIRCUITA		580	0.0300 0.0300 0.0300 0.0300 0.0400
HASE C-3. AIR WALITY DATA FOR CHROHIUM	#3.)	039 HE 650	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
AIR OF	HINIMUM (UG/M3)	ARITH HEAN	0.0820 6.0010 9.0030A 0.0010A 0.0010 0.0010
JABLE	; ; ;	580	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 XIIISS My Con May:		COUNTY	EHERY Gartield Kan Sai Juan Hashthgton
1		STATE	5

TABLE C-4. AIR QUALITY DATA FOR FLUORIDE ION

		=	HINTHUM (US/H3)	H3)	4	KAXIMAH (UGAH3)	13)
STATE	CORNIY	088	ARITH HEAN	6E0 HEAN	989	ARITH	GEO
ĄŽ	HARICOPA	0.6200	0.0300	0.0300	0.3700	0.0500	0.0400
9	Barnes Billings	0.6200	9.0200A 0.0200A	0.0300A U.0300A	0.0500	0.0200A 0.0300A	0.0300A 0.0300A
	BUTLE TOH	0.0200	0.0200A 0.0300A	0.0300A 0.0300A	6.0200 6.3500	0.5200A 0.0400A	0.0300A 0.0300A
	CASS	0.0200	0.6200	0.0300 0.0300	0.0200	0.0300	0.0300
	GRAID FORKS	0.0200	0.0200	0.0300	0.1900	0.0300 0.0300	0.0100
	HETTHER	0.0200	0.0200	0.0300	0.0200	0.0200	0.00
	HCE EAST	0.0200	0.0200A	0.0300A	0.169	40000 0.0000	9000 9000 9000 9000
	HORTON	0.020	0.0200	6 .0300	0.000	0.0300	0.0300
	CLIVER	0.0200	6.6200	0.030	0.1100	0.0200	0.0300
	RAISET	0.0200	0.0200A	0.0300 0.0300	920.0	0.0200A 0.0200	0.0300A
	SHERIDAN	0.0200	0.0200	0.6300	0.0200	0.0200	0.0300
	SILVE	0.050g	0.020.0	0.0300	0.629 0.1400	0.0200	0.0300
	HARD HILLTAKS	0.0200	0.0200A 0.0200	0.0300A	0.0200	0.0200A 0.0200	0.0300 0.0300

1		TABLE C-	C-5. AIR QUAL	AIR QUALITY DATA FOR LEAD	LEAD		
		Z	HINTHUN (USAN)	- s		HAXIHIM (UG/H3)	133
STATE	COURT	683	ARITH	9E0 NEAN	SB)	ARITH	6EO NEAN
₹ .	Etokai Jefferson Madison Hobil e Hontgokery	0.2200 0.3200 0.3500 0.2300	0.5300A 0.9400A 0.6500A	0.4400A 0.8400A 0.5500A	2.0500 4.2300 1.9600 3.0900	0.5300A 0.9400A 0.6590A	0.4400A 0.8400A 0.5500A
Ą	APACHE COCHITSE COCHITIO 61LA 61LA 61LA 6REELLE HARTCOPA HOIAVE HAVAJO PINA VAVAPAI	0.000.000.000.000.000.000.000.000.000.	0.0140 0.0140 0.0120 0.0120 0.0130 0.3600	0.0010 0.0060 0.0060 1.1.1 0.0220 0.0050 0.0050	0.2000 0.4000 0.4000 0.4000 0.3000 0.3000 0.2000 0.2000	0.0320 0.0150 0.0150 0.0260 0.0150 0.0150	0.0156 0.0156 0.0130 1.756 0.0070 0.0070
¥	CRIVERDEN Hiller Hantomery Pulaski	0.3860 0.2300 0.0500	0.9100A	0.8390A	2.8700 1.0500 0.1500 1.6300	6.9100A	0.8390A
5	ALAHEDA FRESIO - KERNI - LOS ANGELES HABERA HABERA HONDC HONTEREY NAFA NAFA SAN BERIANDINO SAN BERIANDINO SAN JARED SAN HATEO	6.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.7210 1.51004 1.43104 1.9100 1.9100 1.50204 0.6120 0.6120 0.90004 1.5600 0.90004 1.6500	1.12004 1.05604 1.65604 1.6100 6.54604 6.54604 1.4200 6.7900 6.7000 6.7000 6.7000 6.7000 6.7000 6.7000 6.7000 6.7000 6.7000 6.7000 6.7000 6.7000 6.7000 6.70	6. 2500 6. 2500 6. 2500 6. 2500 6. 2500 6. 2500 6. 2500 6. 2500	1.2150 1.5100A 2.5900 2.5900 6.5020A 1.8000A 1.8000 1.6550 1.6550 1.6590A	1.1200A 1.1200A 2.6500 2.6500 1.4500A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A 1.6200A
	The state one of the state of					1000	0. JO 104

A INDICATES GILLY ONE STATION REPORTING

TABLE C-5. AIR QUALITY DATA FOR LEAD

STATE COURTY SAHTA BARBARA SANTA CLARA SANTA CLARA STSKTYOU SOLAIO SOLAIO SORAIO CO DEINCE LA FATE HARTFORD HARTFO			į			
	988	ARITH	6E0 NEAN	580	ARITH	GEO HEAN
	0.0570	1. 1050A 1.6200	0.7940A 0.8460	5.2470	1.1050A 1.4280	d-
	0.0300	0.2600A	\$.2050A	0.8430	0.2600A	
	0.0300	0.4840	0.3480	2.0000	0.4840	0.3480
	0.1980	; ;	11	1.9870		! !
· · · · · · · · · · · · · · · · · · ·	0.4000	i	į	7 6.600	į	
	0.0010	0.0170	9.0000	0.1700	0.0220	0.0100
	;	4.00 M	4021 a.	0.1100	0.0250A	0.0120
	0.6300	1.3020A	1.2060A	2.4600	1.3020A	1,2060/
	0.4600	1. 1220 1. 1220	1.0100	2.2500 4.1900	1.06504	0.9890A
	0.0500	O. 1600A	אינועני ט	600		
Can can old	0.0700	0.5300	6.3900	3.0766	0. 1600A 1.5000	0.1300A 1.4200
	0.4600	į	;	3.1800	141	:
	0.1000	0.3460	0.2590	6.9000	9 63 TA	4
	6.0400 0.0400	0.8900A	0.8000A	2.7200	0.0390A	0.8000A
	0.0	ł	1	8 1100	: :	;
•	0.1500	;		2.5200	1	!!
•	2011	;	***	1.3100	•	:
	0.1000	0.5590A	0.4600A	1.3700	0.5590A	0.46004
	0.1900	1.2000A 0.6100A	1.0700A	3.2300	1.2000A	1.0700A
	•		K.	001.4.7	40PT 0. U	0.4870A
	2000	G. 7500A	0.7000A	2.6200	0.7800A	0.7000A
	9.0	•	: :	1.0500	! !	1
	0.2000	į	:	4. ISE	!	i
	0.0200	0.5170	0.4390	82.0900	15.7250	11 7850
FEORTA PEORY XSI AND	0.1500	i	į	4 1800		2000
ROCK ISLAM	0. 1500	;	1 1	1.9200		
	0.2800	!	***	3.9000		
ST. CLAIR	0.000	* 1	;	1.9900	-	!
		!	į	1.4400	!	I

A INDICATES CHLY CHE STATICHI REPORTING

TABLE C-5. AIR QUALITY DATA FOR LEAD

		#	(En/au) Mainth	6		IIAXIHAH (US/H3)	
STATE	COLRITY	SBS	ARITH	650 750 750	98 8	ARITH	GEO HEAN
	Saigaidh Htil Hintergo	0.1600 0.3100 0.2000			0.8300 1.2100 2.0500		
3	ALLEN BARTHOLONEH CLARK CLARKE ONEOUS ELKINART FLOYD FLOYD FLOYD	0.226 0.3286 0.3286 0.3286 0.2566 0.2566 0.2566	0.6510A 0.4300A 1.3370A 0.4870A 0.5050A	0.6130A 0.3660A 1.1770A 0.4440A 0.4770A	1.8200 1.0460 3.4040 1.0780 1.020 2.0600	0.6810A 1.3370A 1.3370A 0.5080A 0.5080A	0.560A 1.1770A 1.440A 0.4770A 0.4770A
	JASPER JEFFERSON MOX LAKE LAKE LARIE HARION HARIOE ST. JOSEPH STEUDEN VANDERBRIGH	0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110 0.0110	0.5500A 0.5500A 0.6500A 0.6500A 0.6000A 0.5500A 0.5500A	0.10204 0.45204 0.45204 0.45204 0.4500 0.7000 0.5500 0.4500 0.45300	1.04.10 1.04.10 1.28.10 6.78.10 6.78.10 1.88.10 1.85.00 1.85.00 1.85.00 1.85.00 1.85.00 1.85.00 1.85.00 1.85.00	0.12104 0.13704 0.13704 0.1320 0.1320 0.53004 0.13804 0.13804 0.13804 0.13804	0.4529A 0.4529A 0.4629A 0.7679A 0.7670A 0.5190A 0.4939A 0.4939A
¥I	VIGO NATRE BLAURRE DELAURRE LEE LIE LIIN POILK POILK SCOIT	0.1930 0.1960 0.0520 0.0520 0.1100 0.1500 0.4500	6.51288 0.5280 0.4300A · · · · · · · · · · · · · · · · · ·	0.450A 0.3900A 0.4500A 0.4500A 0.9030A	2.650 0.000	0.5340A 0.5340A 0.5380A 1.0070A	0.5840 0.5840 0.5840 0.5840 0.4680A 0.9030A
KS	SEDGATCK SHARREE HYABOTTE	0.2000 0.1600 0.0300	0.5100	0.4400	1.1400 1.6400 3.0200	0.4280	0.3840
KY A 11001	KY BOYD 0 FAYETTE 0 A INDICATES CHLY CHE STATION REPORTING	0.1300 0.2900 ffs	† † † †	!!	3.8900	11	11

TABLE C-5. ATR QUALITY DATA FOR LEAD

			HINITIALIA (UGZAS)	H3.		HAXIMUM (UG/N3)	131
STATE	COLRIY	S90	1000	GEO	S90	ARITH	GEO
	Jeffersky Kenton Haren	6.2700 6.3205 6.1900	0.9760A 0.7100A 0.4800A	0.9400A 6.6800A 0.4100A	3.3500 1.2200 1.1500	1.1500A 0.7100A 0.4300A	0.8910A 0.6800A 0.4100A
4	CADDO PARNISH EAST BATON ROKGE PARRISH IBERVILLE PARRISH ORLEANS PARRISH	0.2500 0.0300 0.3900	0.6720A 1.1500A 0.1300A 0.8000	0.6100A 0.9000A 8.1100A 6.7700	1.4400 4.2600 0.3800 1.6400	0.6720A 1.1500A 0.1300A 1.0300	0.5100A 0.9000A 0.1100A 0.9830
*	CURBERLAND HANGCK	0.1000	8.4500A 0.0600A	0.4000A 0.0400A	1.4700	0.4500A 0.0600A	0.4000A 0.0400A
2	BALTHORE (CITY) CALVERT	0.4400	1.0760A 0.1700A	0.9800A 0.1400A	2.5000	1.0700A 0.1700A	5.9800A 0.1900A
ž	CENTRAL HA. APCO HETROPOLITAH BOSTON APCO PIQUEER VALLEY APCO SOUTHEASTERN HA. APCO	0.4500 0.4500 0.4500	6.8400A	6.7400A	1.8600 1.3900 2.9000 1.1700	0.8400A	0.7400A
Ï	GENESE INGIAN KENT SAGIULH HAYNE	0.350 0.270 0.1400 0.1400	40004 	0.3700A	1.3400 2.2500 0.9100 2.7100	0.4000A	0.5700A
	BELITANI BIG STOKE BIG STOKE CARLTON CARLTON CRON KING DAKOTA CROWNE ENSTERN TTASCA KADIYONI KOCKICIING LYON MILLE LACS HOLER HOLER	0.0850 0.0850 0.0830 0.0830 0.0830 0.0830 0.1330 0.1330 0.1330 0.1330 0.1330 0.1330	11.2760A	6.948BA	6.1560 6.1560 6.2280 6.2280 6.2280 6.2550 6.3550 6.3570 6.3570 6.3570 6.3570 6.3570 6.3570	11111111111111111111111111111111111111	0.9400A
			1	! !	0.1/26	į	!

A INDICATES OILY CHE STATION REPORTING

TABLE C-5. AIR QUALITY DATA FOR LEAD

		, =	HINING (UCAS)	£		HAXTHEM (UG/H3)	3
				?			
STATE	CORNY	8	ARITH	GEO HEAN	SBO	ARITH	GEO HEAH
	OLISTED	0.2150		***************************************	2.3930	*********	
	OTTERTAIL	0.0349	į	:	0.3140	;	!
		0.0530	;	!	0.1320	:	t .
	RAISET St. 18110	0.0720	!	1 *	3.8600	}	į
	SI. LUUIS	9.00.0	!	:	2.3100	!	;
	200	0.0320	!	:	0.3430	:	1
		6.010G	i	!	1.1350	;	1 1
		5.7.50 5.7.50	;	į	0.5610	:	‡ ;
		e. 11 TE	!	ļ	0.5770	1	i
2	HTMS	0.1500	6.75coa	0.6700A	2 7600	A 7500A	4 67004
	JACKSON	0.000	;		0.4200	¥007.2	40070-D
¥	SI. LOUIS (CITY)	0.2900	0.8900A	0.5100A	2.9200	0.8900A	0.8100A
	ADAIR	0.1200	;		0.5540	;	
	AURAIN	0.1100	:	1	4.2300	i	ţ
	DICHERT	9.1100	;	* * *	2.9400	!	***
	BECHANA	9.0200	:	;	2.8100	;	1
	CALL ALIAV		!	<u> </u>	4.0600	į	-
		6.100	!	:	0.3920	1	;
	CAPE GIDADRAIS	20.00	:	;	0.7280	!	
	CLAY	0.00			0.2300	:	: .
	COLE	2000		• •	2.175	!	1
	JACKSCH	0.3500			3000		:
	de de la constante de la const	1500 1500			2000	!	!
	JEFFERSON	0.2340			20.4.00	:	ŧ
	LIVINGSTON	0.090.0	;	: ;	20.75 CO. 75 CO.	•	•
	. MARION	0.1700	1	:		: 1	:
	HEH HADRID	0.1000	:		0 6 3 6 D		
	HODAITAY	0.0460	!	!	0.3150	* *	
		0.1970	:	;	0.3500		
	_	0.0690	:	:	0.2300	í	ţ
		6.6306	1	1	1.1420	į	ł
	מויי הואמושה	0.2400	1	*	0.6510	:	:
		0.1400	1	***	0.3700	;	:
	7	0.1400	1	***	2.1900	:	;
		0.6300	0.0790A	0.0710A	0.1900	0.07904	0.0710A
				!	0.5150	1	!
¥	GLACIER	0.0	1	:	0.0000	:	!
		0.0600	!	ļ	10.9700	i	į
		3.5500	:	:	24.6200	!	
A INDE	A BIDICALES CREY CHE STATION REPORTING						
	BARRANE ALEXA BARRANE APPARE LATER A LIVER DE LA LIVER			٠			

| Courty | Courty | Coop
INDICATES OILY ONE STATION REPORTING

1		TABLE C	C-5. AIR QU	AIR QUALITY DATA FOR LEAD	RLEAD		
			HTNTREE (UG/H3)	/43)		HAXIMM (UG/H3)	123
STATE	COLNIY	S88	ARITH HE AN	620 HEAN	560	ARITH HEAN	GEO HEAN
7	CUYAHOSA FPAIKLIH	0.4300	0.7900A	0.7100A	1.8700	0.7900A	9.7100A
	MANILTON JEFFERSON	0.3660	0.8200A	0.7500A	1.8000	0.8200A	0.7500A
	LOCAS HAIGHIG HUTGMERY	0.250	0.6160	0.5500	1.7200	0.6100	0.5500
	SUMIT	0.1300	0.4100 0.5700A	0.5500A	1.0400	0.4100 0.5700A	0.3600 0.5500A
¥	CHEROKEE GKLAHORA TULSA	0.0500	0.1810 0.5300A	0.0650 0.4700A	0.2100 30.0000 1.4200	1.9120 0.5300A	1.5170
*	CURRY MJ. THOHAH	0.0020	0.0300A 0.8300A	0.0100A 6.6600A	6.0700	0.0300A 0.8300A	0.0100A 0.6600A
PA	ALLEGIENY	0.5200	1	i	3.1100	3	. 1
	BERKS	0.2300	0.5100A	0.7400A	2.8420 6.4330	0.5100A	0.74004
	BLAIR BUCKS	0.0010	! !	11	2.8250		
	CAIGRIA	0.8020	0.5160	0.4700	3.2430	0.5670	0.4860
	CLARICH	0.0300	1.0400	0.9000	2.6690	1.0400	9.5000
	ERIE • INDIANA	0.0200	0.6000A	0.3000A	2.1630	0.6000A	0.3000A
	LACKAHABIA LAICASTER	0.6500	2.0500A	1.8500A	6.6100	2.0500A	1.8508A
	LUZERIE	0.0700	0.7980A	0.7100A	2.660	0.7900A	0.7160A
	£YCOHING HERCED	0.3230			1.7820	270:0	n. /ozu
	HOUTGOIERY	0.2500	!!		2.1760	! !	'
	NORTH APTON	0.1680	7.5.0	4000	1.4550		•
	PHILADELPHIA	0.4600	1.2480	1.1790	2.7200	1.3200 1.3200	1.2160A
	YORK	0.2900	0.7200A	0.6600A	2.2630	0.72004	0.6600A
184	PROVIDENCE	0.3500	į	i	2,0300	1	;
A THD	INDICATES OURY OUR STATION O	SCHOOLING					

A INDICATES OILY CHE STATION REPORTING

0.9380 0.0800A HAXIMM (UG/HS) 1.1320 1.1320 1.0900A TABLE C-5. AIR QUALITY DATA FOR LEAD HINTER (US/N3) ARIH HEAH 0.0900A 1.0500 COLENTY STATE

A INDICATES ONLY ONE STATION REPORTING

TABLE C-5. AIR QUALITY DATA FOR LEAD

		***	KEMZIII IABHUH	2		HAVTHER CHEATER	131
		*****				CO I I I I I I I I I I I I I I I I I I I	
STATE	COUNTY	OBS	ARITH	eeo HEAN	SBO	ARITH	GEO
	HILSON	0.2500	i 1		0.2900	# # # # # # # # # # # # # # # # # # #	* * * * * * * * * * * * * * * * * * * *
×	19EF	0.0200	!		0 1700	į	ļ
	BEXAR	0.0200	0.4400A	ft. 2800a	7.50	A 4400A	0 28004
	BOHIE	0.0200	0.4200A	0.3380A	1.9500	A 4200A	0 3300A
	BRAZORIA	0.0500	0.1400	0.0900	0.7400	0.1500	1200
	BRAZOS	0.0200	0.3700A	0.3000A	0.8700	0.3700A	0.30004
	BROW	0.0200	1	:	1.8100	1	, ,
	CALHOUN	0.0200	4 1	1	0.1300	1	***
	CAMERON	0-0200	0.0200	0.0200	1.2300	0.1700	0.1000
	CHATERA	0.0200	2000	4750	0.2000	, ,	***
	DENTO	0.0200	0.5300	0.170	6.0200	2.9230	2.6310
	ECTOR	0.0200	0.4480A	0.3909A	1.0700	0.44004	A. 1900A
	ELIS	0.0200	•		.506		100 mm
	EL PASO	0.0200	0.0900	0.0500	4.0900	1.1100	1.0200
	GALVESTUR	0.0200	0.4500A	0.3800A	1.2000	0.4500A	0.3809A
	GRAYSON	0.0200		; ;	1 9000	; ;	<u> </u>
	HALE	0.0200	1	:	0.1300		
	HARRIS	0.0010	0.1500	0.0900	3.9100	0.8500	0.6700
	HTDALED	0.0200	9550		1.2330	***	1
	HOLAND	0.0200	0.0200	0.050	0000	0.2800	0.2100
	JEFF DAVIS	0.0200			0.0200	20.00	
	JEFFERSON	0.0200	0.1300	0.000	0.9600	0.5200	0.5000
	LUMBULA HIS FHIMM	0.0200		1	1.9590	i	1
-	· MCHRILER	0.0200		; ;	0.7700	!	1
	HATAGORDA	0.0	I I	-	0.2100		: ;
	HAVERICK	0.1000	0.4900A	0.3900A	1.5000	0.4900A	0.3900A
	MILERIO	0.020	U. IZUUA	0.0300A	0.6680	0.1200A	0.0900A
	HOORE	0.0200	1		0.700	! !	1 1
•	NACOGOCHES	0.0200	!	:	0.5500	1 1 1	! !
	MUECES	0.0200	0.3660	0.2400	17.3000	0.6100	0.5300
	POTTER	0.0200	0. 1 leva	0.0/00A	1 4800	0.1100A	C.0700A
	SAN PATRICIO	0.0200	1	ļ	0.1100		
	SCURRY	0.0200		1	0.2700	!	•
	TARRAIT	a.00.0	0.5000A	0.3900A	1.4000	0.5000A	0.3900A
	TAYLOR	0.0200	0.1700A	0.1300A	0.7400	0.1700A	0.8860A 0.1300A

A INDICATES OILY CHE STATION REPORTING

TABLE C-5. ATR QUALITY DATA FOR LEAD

		2- 1	HINTER (US/H3)	22	•••	HAXINEM (US/H3)	H3)
STATE	COLLITY	880	ARITH HEAN	GEO	SQO	ARITH	GEO HEAN
	TITUS TOM GREN TOATE	0.0200 0.0200	0.1100A 0.1000A	6.0700A 0.0700A	0.5800	0.1100A 0.1000A	0.0700A 0.0700A
	VAL VERDE	0.0200		3 : : : : : : : : : : : : : : : : : : :	0.6000	0.7340 1.	0.6400
	VICTURIA	0.0200 0.0200	! !	! !	0.8300	1 1	! !
	HEBB HICHITA	0.0200	0.4600A	0.4000A	1.2160	0.46004	0.40004
	HISE	0.0200	!	-	0.6500	-	,
5	ENERY GARTIELO KANE	0.00 0.00 0.00 0.00 0.00	0.0150 0.0170	0.0070 0.0030A	0.7600 0.1700 0.0300	0.0176 0.0176	0.0050 0.0080 0.0080A
•	Sali Lake San Juan Hashirston Heber	96.65 23.65 35 35 35 35 35 35 35 35 35 35 35 35 35	0.0110	0.0050	4.9100 0.1400 3.5500	0.0200	0.0080
5	CHITTEIDEN Graige	0.0020	0.6860	0.4710	1.2600	0.7900	0092.0
*	0000 Fairfax Page Pitsy vana Wins	0.1300 0.2100 0.0300 0.1800 0.0200	0.5200 0.2400A 0.5700A 0.6900	0.4400 0.1900A 0.4500A	3.7500 2.1600 0.8100 1.9300	0.9700 -2400A 0.5700A	0.8690 0.1900A 0.4800A
#	King • Pierce Spekaise	0.0700 0.1500 0.1800	1.4600A 0.9500A	1.3100A 0.8200A	4.4800 2.1900 1.2900	1.4600A 0.9500A	1.3100A 0.8200A
ì	Cabell Kanabia	0.2200	0.5200	0.4400	2.2900	0.6240	0.7200
분	DAVIE DOOR DOUGLAS EN CLATRE KENDSIA HILLARKEE RACINE	0.1400 0.0300 0.1500 0.3200 0.1300	0.6000A 0.2300A	0.5200A 0.1900A 	1.3080 0.5500 1.0700 0.9800 1.0300 1.6100	0.2300A	0.5200A 0.1900A
¥	Laranie	0.1103			0.6600		#nnc:
A IND	A INDICATES OILY ONE STATION REPORTING	9					

	131	6E0 IEAN	
	HAXINUM (US/M3)	ARITH	
LEAD	2	900	0.4400
TABLE C-5. AIR CHALITY DATA FOR LEAD	#3.)	NEW HEAN	
S. AIR OLL	HINTHER (UG/H3)	ARITH	11
TABLE C-	¥	Seo	0.0800
TABLE C-5. AIR CHALITY DATA FOR LEAD		STATE COUNTY OBS HEAN NEAN 00S HEAN NEAN	Hatroha Park
1		STATE	

TABLE C-6. AIR QUALITY DATA FOR HANDAUESE

		H	HININKH (UGAN3)	ĝ	2	HAXIMIN (UG/N3)	131
STATE	COUNTY	\$ 80	ARITH HEAN	GEO NEAI	SCO	ARITH	GEO NEAN
42	APACHE COCONIND HARICOPA KOILAVE HAVAJD	00000	0.0060 0.0040 0.0040 0.0050 0.0050	6.0020 6.0010 6.0200 6.0010 6.0020A	0, 1200 3, 0240 0, 1500 0, 1500 0, 1500	0.0130 0.0160 0.1430 0.0030	0.0040 0.0030 2.7652 0.0030
8	LA PLATA. MINTEZUIA ·	0.0	6.0060A 0.0070A	0.0020A 0.0020A	0.0700	0.0210A 0.0070A	0.0100A 0.0020A
=	ALLEN BARTHOLOWEN	0.0170			0.0440	1	; •
	CLARK	0.0230	1		0.1360		
	DUBOIS	0.0130	:	;	0.0570	;	
	GRAIT	0.0150		! !	6.0330 6.0330	: :	: :
	HOLARD	0.0250	1	:	0.2500		
	LETTERSON	0.000		;	0.0170	:	1
	KNDX	0.0000		! !	0.0230	1 1	1
	LAKE	0.0050	1	1	0.1010		; ; ; ;
		0.0180	i	!	0.0270	1	***
	E CHICAGO	2.00-c	: :		0.0510	!	;
	ST. JOSEPH	0.0150			0.0410	!	;
	STEUDEN	0.0030	i		0.0330	1 1	: :
	TIPPECATOE	0.0130	•		0.0:00	:	
•	VAINERSIGNAT	25.0	į	;	0.0330	!	ŧ
	HAVNE	0.0190	11	1 :	1.1320		1 1
9	ADATR	0.0260	į		0.1020	i	
	AUKAIN	0.0290	:	:	0.0200	i	
		6.02.E	*	-	0.1120	. ;	-
	Pullip		•	!	0.1220	1	;
	CALCATAY	0.00		1	0.1150	1	÷
	CAIDER	0.0130			0.679.0	;	•
	GIRARDEAU	0.0160	i		0.0000	1	;
	CLAY	0.0300	***	1 1 1 1	1250	1 1	i
	COLE	0.0210	1	:	0.0510	1	:
	JASTER	0.0330	:	:	0.1410	1	
		0.0140	1	;	0.9730	ŀ	*

A INDICATES OILY OIE STATION REPORTING

HANGALESE	
8	
DATA	
QUALITY	
AIR	
و ن	
TABLE	
=	

		7	HINITER (UG/H3)		HA	HAXIFSH (UG/H3)	43)
STATE	COUNTY		ARITH HEAN	GEO HEAN	880	ARITH	GEO IEAN
	LIVINGSTON	0.0310		*	0.8230		
	TAKEUS.	0.6190	!	***	0.0000	;	‡ !
	NUMBER STATES	0.01%	1		0.2720	•	
	PETTIS	0.020			5. 75 c	!	1
	Selection	0.0110	:		0.00.0		: :
	PLATTE	0.0230	: :	-	0.0960		
	ST. CHARLES	0.0230	1	:	0.1120		!
	STE. GENEVIEVE	6.0610	;	!	0.0610	;	į
	SCOTT	0.0020	ï	: :	0.3640	***	ł
	VERIOR	0.0340	:		0.0320	•	;
Ŧ	RIO ARRIBA	0.0	0.0040A	0.0010A	0.6400	0.0040A	0.2010A
S	CHARLESTON	0.0170	ŀ	*	0.0170	:	1
Z	ALDERSON	0.0320	;		0.000	į	;
	BEOFORD	0.0160	1	***	0.0240		
	BLOURT.	0.0310	!	***	0.0450	!	1
	BRADLEY	0.0100	;		0.1290	***	į
	CALTELL	0.0200	ļ	i	0.0340	:	: :
	CARIER	0.20.0	1	1.	0.0200	:	1
		9000	:	1	0.0330	-	;
	OVER	0.0040	1	!	9.0220		;
	618504	0.000			0.1700	# #	1
	GREENE	0.0280	!		0.0360	! !	
	HAIDLEN	0.0160		•	0.020	;	1
-		0.0060	:	Ţ	0.0260	ļ	-
		0.0120	1	:	0.6960	!	!
		0.030	: :	:	0.0360) ! !	
	HADISON	0.0160	: ;		0.0170		1
	HARION	0.0270	;	. 1	0.0230		
	HALRY	0.0310	;	;	0.0310	;	
	MUHICURES.	0.0080	-	!	0.0410	ŧ	:
	UBJUTE DO: U	0.0150	:	;	0.1030	-	;
	TUEN CHIEFLE	0.03/0	1	****	0.0440	!	1
	CONTRACT	0000.0	!	-	0.0180	1	;
	PONTOTON	# C C C C C C C C C C C C C C C C C C C	ļ.	‡ !	0.9720	*	* * *
	RITHEREGE	0.6500		ļ.,	0.0270	-	į
	SILLIVAN	0,0060			0.5240	<u>:</u>	;
				ł	₽/ <u>0</u>	!	1
A INDIC	a indicates cally cale station reporting	2	***************************************	•			

TABLE C-6. AIR QUALITY DATA FOR HANGARESE

			HINTHEN (USANS)	133	X	HAXIHIH (U6/13)	1631
STATE	COUNTY	S80	ARITH	EEO HEAN	88	ARITH	6E0 HEAN
	SURIER	0.0180		 	0.0250		
	HARREL	0.0020	:	***	0.0220	!	;
	HASHINGTON	0.0320	į	į	0.0350	ŀ	:
	HILL TAKEON	0.0370	:	**	0.0370	1	**
	HILSON	0.0100	:		0.0230	į	;
2	965	0.6556			. 4		
•	242	939.0		:	0.000 0.000	† ‡	!
	DEAR		!	i	0.1500	1	:
	ADA2001A	0.000 0.000	: 1	•	0.1000	ļ	:
	ERAZOS	0.0200		1	90000		
	17088	0.0200	į	:	0.00		
	CALHOUS	0.0200	į	***	0.69.0	1	1
	CAVERDA	0.0200	!	:	0.3100	!	į
	CHAIDERS	0.0200	;	<u>+</u>	0.1000	:	:
	DALLAS	0.0500	1	:	0.1900	-	1
	DENION	0.0200	•	ŀ	0.0200		1
		0.0200	:	:	0.3100	*	
		0.0200	*	-	0.030.0	!	1
	EL TROC	0.0200	1	ţ	0.2000	1	;
	CALVESION	0.0200	;	ļ	0.1300	:	* * *
	GRAF	0.0200	•	ŀ	0.1500	!	1
	OKATOINE	0.0200	;	!	0.0700	;	-
		0.0200	*	***	0.0300	:	1
	MALE	9.0	ļ	:	1.1500	1	:
	414E	0.0200	į	1	0.1400	-	1
	MAURICA	0.020.0	1 1	•	0.1500	1	
	SEE AAUTO	0.000		1 1	0.09.0	1	E .
	JEFFESON	0.000		!!	. 500 7.00	!	ļ
	Lubbock	0.0200	;	;	100		
	HCLEHRAN	0.0200	1	1	0.0300		
	HINTER .	0.0200		į	0.0300	!	;
	HATAGORDA	0.0200	:	:	d.6206	;	I
	HAVERICK	0.0200	!	-	0.0700	!	;
	HILLAU	0.0200	1 #	i	0.3700	1 1	:
	TARIFOCK INT	0.0200	***	*	0.1000	•	;
	FUNCE.	9.0200		-	0.1600	;	;
	(exclusions)	9020.0	:	į	0.0200	*	į
	Colucto	9020.0	!	1	2.6600		1
	משלונס	0.020	1	;	0.2200	:	;
	FOLIER Call Datatore	0.000	‡ !	:	0.1600	!	
	SAN TRINICLU	0.0200	į	!	0.0200		į

A INDICATES OILY ONE STATION REPORTING

TABLE C-6. AIR CHAITY NATA FOR MANGAUFGE

,			HINIHUR (UG/H3)	7H3)		HAXIHUM (UG/H3)	1133
STATE	COUNTY	SBO	ARITH	6E0 NEAN	SEO	ARITH	GEO
	SCURRY	0.0200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.0600	***************************************	
	SHITH.	0.0200	!	ţ	0.0900	1	į
	TARRAIT	0.0200	ļ	1	0.1000	!	;
	TAYLOR	0.0200	į	***	0.0500	. 1	1
	TITUS	0.0200	;	***	0.0700	1	1
	TCH GREEN	0.0200	-	***	0.1700		!
	TRAVIS	0.0200	į	:	0.1000	***	!
	VAL VERDE	0.0200	!	:	0.0200	!	!
	VICTORIA	0.0200	!	***	0.0200	111	-
	HALKER	0.0200	1	:	0.0600	. ;	;
	HESB	0.0200	1	:	0.0600		!
	HICHITA	0.0200	!	;	0.0300	***	1
	HISE	0.0200	!	!	0.090.0		1
5	EHERY	0.0	į	!	0.0400		
	GARFIELD	0.0	0.0070	0.0050	0.0500	0.0140	0.0070
	KANE	9	0.0050A	0.0010A	0.0400	0.0050A	0.0010A
	SAN JUAN	9	0.00.0	0.00.0	0.0300	0.0100	0.0030
		9	0.0078	0.0030	0.0800	0.0070	A 60.33

****		ועמור	C-7. AJR 40	AIR WALITY DATA FOR SELENTIN	R SELENTUR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
		3 2 1 1	HINIMA (US/N3)	A3)	1	11AXIMU1 (UG/113)	183
STATE	COMITY	S e	ARITH	GEO HEAN	088	ARITH HEAN	SED HEAN
*		0 0100	į		0		
i	BEXAR	A 250 C	4004	00000	0010.0		1
	BOTTE	1500	0.010.0	40000	20.00	U.0190A	0.0200
	BRAZGRIA	0 T T		40000 C	0.070	0.0103A	0.0200
	BRAZOS	0.0100	A 0120	0.000		0.0100	0.0200
	Broat	0.0160	20.	#0550F	20.0	d.uleuA	n. 020g
	CALHOUR	0.0100	***	;	2000	;	
	CAMERON	0.0100	0.0100	0.0200	. c	0010	
	CHAINERS	0.0100			0.00	0.010	
	DALLAS	0.0100	0.0100	0.0200	0.0180	A 0166	
	DESTOS	0.0100	i	:	0.0500	2	
	ECTOR	0.0100	0.0100A	0.0200A	0.0100	0.61003	0 02m
	ELLIS	0.6180	1	:	0.0400		
	EL PASO	0.0100	0.0100	0.0200	0.0100	99.0000	
	GALVESTON	0.0100	:	•	0,1300		
	GRAY	0.0100	•	! !	0.0100	***	/
	GKAYSUM	0.0100	***	*	0.0300	1	:
		0.0100		1	0.0100	1	3
	HARRES	0.030	0.0100	0.0200	0.0300	0.0100	0.0200
	HTON CO	20.0			0.0300	-	!
	HAVALOG	02.0.0 0.000	9.0100	0.0200	0.0100	0.0100	0.0200
	JEFF DAVIS	20.0	Wind or o	U. 0200A	0.0100	0.0100A	0.0200
	JEFFERSON	555	A 01004	40000	0.030		-
	LUBBOCK	0.0100	2000	enora-a	35	0.0300A	0.0200
	NCLEITAN	0.0100	-		20.0		: 1
	ACRAL EN	0.0100	1	1	0.0	1	
	· NAIAGORDA	0.0100	+ + +	į	0.0100		;
	MAVERILK ACTOL ALC	0.0100	0.0100A	0.0200A	0.0100	0.01004	0.02004
	MANAGER	0.0100	0.01004	0.0200A	0.0100	0.0100A	0.02007
		0.0.0	į		0.0100	-	
	SACAGE SIACOCHEC	9019.0	;	***	0.0100	!	
		0.0100		1	0.0100	1	
		0.00	0.0100	0.0200	0.0300	0.0100	
	POTTER	. c	0.0100A	0.0200A	0.0100	0.01004	0.0200A
	SAM PATRICIO	200	1	*	0.0180	***	
	STIERS	9.00	,	# #	0.0100	i	į
	HIHS	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	40000	4 6250	0.0100	1	:
	TARRAIT	0.0160	4000 5	40.0200A	0.0300	0.0100A	0.02004
	TAYLOR	0.0100	0.0100A	2000	0.0700	74. udee	99.0000
	TITUS	0.0100	0.0100A	0.0200A	0.0	6.0100A	0.2000

A INDICATES GILY CHE STATION REPORTING

*************	TABLE C-7. AIR CHALITY DATA FOR SELENIUM	ABLE C-7	. AIR C	TABLE C-7. AIR CHALITY DATA FOR SELENIUM	R SELEHTUM		
		I	HINTHUM (US/H3)	HDITTER (16/H3)	#	KAXINIM (UGAIS)	113.1
STATE COMITY		08S	ARITH	6EO HEAN	088	ARITH GE MEAN NE	GEO
		.0100		**********	A 0108		************
TRAVIS		0.0100	0.0100	0.0200	0.0500	B. 8200	0 0200
VAL VERDE		.0100	!	!	0.0100		1 1
VICTORIA		.0100	1	:	0.0400	-	1
HALKER		.0100	!	ł	0.0100	ļ	į
1688		.010	;	*	0.0100	:	<u> </u>
HICHITA		50.0	į	;	0.0300	***	;
HISE		.0100	;	!	0.0100	1	-

TN ANDERSON BEDFORD BLOWN BEDFORD BLOWN COFFEE CUMBERLAND BYER BYER BYER BYER BYER BYER BYER BYER	2	189/201 MAINTH		******	*	BAALLARI LUDVIISI	
•	8	Sao	ARITH	GEO HEAN	SBO	ARITH	GEO NEAN
BEDFORD BRACHNI BRACHNI BRACHNI BRACH CAHFBE CONTER CONTER CONTER HAMBLE	•	0.0200	; ;	:	0.0200		
BLOUNT BALOUNT BALOUNT CAHOBER COFFEE CUBER BYER GREENE HERRY HERRY LINCOLA HADISOR HADISOR HADISOR	_	0.0200		!	0.020	:	
BRADLES CARTER CARTER COFFEE CURGER BYER GREENE HARBLER HURRY HARBLER		0.0200	***	į	0.000	1 1	
CAHPBEL CATER COFFEE CUBER CUBER BYER GREEFE HABIER HABIER HABIER HABIER HABIER		0.0200	;	i	0.0200	#	
CARTER COFFEE CUFFEE BYER GREENE HARBLE HARBLE HURREY LUCOL		0.0200	1	!	0.0200	1	
COFFEE CUBER DYER BYER GREENE HERRICH HERRICH LINCOLN HOUTSE		0.0200	;		0.0200	-	•
CURBER DYEN GIBSON GREENE HARBER HEIRRY HEIRRY LINCOL MCHINK HABISON HABISON HABISON HABISON HABISON HABISON		0.0200	***	;	0.0200	,	1
DYER GIBSON GREENE HARBLEP HUPREY HABISON HABISON HABISON HABISON		0.0200	1	į	0.0200	1	;
GIBSON GREENE HARBLE HERRY HERRY KURREY KURREY KURREY KURREY KURREY KURREY		0.0200	* * * *	Î	0.0200	i	į
GREENE HERRE HERRE LIKOLA KCHIRK MCHI		0.0200	***	į	0.0200	į	,
HARLEN HEIREY HIEREY KINDIN MADISCH MADISCH MADISCH		0.0200	****	•	0.0200	:	*
HERRY HURPSEY LINCOLN HADISON HADISON		0.0200	;	-	0.0500	i	*
HEIPREY LINCOLN NCHINE HADISON HADISON		0.0200	;	•	0.0200	1	1
CHECK NCHINE NADISCO HADISCO		0.0200	:	ļ	0.0200		į
HADISON HADISON		0.0209	;	***	0.0200	***	•
HADION		0.0200	***	!	0.0200	1	į
		0.0200	•	;	0.0200	*	1
FEMILEUM PARTY FUND		0.0200		-	0.0200	-	1
TIMENT I		0.0200		:	0.0200	•	ţ
COTON		0.0200	i	•	0.0200	:	;
20100		0.550	1	***	0.0200	:	;
		0.000	1	1	0.020.0	***	•
FOIDS		0.020.0	1	•	9.0200	1	į
Sperate		0.000	;	1	0.0200	‡ †	*
RITIEREDEN		0.0200	: :	1	0.0200	-	•
WALL SHIP		2002	:	;	0.0200	İ	;
05:02:0		0.000	t t	ŧ 3	0.0200	i	:
		0.0200	1	1	0.0200	:	1 1
HACHTECTOR		0.000 0.000	*	!	0.0200	1	1
UTI I TAI		2000	#	† 1	0.0200	:	į
***************************************			‡ ;	į	0.0200	1	•
MAL ALM		0.0200	-	1	0.0200	-	;
TX BEE	•	0.0010	;	;	0.000	į	į
BEXAR	•	0.0010	-	!	0.0010	!	1 1
BONIE		0.0010	•	!	0.0010	:	
BRAZORIA		0.00.0			0.00	į	
BRAZOS		6.8810		:	0.00	, 1	<u> </u>
		6.0010	;	***	0.0040		
CALIBRE		0.0010	. !	:	0.00.0	! !	}
CAIERDI		0.0010	;	:	0.00		
CHANDER		0.0010	***	•		:	*

A INDICATES ONLY ONE STATION REPORTING

		MARLE C-5.		AIR GUALITY DATA FOR VAILADIUM	R VAHADIUM		
			HIHLAM (UG/N3)	/R3.1		HAXIMM (USAIS)	2
STATE	COUNTY	SEO	ARITH	GEO NEAN	\$80	ARITH	GEO MEAN
	DALLAS	0.0010			0.6920		***************************************
	DENTON	0.00.0	:	i	0.0010	!	
	ECTOR	0.0010	i	į	0.0010		1 1
	6113	0.0010	ţ		0.0010	i	}
	EL PASO	0.0010	;	ŧ •	0.6020		
	GAL VESTON	0.0010	;	;	0.0070	1	
	GRAY	0.0010	;	:	0.0010	!	-
	GRAYSOM	0.0010	1	1	0.0020	-	1
	HALE	0.0010	i	;	0.0010	:	
	HARRIS	0.0010	į	*	0.0030	-	!
	IIAYS	0.00.0	1	;	0.0010	!	‡ ‡
	HIDALGO	0.0010	ļ	ļ	0.0010		-
	HOLIKRD	0.0010	í	:	0.0020	į	:
	JEFF DAVIS	0.00.0	;		0.0010	:	:
	JEFFERSON	0.00.0	i	į	0.0230	!	!
	LUBBOCK	0.00.0	1	* * * * * * * * * * * * * * * * * * * *	0.0020	;	1
	HCL ENGAN	0.00.0	į	7	0.0020	1	1
	MCMTLEN	0.0010	1	*	0.80	* 1	;
	HALAGUKUA	2:3:	ł	:	0.0010	1	1
	HAVERICK	0.0010	!	# # #	0.0010	•	1
	HIGHAND	6.0316	!	!	0.0010	;	1
	PRINCIPLE RY	0.0010	1		0.0010	!	;
		0.00.0	1	;	0.0010	1	:
	TACOUNTES.	9.00.0	:	*	0.0010		:
	SULLES COLLECT		ţ	!	0.0310	:	# #
	DATED	2100	!	!	9.0020	*	***
	CAN DATOTATO	200		•	0.00	*	1
	Action Action	0.00			30.00	;	* *
	#1215	50.0			20.00	•	!
	TARRAM	0.0010	;	•	0.000		
	TAYLOR	0.0010	!	į	0.00.0		
	11105	0.0010	ļ	•	0.0010	:	. !
	TON GREENE	0.0010	;	;	0.0010		;
	TRAVIS	0.0010	1	1	0.0030	!	***
	VAL. VERDE	0.0010	ţ	:	0.0010	***	:
	VICTORIA	5.83	!	:	0.0010		;
	HALKER	0.0010	!	;	0.0010	!	•
		0.00.0	:	1	0.0010	;	;
	MILLIA	0.00.0	ļ		0.0010	!	1
	3514	0.6010	1	•	0.0020	1	!

TABLE C-9. AIR QUALITY DATA FOR ZINC

		#	HINITING (UG/H3)	43)	- !	HAXINEH (UGAIS)	1631
STATE	COUNTY	688	ARITH	650 HEMI	580	ARITH	GEO HEAN
4Z	APACHE	0.0100	ļ	***	0.2800	!	,
	COCCUITIO	0.0200		ļ	0.1500		:
	GILA	9.0100	:	;	0.1900	-	;
	GRAIIAI	0.0200		***	0.0900	,	:
	GREENLEE	0.0300	1	*	0.2300	:	1
	HARICOPA	0.6061	***	1	0.8410	1	:
	HOHAVE	0.0001	1	:	0.1700	:	;
	HAVAJO	0.0100	*	* 1	0.1400	***	:
	FIIE	0.0001	•	i	0.3000	1	
	P.Z.LAL.	0.0300	•	!	0.2200	;	;
	SAITA CRUZ	0.100		ţ	0.1100	1	***
	YAVAFAI	0.0100	ļ	;	0.1800	:	:
	ten	0.0200	•	1	0.1000	-	-
2	SIOSIONE	0.0100	i	i	8.9000	;	į
Ħ	ALEN	0.0550	!	į	0.1590	i	:
	BARTHOL OVEH	0.0480	1	i	0.1140	į	į
	CLARK	0.0924	4 4	# 	0.6551	‡ ‡	1
		0.0476	*	11	0.2774	1	:
	ELKIAR	6.6550	!	•	0.6750	***	;
	GRAM	0.0772	;	:	0.2255	***	:
	HUKAKU HONED	0.2018	;	;	1.4440	;	1
	JANTER	250.0	*	i	0.1368	:	:
	JETTEROUX	CL 20.0	!	;	0.0976	ŧ	:
	7.57 - 465	25.00	*	:	0.0851	† †	:
	LAME A BOOTE	27.70	1	!	2000	1	!
			!	;	6.19/1	-	;
	HORAS	9,700		1	0.4960	*	1
	103501 15	20,000		•	0,0,0	:	1
	ercincu	25.50	•	7 1	0.4068	ŧ	!
	410007410F	7500.0	:	;	0.2373	:	:
		2000	:	;	0.0595	:	;
	VARIATION	0.0520		?	0.1720	:	:
		0.1391	į	***	0.4640	1 1	1
	TATE	4. E.	:	*	0.3921	!	į
S	CHARLESTON	0.3500	*	į	0.3500	i	ł
×		0.0	!	i	0300		,
ŀ	BEXAR	900	0.0200A 0.0500A	0.0100A 0.0300A	0.2100	0.0200A	0.0100A
•							

a indicates only one station reporting

			HININGH (US/H3)	6	-	HAXIMUM (UG/113)	113)	
STATE	COUNTY	sgo	ARITH	GED	800	ARITH	GEO HEAN	
	BRAZORIA Brazos	0.0	0.0300 0.0400A	0.0200 0.0300A	0.5300	0.0400	0.0300	
	CACITY CONTRACTOR OF THE CONTR	9	;		0.4500	400.00 P	0.0300A	
٠	CAIERON	- - - -	0 0100	00.0	0.0000	1	1	
	CHAIDERS		2 1	901070	0.4200	0.0400	0.0200	
	DELICAL	.	0.0200	0.0100	0.2400	0.0200	0.0200	
	ECTOR EL TS	, .	0.0600A	0.0400A	6. 1500 6. 1500	0.9600A	0.04304	
	EL PASO		0.050.0	0 0200	0.1400			
	GALVESTON	0.0	0.0300A	0.0700A	6.7000	0.0500A	6.0709 6.0700	
	GRAYSON		! !	7	0.0500			
	HALE	0.0100	;		0.0300	1 1	•	
	HAKKIS	0.0	0.0400	0.0200	2.00	0.1300	0.0800	
	HIDALGO	0.0	0.0100	0.0100	0.3230	0 6300	0010	
	HURANU JEFF DAVIS	.	0.0200A	0.0100A	0.1700	0.0200A	0.0100 0.0100A	
	JEFFERSON	9 9	0.0400A	0.0200A	0.4569	70070 0	00000	
	HUBBLER		;	-	0.3100	7000	0.0200A	
	HCHALLEH	9 0	! !	: :	0.1200	;	-	
	HATAGGBDA HAVEDTE	0.0		*	0.000	! !	!	
	HIDLAD		0.0500A	0.6300A	0.3600	0.0500A	0.0300A	
	MONTGONERY Monde	0.0200			0.1000	70050.0	0.0200A	
	MACGEDICILES	0.0	! !	!	3.0900	!	1	
	PUECES.	0.0	0.0300	0.0200	28.6100	2.5200	1.1500	
	POTTER	- e	0.8460A	0.0300A	0.4700	0.0400A	0.0300A	
_	, SAN PAIRICIO		1		0.0400	 	•	
					0.1200	i		
	TARRAIT		U. U9UDA	0.0300A	1700	0.0400A	0.0300A	
	TAYLOR	0.0	0.0300	0.0200	0.1600	0.0300	0.0200	
	TON GREEN		U.U400A	0.0200A	0.3500	0.0400A	0.0200A	
	TRAVIS VAI VERDE	0.0	0.0100	0.0100	1.8300	0.0500	0.0400	
	VICTORIA		: ;	J	0.0300	!		
	-	,		ł	0.0/00	;	***	

TABLE C-9. HAR QUALITY DATA FOR ZINC

A INDICATES DILY ONE STAFIOH REPORTING

107

APPENDIX D

Effects of Deposited Particulate Matter

Preceding page blank

APPENDIX D EFFECTS OF DEPOSITED PARTICULATE MATTER

Most evidence for particulate toxicity is derived from studies of domestic animals. It is often not clear if the symptoms of toxicity are the result of ingestion, inhalation, or both. Only those studies which clearly indicated ingestion of dust-covered vegetation are summarized here. There appears to be a definite relationship between deposition of fine particles of arsenic, fluoride, lead, and copper on vegetation; their ingestion by animals; and chronic or acute injury to animals. 59,60 Other metals which may also be implicated are zinc and cadmium. The surfaces of vegetation, especially those covered with fine hairs (stems, leaf petioles, and blades), provide a major filtration and reaction surface for metal-laden particles of 1-5 µm and less. 61

Fluorides are reported to cause more damage to domestic animals than any other air pollutant.⁶² Dietary fluoride is generally accepted as the major source of fluorosis in animals.⁹ Fluorosis has been noted in most domestic livestock, presumably resulting from particulate fluoride deposited on vegetation and ingested by animals.⁶³,⁶⁴ For cattle, the most susceptible domestic animal,²⁶,⁶⁵,⁶⁶ diets containing concentrations exceeding 40 ppmw fluoride may have severe toxic effects.⁶⁷ The safe range for soluble and insoluble fluorides has been specified at 30-50 ppmw and 60-100 ppmw, respectively, for cattle.⁶⁸ Sheep and swine (70-100 ppmw), chickens (150-300 ppmw), and turkeys (300-400 ppmw) are less sensitive to dietary fluoride levels.⁶⁸

Arsenic deposited on vegetation from smelting operations has been known to kill livestock if enough was ingested 62,69-72. Ingestion of arsenic-contaminated dust/soil on forage presents the greatest dangers to grazing animals. 73 However, a wide range of toxicity for arsenic compounds exists and is correlated to animal excretion rates. 9 The reported biological half-life of arsenic compounds ranges from 30-60 hours. 74,75 Those compounds excreted most rapidly tend to be least toxic.

Lead poisoning of cattle, horses, and other grazing animals as a result of ingestion of contaminated forage has been reported often. 76-80 Fodder contaminated by lead and zinc by atmospheric deposition from a foundry was responsible for the death and slaughter of 140 cows. 81 Ingestion of surface

Preceding page blank

deposits of airborne lead on forage, especially adjacent to heavily traveled highways, 82 and inhalation of lead can be significant additions to the total body burden of animals. 83,84 Zoo animals (cats, primates, and snakes) are susceptible to lead aerosol prisoning. 85

Several other elements have been implicated in the illness or death of grazing animals when deposited on forage. For example, soot containing vanadium at a concentration of 1 µg/g was dumped near a pasture and subsequently spread by wind. The pasture grass was covered with a film of soot and, when ingested by cattle, caused sickness and death.86,87 Iron particles from a magnesium plant in Austria adversely affected the digestive tracts of grazing cattle.88 Domestic animals grazing near specialized steel and alloy plants have been poisoned by ingesting dust containing molybdenum with vegetation.62

No specific studies are known which address the intake of trace elements by wildlife through ingestion of dust-coated vegetation. Fluorosis has been identified in wild animals, especially deer and elk. Honey bees, red deer, and wild hares are known to be especially sensitive to arsenic poisoning. Newman presents a state-of-knowledge review of the effects of industrial air pollution on wildlife. However, specific information dealing with surface-contaminated forage could not be identified. Ingestion of plant material which has concentrated heavy metals through uptake and inhalation of airborne particulates represents the majority of case histories.

REFERENCES

- 1. Clean Air Act (42 U.S.C. 1857 et seq.).
- 2. 40 CFR 52.21 (o), (p), 45 FR 52675 (Aug. 7, 1980).
- 3. 40 CFR 51 and 52, 45 FR 52676 (Aug. 7, 1980).
- 4. Bond, R.G., C.P. Straub, and R. Prober, (eds.) Handbook of Experimental Control, Vol. 1: Air Pollution, The Chemical Rubber Co., Cleveland, Ohio (1972) (as cited in Ref. 5).
- 5. Cleland, J.G., and G.L. Kinsbury, Multimedia Environmental Goals for Environmental Assessment, Vols, I and II, U.S. EPA Report No. EPA-600/7-77-136a, Research Triangle Park, N.C. (1977).
- 6. Protecting Visibility, An EPA Report to Congress, U.S. EPA Report No. EPA 450/5-79-008, Research Triangle Park, N.C. (Oct. 1979).
- 7. 40 CFR 51, Visibility Protection for Federal Class I Areas, 45 FR 34762 (May 22, 1980).
- 8. Lewis, B.G., P.C. Chu, R.M. Goldstein, F.C. Kornegay, D.L. Mabes, L.F. Soholt, and W.S. Vinikour, A Biologist's Manual for the Evaluation of Impacts of Coal-Fired Power Plants on Fish, Wildlife, and Their Habitats, U.S. Fish and Wildlife Service Publication No. FWS/OBS-78/75, Ann Arbor, Mich. (Aug, 1978).
- 9. Dvorak, A.J., B.G. Lewis, et al, Impacts of Coal-Fired Power Plants on Fish, Wildlike, and Their Habitats, U.S. Fish and Wildlife Service Report No. FWS/OBS-78/29, Ann Arbor, Mich. (Mar. 1978).
- 10. Webster, C.C., The Effects of Air Pollution on Plants and Soil, Agricultural Research Council, London (1967).
- 11. Katy, M., Sulfur Dioxide in the Atmosphre and Its Relation to Plant Life, Indust. and Eng. Chem., 41:2450-2465 (1949).
- 12. Dvorak, A.J. et al., The Environmental Effects of Using Coal for Generating Electricity, U.S. Nuclear Regulatory Commission Report No. NUREG-0252, Washington, D.C. (June 1977).
- 13. Vaughan, B.E., K.H. Abei, D.A. Cataldo, J.M. Hales, C.E. Haue, L.A. Rancitelli, R.C. Routson, R.E. Wildung, and E.G. Wolf, Review of Potential Impact on Health and Environmental Quality from Metals Entering the Environment as a Result of Coal Utilization, Unnumbered Batelle Energy Program Report, Pacific Northwest Laboratories, Richland, Wash. (Aug. 1975).
- 14. White, K.L., A.C. Hill, and J.H. Bennett, Synergistic Inhibition of Apparent Photosynthesis Rate of Alfalfa by Combinations of Sulfur Dioxide and Nitrogen Dioxide, Environ. Sci. and Tech. 8:574-576 (1974) (as cited in Ref. 15).

- 15. Zaragoza, Larry, U.S. Environmental Protection Agency, personal communication of tables attached to Environmental Impact Statement for Montana Ambient Air Quality Standards Study (Aug. 1980).
- 16. Ballou, S.W., P.M. Irving, M.H. Gabriel, and K.E. Robeck, Identifying the Potential for SO₂-Induced Vegetation Damage in the Evaluation of Energy Policy Scenarios, Changing Energy Futures, Proceedings of the Second International Conference on Energy Use Management, R.A. Fazzolare and C.B. Smith, eds., Pergamon Press, New York (1979).
- 17. Materna, J., Criteria for Characterization of Pollution Damages in Forests, Proc. Int. Clean Air Congr. 3rd, Dusseldorf, West Germany (1973) (as cited in Ref. 15).
- 18. National Research Council, Ozone and Other Photochemical Oxidents, National Academy of Sciences, Washington, D.C. (1977).
- 19. Heck, W.W., and D.T. Tingey, Nitrogen Dioxide: Time-Concentration Model to Predict Acute Foliar Injury, U.S. EPA Report No. EPA 600/3-79-057, Research Triangle Park, N.C. (1979).
- 20. Taylor, O.C. et al., Oxides of Nitrogen, in J.B. Mudd and T.T. Kozlowski, Responses of Plants to Air Pollutants, Academic Press, New York (1975).
- 21. National Research Council, Carbon Monoxide, National Academy of Sciences, Washington, D.C. (1977).
- 22. Thompson, C.R., and G. Katz, Effects of Continuous H₂S Fumigation on Crop and Forest Plants, Envt. Science and Tech. 12:550-553 (May 1978).
- National Air Pollution Control Administration, Air Quality Criteria for Hydrocarbons, U.S. Department of Commerce, Springfield, Va. PB 190-489 (1970).
- 24. Stahl, Q.R., Preliminary Air Pollution Survey of Ethylene, U.S. EPA Report No. APTD 69-35, Research Triangle Park, N.C. (1969) (as sited in Ref. 5).
- Jacobson, J.S., and A.C. Hill (eds.), Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas, Air Pollution Control Administration, Agricultural Committee Informative Report No. 1, TR-70, Pittsburgh, Pa. (1970).
- 26. National Research Council, Fluorides: Medical and Biological Effects of Environmental Pollutants, Committee on Biological Effects of Atmospheric Pollutants, National Academy of Sciences, Washington, D.C. (1971).
- 27. 40 CFR 61. National Emission Standards for Hazardous Air Pollutants.
- 28. 40 CFR 50, National Primary and Secondary Ambient Air Quality Standards for Lead, 43 FR 46245 (Oct 5, 1978).

- 29. Effects of Sulfur Oxides in the Atmosphere on Vegetation: Revised Chapter 5 for Air Quality Criteria for Sulfur Oxides, U.S. EPA Report No. EPA-R3-73-030, Research Triangle Park, N.C. (Sept. 1973).
- 30. Bull, J.N., and T.A. Mansfield, Photosynthesis in Leaves Exposed to SO₂ and NO₂, Nature, 250:443-444 (1974) (as cited in Ref. 15).
- 31. Bennett, J.H., and A.C. Hill, Acute Inhibition of Apparent Photosynthesis by Phytotoxic Air Pollutants, Amer. Chem. Soc. Sympos., 3:115-127 (1974) (as cited in Ref. 15).
- 32. Costonis, A.C., Injury to Eastern White Pine by Sulfur Dioxide and Ozone Alone and in Mixtures, Europ. J. Forest Path, 3:50-55 (1973) (as cited in Ref. 15).
- 33. Kress, L.W., and J.M. Skelly, The Interaction of O₃, SO₂, and NO₂ and Its Effect on the Growth of Two Forest Tree Species, Cottrell Centennial Symposium, Air Pollution and Its Impact on Agriculture, pp. 128-152 (1977) (as cited in Ref. 15).
- 34. National Research Council, Chromium: Medical and Biological Effects of Environmental Pollutants, Committee on Biological Effects of Atmospheric Pollutants, National Academy of Sciences, Washington, D.C. (1974).
- 35. Desbaumes, P., and D. Ramaciotti, Etude Chimique de l'action eur la Vegetation d'un Effluent Gazeux Industrial Dontenant du Chrome Hexavalent, Pollut. Atmos. 10:224-226 (1968) (as cited in Ref. 34).
- 36. National Research Council, Manganese: Medical and Biological Effects of Environmental Pollutants, Committee on Biological Effects of Atmospheric Pollutants, National Academy of Sciences, Washington, D.C. (1973).
- 37. Hurd-Karrer, A.M., Selenium Absorption by Plants and Their Resulting Toxicity to Animals. Smithsonian Institution Annual Report 1934-35:289 (as cited in Ref. 9).
- 38. Preliminary Investigation of Effects of Boron, Indium, Nickel, Selenium, Tin, Vanadium, and Their Compounds, Vol. VI, Vanadium, U.S. EPA Report No. EPA-560/2-75-005f (1975).
- 39. Costeque, L.M., and T.C. Hutchinson, The Ecological Consequences of Soil Pollution by Metallic Rust from the Sudbury Smelters, Proc. Inst. Environ. Sci., 18th Annual Technical Meeting, New York (1972).
- 40. Logerwerff, J.V., Heavy-Metal Contamination of Soils, Agr. Qual. Environ. pp. 343-364 (1966).
- 41. Sillampaa, M., Trace Elements in Soils and Agriculture, United National Food and Agricultural Organization Report, Rome (1976).
- 42. Budney, Lawrence J., Guidelines for Air Quality Maintenance Planning and Analysis Volume 10 (Revised): Procedures for Evaluating Air Quality Impact of New Stationary Sources, U.S. EPA Report No. EPA-450/4-77-001, Research Triangle Park, N.C. (Oct. 1977).

- 43. General Guidelines Used in Determining "de minimis" Air Quality Impacts for the Prevention of Significant Deterioration Regulations, Unnumbered U.S. EPA document, Research Triangle Park, N.C. (Aug. 27, 1979).
- 44. 40 CFR 51 and 52 in 44 FR 51,924 (Sept. 5, 1979).
- Monarch, M.R., R.R. Cirillo, B.H. Cho, G.A. Concaildi, A.E. Smith, E.P. Levine, and K.L. Brubaker, Priorities for New Source Performance Standards under the Clean Air Act Amendments of 1977, U.S. EPA Report No. EPA-450/3-78-019, Research Triangle Park, N.C. (April 1978).
- 46. Guideline on Air Quality Models, U.S. EPA Report No. EPA-450/2-78-027, Office of Air Quality Planning and Standards Guideline No. 1.2-080, Research Triangle Park, N.C. (April 1978).
- 47. Depreciation, Guidelines and Rules, Revenue Procedure 62-21, U.S. Treasury Department, Internal Revenue Service Publication No. 456, Washington, D.C. (Revised Aug. 1964).
- 48. Coffin, D.L. and H.E. Stokinger, Biological Effects of Air Pollutants, Air Pollution VII, A.C. Stern, ed., Academic Press, New York (1977).
- 49. Turner, D.B., Workbook of Atmospheric Dispersion Estimates, U.S. EPA Report No. 999-AP-26, Research Triangle Park, N.C. (May 1970).
- 50. Ragland, K.W., Worst-Case Ambient Concentrations from Point Sources Using the Gaussian Plume Model, Atmos. Env., 10:371-374 (1976).
- 51. Busse, A.D., and J.R. Zimmerman, User's Guide for the Ulimatological Dispersion Model, Publication No. EPA-RA-73-024 (NTIS PB 227346), U.S. EPA, Research Triangle Park, N.C. (1973).
- 52. Briggs, G.A., Chimney Plumes in Neutral and Stable Surroundings, Atmos. Env., 6:507-510 (1972).
- 53. Briggs, G.A., Plume Rise Predictions, Lectures on Air Pollution and Environmental Impact Analyses, D.A. Haugen, Workshop Coordinator, American Meteorological Society, Boston, pp. 59-111 (1975).
- 54. Larsen, R.I., A Mathematical Model for Relating Air Quality Standards, U.S. EPA Report No. AP-89, Research Triangle Park, N.C. (Nov. 1971).
- Slade, D.H., Mateorology and Atomic Energy, U.S. Atomic Energy Commission, Office of Information Services (NTIS TID 24190), Oak Ridge, Tenn. (1968).
- 56. U.S. Department of Commerce, Climatic Atlas of the United States, U.S. Government Printing Office, Washington, D.C. (June 1968).
- Davis, D.D. and H.D. Gerhold, Selection of Trees for Tolerance of Air Pollutants, Better Trees for Metropolitan Landscapes: Symposium Preceedings, USDA Forest Service, General Technical Report No. NE-22 (1976).

- National Research Council, Nitrogen Oxides, National Academy of Sciences, Washington, D.C. (1977).
- 59. Daesler, H.G., Vegetationschaeden als Falge der Luftwer schutzing, Wiss. Z. Tech. Univ., Dresden, 20:1171-1173 (1971).
- 60. Manning, W.J., Bio-environmental Impact of Fine Particulate Pollutants:
 A Summary Document and Critical Review, prepared for U.S. EPA, National Environmental Research Center, Corvallis, Ore. (Jan. 1975).
- 61. Glass, N.R., Environmental Effects of Increased Coal Utilization: Ecological Effects of Gaseous Emissions from Coal Combustion, U.S. EPA Report No. EPA 600/7-78-108, Washington, D.C. (June 1978).
- 62. Lillie, R.J., Air Pollutants Affecting the Performance of Domestic Animals A Literature Review, USDA Agriculture Handbook No. 380, Washington, D.C. (1970).
- 63. Phillips, P.H., D.A. Greenwood, C.S. Hobbs, and C.F. Huffman, *The Fluorosis Problem in Livestock Production*, NAS-NCR Publ. 381, National Academy of Sciences, Washington, D.C. (1955).
- 64. Shupe, J.L., M.L. Miner, L.E. Harris, and D.A. Greenwood, Relative Effects of Feeding Hay Atmospherically Contaminated by Fluoride Residue, Normal Hay Plus Calcium Fluoride and Normal Hay Plus Sodium Iluoride to Dairy Heifers, American Journal of Veterinary Research, 23:777-787 (1962).
- 65. Allaway, W.H., Agronomic Controls over the Environmental Cycling of Trace Elements, Advances in Agronomy, 20:235-274 (1968).
- 66. Suttie, J.W., J.R. Carlson, and C.C. Faltin, Effects of Alternating Periods of High- and Low-Fluoride Ingestion in Dairy Cattle, J. of Dairy Science, 55:790-804 (1972).
- 67. National Academy of Sciences, Effects of Fluorides in Animals, Washington, D.C. (1974).
- 68. Phillips, P.H., et al., The Fluorosis Problem in Livestock Production, a Report of the Committee on Animal Nutrition, NAS-NRC Publ. No. 824 (1960) (as cited in Ref. 9).
- 69. Formad, R.J., The Effect of Smelter Fumes upon the Livestock Industry in the Northwest, USDA Pathological Division, Bureau of Animal Industry Report 25:237-268 (1908).
- 70. Swain, R.E., and W.D. Harkins, Papers on Smelter Smoke: Arsenic in Vegetation Exposed to Smelter Smoke, J. American Chemical Society, 30:915-928 (1908).
- 71. Bischoff, O., Poisioning of Domestic Animals through Copper and Arsenic Containing Fly Dust, Dent. Tierarztl. Wochschr., 47:442-447 (1939).

- 72. Phillips, P.H., The Effects of Air Pollutants on Farm Animals, Air Pollution Handbook, Maple Press, New York (1957).
- 73. Berry, W.L., and A. Wallace, Trace Elements in the Environment: Their Role and Potential Toxicity is Related to Fossil Fuels A Preliminary Study, Univ. of California, Laboratory of Nuclear Medicine and Radiation Biology (1974).
- 74. Frost, D.V., Arsenicals in Biology Retrospect and Prospect, Federal Proceedings, 26:194-208 (1967).
- 75. Sullivan, R.J., Air Pollution Aspects of Arsenic and Its Compounds, Litton Systems, Inc., Bethesda, Md. (1969).
- 76. Allcroft, R., Lead as a Nutritional Hazard to Farm Livestock IV, Distribution of Lead in the Tissues of Bovines after Ingestion of Various Lead Compounds, J. Comp. Pathol. Exp. Ther., 60:190 (1950).
- 77. Allcroft, F., Lead Poisoning in Cartle and Sheep, Vet. Rec., 63:583-590 (1951).
- 78. California Air Resources Board, A Joint Study of Pb Contamination Relative to Horse Deaths in the Area of Southern Solano County (Dec. 1971) (as cited in Ref. 9).
- 79. Hammond, P.B., and A.L. Aronson, Lead Poisoning in Cattle and Horses in the Vicinity of a Smelter, Annals of New York Academy of Science, 111:595-611 (1964).
- 80. Schmitt, N., G. Brown, E.L. Devlin, A.A. Larsen, E.D. McCausland, and J.M. Saville, *Lead Poisoning in Horses, an Environmental Health Hazard*, Archives of Environmental Health, 23:185-195 (1971).
- 81. Vetter, H., Loads and Damage by Heavy Metals in the Vicinity of a Lead and Zirc Foundry in Lower Saxony, Staub Reinhaltung der Luft (English ed.), 34:11-12 (1974).
- 82. Lagerweiff, J.V., Lead, Mercury and Cadmium as Environmental Contaminants, Nicronutrients in Agriculture, J.J. Montvedt, P.M. Giordano, and W.L. Lindsay, eds., Agriculture Soil Science Society of America, Madison, Wisc. (1972).
- 83. Lisk, D.J., Trace Elements in Soils, Plants, and Animals, Advances in Agronomy, 24:267-325 (1972).
- 84. Zimdahl, R.L., and J.H. Arvik, Lead in Soils and Plants: A Literature Review, CRC Critical Reviews of Environmental Control, 3:213-224 (1973).
- 85. Bazell, R.J., Lead Poisoning: Zoo Animals May be the First Victims, Science, 173(3992):130-131 (1971).

- 86. Scientific and Technical Assessment Report on Vanadium, U.S. EPA Report No. EPA-600/6-77-002, Research Triangle Park, N.C. (1977).
- 87. Ter Heege, J.H., Poisoning of Cattle by Ingestion of Fuel Oil Soot, Tijdschr. Diergeneesk, 89:1300-1304 (1964).
- 88. Henneman, J., Frequent Occurrance of Stomach and Intestinal Diseases in Cattle Caused by Iron-Containing Flue Gases, Wien. Tieraerztl. Monatsschr., 18:225-231 (1931).
- 89. Shupe, J.L., Levels of Toxicity to Animals Provide Sound Basis for Fluoride Standards, Environmental Science and Technology, 3:721-726 (1969).
- 90. Newman, J.R., Effects of Industrial Air Pollution on Wildlife, Biological Conservation, 15:181-190 (1979).