IOWA WASTEWATER FACILITIES DESIGN STANDARDS

CHAPTER 12

Iowa Standards for Sewer Systems

12.1 GENERAL

12.1.1 Applicability
12.1.2 Waivers
12.1.3 Explanation of Terms
12.1.3.1 Standard Required
12.1.3.2 Definitions
12.1.4 Electrical Equipment
12.1.5 Safety
12.1.6 Scope of Standard

12.2 DESIGN PERIOD

12.3 MINIMUM BASIS OF DESIGN

12.3.1 Sewer Design Capacity
12.3.2 Peak Hour Domestic Flow
12.3.3 Minimum Design Equivalents
12.3.4 Carrying Capacity of Pipe

12.4 MATERIALS

12.4.1 Material Selection
12.4.2 Material Standards

12.5 DETAILS OF DESIGN

12.5.1 Diameter
12.5.2 Depth
12.5.3 Slope
12.5.4 Horizontal Alignment
12.5.5 Changes in Pipe Size
12.5.6 High Velocity and Steep Slope Protection
12.5.7 Manholes
12.5.7.1 Location
12.5.7.2 Drop Type
12.5.7.3 Diameter
12.5.7.4 Watertightness
12.5.7.5 Frame and Cover Assembly
12.5.7.6 Flow Channel
12.5.7.7 Bench

12.5.8 Protection of Water Supplies
12.5.8.1 Cross Connections
12.5.8.2 Wells and Below-Ground Storage Facilities
12.5.8.3 Horizontal Separation of Gravity Sewers from Water Mains
12.5.8.4 Separation of Sewer Force Mains from Water Mains
12.5.8.5 Separation of Sewer and Water Main Crossovers
12.5.8.6 Separation of Sanitary Manholes from Water Mains

12.5.9 Connection of Dissimilar Pipe
12.5.10 Inverted Siphons
12.5.11 Sewer Crossing Under a Waterway
12.5.12 Aerial Crossings
12.5.13 Storm Sewer Crossings

12.6 DETAILS OF CONSTRUCTION

12.6.1 Excavation
12.6.1.1 Trench Bottom
12.6.1.2 Trench Width
12.6.1.3 Rock Removal
12.6.1.4 Dewatering

12.6.2 Bedding, Haunching and Initial Backfill
12.6.2.1 Rigid Pipe
12.6.2.2 Ductile Iron Pipe
12.6.2.3 Plastic Pipe
12.6.2.4 Composite Pipe

12.6.3 Installation
12.6.3.1 Rigid Pipe
12.6.3.2 Ductile Iron Pipe
12.6.3.3 Plastic Pipe
12.6.3.4 Composite Pipe

12.6.4 Final Backfill

12.6.5 Alternative Installation Methods (Trenchless Technologies)

12.7 TESTING

IOWA STANDARDS FOR SEWER SYSTEMS
12.0 GLOSSARY

12.7.1 Deflection Test
12.7.2 Allowable Leakage
12.7.3 Leakage Tests
 12.7.3.1 Line Infiltration Test Using a Weir
 12.7.3.2 Line Exfiltration Test
 12.7.3.3 Line Air Pressure Test
 12.7.3.4 Manhole Exfiltration Test
 12.7.3.5 Manhole Air Test
 12.7.3.6 Exceptions

12.7.4 Alignment Test

12.7.5 Video Inspection

APPENDICES
 APPENDIX 12-A PEAK RATIO
 APPENDIX 12-B KUTTER’S FORMULA
12.1 GENERAL

12.1.1 Applicability

This chapter is applicable to construction, installation or modifications of any disposal system required to obtain a construction permit from this Department under Iowa Code 455B.183 and rule 567 IAC 64.2.

See Section 11.1.1 of these standards for exceptions.

12.1.2 Waivers [subrule 567 IAC 64.2(9)c]

A waiver from these design standards shall meet the requirements of Section 14.1.2 of these standards.

12.1.3 Explanation of Terms

12.1.3.1 Standard Required

The terms "shall" or "must" are used in these standards when it is required that the standard be used. Other terms such as "should" and "recommended" indicate desirable procedures or methods which should be considered but will not be required.

12.1.3.2 Definitions

- **Lateral** — A sewer that discharges into a submain or other sewer and has no other common sewer tributary to it.

- **Submain** — A sewer into which the wastewater from two or more lateral sewers is discharged and which discharges into a main or trunk.

- **Main** — The principal sewer to which two or more sub mains are tributary; also called trunk sewer.

- **Trunk** — The principal sewer to which sub mains are tributary; also called main sewer.

- **Interceptor** — A sewer used to transport the flows from two or more main and/or trunk sewers to a central point for treatment and discharge.

12.1.4 Outfall — A sewer that receives wastewater from a treatment plant and carries Electrical Equipment

12.0.6 Refer to Section 13.4.7 of final discharge.
these standards for the requirements concerning electrical

13.1 GENERAL

The Iowa Standards for Sewer Systems are designed to be used for review of plans and specifications and the construction of sanitary sewer systems and extensions to such systems. When engineering justification satisfactory to the executive director is provided substantiating demonstrating that variation from the standards will result in components located in either 1) at least equivalent effectiveness while significantly reducing costs enclosed or 2) improved effectiveness, such a variation from standards partially enclosed spaces where hazardous concentrations of flammable gases or vapors may be accepted by the executive director present.

12.1.5 Safety

It is the facility owner’s responsibility to ensure that the Occupational Safety and Health Administration (OSHA), NFPA 70, NFPA 820, and other applicable building and construction codes and requirements are met during construction and subsequent operation. During construction this requirement may be met by including references to OSHA, NEC and other applicable building and construction codes in the contract documents.

12.1.6 Scope of Standard

This chapter shall apply to all sanitary sewers conveying raw wastewater required to obtain a permit to construct in accordance with Section 12.1.1.

12.2 DESIGN PERIOD

In general, sewer system design shall consider the estimated ultimate tributary population, except in considering parts of the system that can be readily increased in capacity. Similarly, consideration shall be given to the maximum anticipated capacity of institutions, industrial parks, etc. Laterals and sub mains shall be designed for estimated ultimate development. The design of tanks (mains) and interceptors shall take into consideration a reasonable planning period (50 years) and cost effectiveness. When the project does not provide for the ultimate capacity, a report detailing a plan for providing the ultimate capacity shall be developed.
12.3 MINIMUM BASIS OF DESIGN

12.3.1 Assumptions

12.3.1.1 Dry Weather Flow

One hundred gallons per capita per day (gpcd) shall be used in design calculations as the minimum average dry weather flow. This 100-gpcd value may, with adequate justification, include maximum allowable infiltration for proposed sewer lines.

12.3.1.2 Sewer Design Capacity

Maximum hourly, domestic/residential flow, additional maximum wastewater flow from non-residential municipal, commercial and industrial plants, facilities, inflow and groundwater, infiltration, and sewage pumping station capacity shall be considered in determining the required capacities of sanitary sewers.

12.3.1.3 Infiltration Design Allowance

If no actual data is available, an assumed infiltration design allowance for existing sewers should be added to the design flow. For existing systems, the minimum infiltration design allowance for the existing sewers shall be no less than 200 gallons per inch of pipe diameter per mile of pipe (gpd/pipm). Allowance for service lines should be included.

12.3.1.4 Design Flow

The maximum hourly residential flow shall be determined using one hundred gallons per capita per day (gpcd) multiplied by the peaking factor found in Appendix 12-A. The 100 gpcd value, when used in conjunction with the peaking factor, is intended to cover normal extraneous flows for new sewers and new service connections built with modern construction techniques serving households with typical per capita wastewater flow rates. Additional extraneous flow allowances may be warranted where high groundwater levels, significant inflow sources or higher than average per capita wastewater flow rates are anticipated to occur over the design life of the sewer.

If the minimum design flow may be determined when the average dry weather flow is known. The minimum design flow may be calculated by multiplying the average dry weather flow by the ratio found in Appendix 4.
the sewer is to serve existing development infiltration and inflow contributions from upstream sewers and service connections shall be evaluated and the design flow adjusted accordingly.

12.3.4-53 Minimum Design Equivalents

Type of development:

a. Single family — 3 to 3.5 units/acre, 3 people/unit, or 10 people/acre
b. Multi-family (medium density) — 4.5 units/acre, 3 people/unit, or 15 people/acre
c. Multi-family (high density) — 6 to 12 units/acre, 2.5 people/unit, or 30 people/acre
d. Commercial — maximum hourly flow of 5,000 gpd/acre
e. Industrial — maximum hourly flow of 10,000 gpd/acre

Lower design values may be approved by the executive director for known or measured flow rates.

Where the local jurisdiction has established planned population densities for the project service area alternative residential equivalents may be approved. The minimum design equivalents for commercial and industrial development are expected peak flow rates for new sewers built with modern construction techniques where the specific types of commercial establishments or industrial facilities are unknown. Lower design values may be approved for proposed developments where specific types of establishments or industries are planned and adequate justification is provided for alternative equivalents.

12.3.4-6 Carrying Capacity of Pipe

Pipe sizes 8" to 15" and smaller shall carry the design flow at a depth of no more than \(\frac{3}{4} \) two-thirds of the pipe diameter. Larger pipe sizes shall carry the design flow at a depth of no more than three-quarters of the pipe diameter.
12.4 MATERIALS

12.4.1 Material Selection

Pipe and joint materials shall be adapted to local conditions, including but not limited to the character of industrial wastes, possibility of seepage, soil and groundwater characteristics, exceptionally heavy external loadings, abrasion and corrosion.

All sewers shall be designed to prevent damage from superimposed live, dead and frost induced loads. Soil conditions, bedding materials, potential groundwater levels and fluctuations, and the width and depth of the trench shall be considered. Where necessary, special pipe and joint materials, bedding or installation methods shall be used to withstand potential superimposed loading, loss of trench wall stability, and soil or groundwater contamination.

Materials used shall be designed to minimize infiltration and prevent the entrance of roots throughout the life of the system.

12.4.2 Material Standards

Standards shall be as listed below for the respective materials.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid and Ductile Iron Pipes</td>
<td>ASTM C-700-T6C700</td>
<td>ASTM C425-T6</td>
</tr>
<tr>
<td>Clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Reinforced Concrete</td>
<td>ASTM C-14-T6C14</td>
<td>ASTM C443-T6C443</td>
</tr>
<tr>
<td>Reinforced Concrete</td>
<td>ASTM C-76-T6C76</td>
<td>ASTM C443-T6C443</td>
</tr>
<tr>
<td>Ductile Iron</td>
<td>ASTM C-361-T6A746</td>
<td>ASTM C-361-T6A746</td>
</tr>
<tr>
<td>Resilient Pipe</td>
<td>ANSI A21-1-67</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C101-67)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI A21-6-75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C106-75)</td>
<td></td>
</tr>
<tr>
<td>Cast-Iron</td>
<td>ANSI A21.8-75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI A21-11-72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C108-76)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C111-72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM A536-77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C110-77)</td>
<td></td>
</tr>
<tr>
<td>Ductile-Iron</td>
<td>ANSI A21-50-76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI A21.11-72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C150-76)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C111-72)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI A21.51-76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C151-76)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ANSI A21-11-72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(AWWA C110-77)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM A536-77</td>
<td></td>
</tr>
</tbody>
</table>

b. Flexible Plastic Pipes

<table>
<thead>
<tr>
<th>Material Spec</th>
<th>Joint Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyvinyl Chloride (Solid Wall PVC) ASTMD3034-77</td>
<td></td>
</tr>
<tr>
<td>(SDR < 35)</td>
<td>ASTM D3212-76</td>
</tr>
<tr>
<td>Open Profile PVC ASTMD3033-77F794</td>
<td></td>
</tr>
<tr>
<td>(SDR < 35)</td>
<td>ASTM D2966-77D3212</td>
</tr>
<tr>
<td>Closed Profile PVC ASTM F1803</td>
<td></td>
</tr>
<tr>
<td>Corrugated PVC ASTM F949</td>
<td></td>
</tr>
<tr>
<td>Polyethylene ASTM D2239</td>
<td></td>
</tr>
<tr>
<td>Polyethylene ASTM D3035</td>
<td></td>
</tr>
</tbody>
</table>
6. Composite Pipes

<table>
<thead>
<tr>
<th>Material Spec</th>
<th>Joint Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylonitrile</td>
<td>ASTM D2680-76</td>
</tr>
<tr>
<td>Butadiene-Styrene (ABS) and PVC Composite</td>
<td>ASTM D2680-76</td>
</tr>
</tbody>
</table>

7. Pressure Pipe

All pipe for pressure applications shall conform insofar as appropriate, to the standard specifications referred to in the "Iowa Standards for Water Supply Distribution Systems".

8. Sewers Constructed of Water Main Materials

All sewers constructed of water main materials shall be pressure rated to a minimum of 150 psi and conform to applicable requirements of Chapter 567 IAC 43, Water Supplies-Design and Operation.

9. Other Materials

All other sewer pipe materials and joint materials shall conform with the appropriate ANSI, AWWA or ASTM specifications. For new pipe or joint materials for which ANSI, AWWA or ASTM standards have not been established, the design engineer shall submit complete specifications to the Department for approval developed on the basis of criteria adequately documented and certified in writing by the pipe manufacturer to be satisfactory for the application.

12.5 DETAILS OF DESIGN

12.5.1 Diameter

No public gravity sanitary sewer conveying raw wastewater shall be less than eight inches in diameter, with the following exception.

For unsewered communities, six-inch diameter sewers may be used for the last 800 feet (approximately two blocks) of sewerlateral and substains, provided the six-inch sewer and/or sewers have sufficient hydraulic capacity and is a dead end not subject to future extension. A manhole or a cleanout must be provided at the end of the six-inch lateral sewer pipe.

12.5.2 Depth
Sewers should be sufficiently deep so as to receive sewage from basements and to prevent freezing. Precautions such as insulation and increased slope shall be provided for sewers that cannot be placed at a depth sufficient to prevent freezing.

12.5.3 Slope

All sewers shall be designed and constructed to give average velocities when flowing full of not less than 2.0 feet per second based on Kutter's formula using an "n" value of 0.013. The following are the minimum slopes which shall be provided.

<table>
<thead>
<tr>
<th>Sewer Size</th>
<th>Minimum Slope (ft./100 ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8"</td>
<td>0.400</td>
</tr>
<tr>
<td>10"</td>
<td>0.250</td>
</tr>
<tr>
<td>12"</td>
<td>0.220</td>
</tr>
<tr>
<td>15"</td>
<td>0.150</td>
</tr>
<tr>
<td>18"</td>
<td>0.120</td>
</tr>
<tr>
<td>21"</td>
<td>0.100</td>
</tr>
<tr>
<td>24"</td>
<td>0.080</td>
</tr>
<tr>
<td>27"</td>
<td>0.067</td>
</tr>
<tr>
<td>30"</td>
<td>0.058</td>
</tr>
<tr>
<td>36"</td>
<td>0.046</td>
</tr>
</tbody>
</table>

Smaller "n" values may be considered when the wastes are treated, or for pipes smaller than 42". 0.041

Sewers 48 inches or larger—A velocity should be designed and constructed to give average velocities when flowing full of not less than 23.0 fps may be feet per second based on Kutter's formula using an "n" value of 0.013.

Self-cleansing velocities necessary for transport of particles, initial and ultimate flow rate variations and recurrence intervals, wastewater constituents and particle sizes, anticipated maintenance requirements and sewer cleaning capabilities of the operating authority should all be considered in determining minimum sewer slopes. Calculated slopes associated with self-cleansing velocities should be based on a regularly recurring peak flow, which will be less than the following conditions: Design peak flow used to determine required pipe capacity.

a. Deep or continuous rock excavation.

Velocities down to
b. Full-flow velocities of not less than 1.5 feet per second may be accepted only for deep or continuous rock excavation, when a lift station can be eliminated, and or where elevations are fixed such that meeting the minimum slope requirement would require deepening extensive sections of the existing sewer system. In such instances, the design engineer must submit to the Department a present worth comparison of all available alternatives demonstrating a minimum cost ratio of the cost of constructing a lift station and sewer to the cost of constructing a sewer only is greater than five. Cost ratios 5 to 1. Estimated costs shall be based on lift station alternatives designed to meet not more than the minimum standards of the Iowa Department of Water, Air and Waste Management over a common design period not to exceed 50 years.

Under no circumstances will the slope shall be the average design velocity when flow maximum feasible where calculated full be allowed to drop below 1.5 flow velocities are less than 2.0 feet per second. Increased maintenance requirements due to lesser velocities shall be considered. Oversizing of sewers will not be approved to justify using flatter slopes where a smaller pipe diameter can accommodate the design flow at the proposed slope based on Kutter’s formula using an “n” value of 0.013 and the requirements of Section 12.3.4 of these standards.

The following exceptions to the above requirements in this section shall apply for unserved communities only.

A minimum velocity of 2.0 feet per second when flowing full should be maintained in all sewer mains. However, in specific cases where savings in sewer costs are possible or a lift station could be eliminated, a minimum sewer velocity of 1.5 feet per second when flowing full using an “n” value of 0.013 will be permitted. An “n” value of 0.013 shall be used for design of PVC-pipe, vitrified clay pipe, and ABS-tuss pipe. Minimum slopes for 8” sewers flowing full at 2.0 feet per second and 1.5 feet per second shall be 0.40 ft./100 ft. and 0.22 ft./100 ft. Minimum slopes for 6” sewers flowing full at 2.0 feet per second and 1.5 feet per second shall be 0.60 ft./100 ft. and 0.34 ft./100 ft. In cases where a minimum sewer design velocity of 4.5 less than 2.0 feet per second is used, the operating authority of the sewer system will be required to give written assurance to the department that any additional sewer maintenance required by reduced slopes and velocities will be provided.

12.5.4 Horizontal Alignment

Sewers 24 inches or less shall be laid with straight alignment between manholes.

The following exceptions to the above requirement in this section shall apply for unserved communities only.

Vertical and horizontal curved or variable grade curvilinear alignment of sewers larger than 24 inches may be considered provided ASTM or specific pipe
manufacturers’ maximum allowable pipe joint deflection limits are not exceeded. Curvilinear sewers shall be limited to simple curves which start and end at manholes. When curvilinear sewers are proposed, the minimum slopes required by Section 12.5.3 must be increased accordingly to provide average full flow velocities equivalent to sewers with straight alignment.

12.5.5 Changes in Pipe Size

When a smaller sewer construction may be proposed by the design engineer. Whenever curved or variable grade joins a larger receiving sewer construction is proposed, the invert of the design engineer is to develop a proposed design basis and submit it to the department for review.

The city will be required to give written assurance that arrangements will be made for hydraulic larger sewer cleaning equipment to be available when necessary for cleaning curvilinear sewers.

12.5.5 Increasing Size

When sewers of different sizes and greater than 10 inches in diameter are joined, the inverts should be placed lowered sufficiently to maintain the same energy gradient. An approximate method for securing these results is to place the 0.8 depth point of both sewers at the same elevation.

Sewer extensions shall be designed for projected flows even when the diameter of the receiving sewer is less than the diameter of the proposed extension at a manhole constructed in accordance with Section 12.5.7 with special consideration of an appropriate flow channel to minimize turbulence when there is a change in sewer size. The Department may require a schedule for construction of future downstream sewer relief.

12.5.6 High Velocity and Steep Slope Protection

Where velocities greater than 15 feet per second are attained, special provisions shall be made to protect against displacement by erosion and</p>

12.5.7 Manholes

Sewers on 20 percent slopes or greater shall be anchored securely with concrete, or equal, anchors spaced as follows:

a. Not over 36 feet center to center on grades of 20 percent up to 35 percent;

b. Not over 24 feet center to center on grades of 35 percent up to 50 percent; and

c. Not over 16 feet center to center on grades of 50 percent or greater.
12.5.7 Manholes

42.5.7.1 Location

a. Manholes shall be installed:

1. at the end of each sewer line;
2. at all changes in pipe size, grade or alignment except for curvilinear sewers constructed in accordance with Section 12.5.4;
3. at all sewer pipe intersections;
4. at intervals not exceeding 400 feet for sewers 24 1/2 inches or less or at intervals not exceeding 500 feet when adequate cleaning equipment is available for sewers 16 inches to 30 inches.

b. Spacing of manholes over 500 feet may be permitted in up to 600 feet for sewers 30 inches or less or greater spacing for sewers larger than 2430 inches may be approved if the operating authority submits written assurance that it has adequate access to cleaning equipment adequate for such spacing.

c. Cleanouts may be permitted in place of a manhole at the end of lines which are less than 150 feet in length.

d. The following exceptions to the requirements for manhole location and Terminal cleanouts in this section shall apply for unserved communities only.

Manhole spacing for 6 and 8-inch sewers shall be a maximum of 400 feet or at intervals not exceeding 500 feet when adequate cleaning equipment is available. All other sewers shall have a maximum manhole spacing of 800 feet, with manholes also to be placed at the junctions of sewers. When the manhole spacing exceeds 400 feet, the city will be required to give written assurance that appropriate sewer cleaning equipment suitable to clean the distances between manholes will be made available when necessary.

Cleanouts can be installed at the ends of sewers of any size in lieu of manholes passed through them. Cleanout lids should be bolted down to prevent entry of foreign objects. If the sewer is ever extended, the cleanout must be removed and a sewer manhole constructed at that point if the maximum distance...
between manholes has been reached. Cleanout lids should be bolted down to prevent entry of foreign objects.

12.5.7.2 Drop Type

When the distance between a terminal cleanout and the nearest downstream manhole exceeds 150 feet, the operating authority will be required to submit written assurance that it has access to cleaning equipment adequate for such spacing.

12.5.7.2 Drop Type

A drop pipe should be provided for a sewer entering a manhole at an invert elevation of greater than 24 inches or more above the manhole invert. Where the difference in elevation between the incoming sewer invert and the manhole invert is less than or equal to 24 inches, the invert should be filleted to prevent solids deposition.

Outside drop connections shall be encased in concrete or other material that will prevent displacement that would result from the backfilling operation in the vicinity of the manhole. Designs incorporating outside drop connections should consider extension of the drop pipe to the ground surface with a suitable cover or other provisions that will facilitate cleaning of the drop pipe. Inside drop connections shall be secured to the interior of the manhole wall and provide adequate access for cleaning the drop.

12.5.7.3 Diameter

The minimum diameter of manholes shall be 48 inches. The minimum diameter of manhole openings shall be 22 inches. Larger diameters should be considered for manholes including an inside drop connection.

12.5.7.4 Watertightness

Manholes shall be pre-cast or poured in place concrete. Manholes, Manhole lift holes, grade adjustment rings, pre-cast section joints and any additional areas potentially subject to infiltration shall be waterproofed on the exterior to prevent water leakage.

Inlet and outlet pipes shall be joined to the manhole with a gasketed flexible water tight connection or any watertight connection arrangement that allows differential settlement of the pipe and manhole wall to take place.

12.5.7.5 Frame and Cover Assembly

[12:12]
Manhole covers shall be non-vented; however, covers with a
dickhole(s) are acceptable. Frame and cover assemblies shall
weigh at least 300 pounds when installed in areas subject to adequate
strength for vehicular traffic and at least 200 pounds in other areas withstand anticipated live loads.

Watertight cover assemblies shall be required on manholes subject to
flooding where the manhole tops may be flooded by street runoff or
high water. Bolt-down cover assemblies shall be required on
manholes subject to inundation on a floodplain or displacement by
sewer surcharging. Locked manhole covers should be considered in
locations where unauthorized access or vandalism may be a problem.

12.5.7.6 Flow Channel

The flow channel 12.5.7.6 Flow Channel

Flow channels through manholes should be made to conform as
closely as possible in shape and slope to that of the connecting sewers. The channel walls should be formed or shaped to the full height of the
crown of the outlet sewer in such a manner as to not obstruct
maintenance, inspection or flow in the sewers.

12.8 Protection of Water Supplies

When curved flow channels are specified in manholes, including
branch inlets, minimum slopes indicated in Section 12.5.3 should be
increased to maintain acceptable velocities.

12.5.7.7 Bench

A bench shall be provided on each side of any manhole channel when
the pipe diameter(s) are less than the manhole diameter. The bench
should be sloped no less than 1/8 inch per foot. For new manholes, no
lateral sewer, service connection, or drop manhole pipe shall discharge
onto the surface of the bench.

12.5.8 Protection of Water Supplies

12.5.8.1 Cross Connections

There shall be no physical connection between a public or private
potable water supply system and a sewer, or appurtenance thereto,
which would permit the passage of any wastewater or polluted water
into the potable water supply. No water supply pipe shall pass through
or come into contact with any part of a sewer manhole.
12.6.8.2——Wells

Wells and Below-Ground Storage Facilities

Gravity sewers constructed of standard sewer materials shall not be laid within 75 feet of a public well or 50 feet of a private well.

Sewers or below-ground level finished water storage facilities. Gravity sewers constructed of water main materials shall not be laid within 25 feet of a well or below-ground level finished water storage facility.

Sewer force mains constructed of water main materials shall not be laid within 75 feet of a public well and, within 50 feet of a below-ground finished water storage facility, or within 25 feet of a private well but no closer than 25 feet to either. Force mains constructed of other materials shall not be laid within 400 feet of a public well, within 50 feet of a below-ground finished water storage facility, or within 50 feet of a private well.

12.5.8.3——Horizontal Separation of Gravity Sewers from Water Mains

Gravity sewer mains shall be separated from water mains by a horizontal distance of at least 10 feet unless the top of a sewer main edge to edge. Where such spacing is not feasible, a lesser distance may be considered provided that:

a. the top of the sewer is at least 18 inches below the bottom of the water main, and

b. the sewer is placed in a separate trench or in the same trench, water main is located on a bench of undisturbed earth and a minimum horizontal separation of 3 feet from the water main is maintained, or

b. When it is impossible to obtain the required horizontal clearance of three feet and a vertical clearance of 18 inches between sewers and water mains, the sewers must be the sewer main is constructed of water main materials meeting both or the water main is enclosed in watertight casing pipe with an evenly spaced annular gap and watertight end seals, and a minimum pressure rating of 150 psi and the requirements of Sections 8.2, and 8.4 of the Iowa Standards for Water Supply Distribution Systems. However, a linear horizontal separation of at least 2 feet from the water main is provided.

The separation distance between the sewer and water main shall be provided the maximum feasible in all cases.
12.5.8.4 Separation of Sewer Force Mains from Water Mains

Sewer force mains and water mains shall be separated by a horizontal distance of at least 10 feet edge to edge. Where such spacing is not feasible, a lesser distance may be considered provided that the force main is constructed of water main materials and a minimum horizontal separation of 4 feet from the water main is provided.

a. The force main is constructed of water main materials meeting a minimum pressure rating of 150 psi and the requirements of Section 8.2 and 8.4 of the “Iowa Standards for Water Supply Distribution Systems.”

b. The sewer force main is laid at least 4 linear feet from the water main.

The separation distance between the force main and water main shall be the maximum feasible in all cases.

12.5.8.5 Separation of Sewer and Water Main Crossovers

Vertical separation of sanitary sewers crossing under any water main should be at least 18 inches when measured from the top of the sewer to the bottom of the water main. If it is not possible to maintain the required vertical separation, the sewer may be placed not closer than 6 inches below a water main or 18 inches above a water main. The separation distance shall be the maximum feasible in all cases.

Where the sewer crosses over or less than 18 inches below a water main, one full length of sewer pipe of water main material shall be located so both joints are as far as possible from the water main. The or one full length of water main shall be located so both joints are as far as possible from the sewer and the water main and end joints shall be encased in watertight casing pipe with an evenly spaced annular gap and watertight end seals.

For all crossings the sewer and water pipes must be adequately supported and have watertight joints. A low permeability soil shall be used for backfill material within 10 feet of the point of crossing.

12.5.8.6 Exceptions

Should physical conditions exist such that exceptions to Sections 12.5.8.3, 12.5.8.4, and 12.5.8.5 separation of this standard are necessary, the design engineer must detail how the sewer and water main are to be engineered to provide
12.5.9 Connection of Dissimilar Pipe

A minimum horizontal separation of three feet between sanitary manholes and water supply mains shall be maintained.

12.5.9 Connection of Dissimilar Pipe

Suitable couplings complying with ASTM specifications shall be used for joining dissimilar materials. The leakage limitations on these joints shall be in accordance with Section 12.7 of these standards.

12.5.10 Inverted Siphons

Use of inverted siphons is discouraged where initial average flows will not be sufficient to secure adequate velocities to prevent deposition of suspended solids and where other practical alternatives exist. Inverted siphons shall have not less than 2 barrels, each with a minimum pipe size of 6 inches and shall be provided with necessary appurtenances for convenient flushing and maintenance; the manholes shall adequate clearance for cleaning equipment; and in general, sufficient head shall be provided and pipe sizes selected to secure velocities of at least 3.0 feet per second for average flows. The inlet and outlet details shall be arranged so that the normal flow is diverted to 1 barrel and so that either barrel may be cut out of service for cleaning. The vertical alignment should permit cleaning and maintenance.

12.5.11 Sewer Crossing Under a Waterway

The top of all sewers entering or crossing streams shall be at a depth below the natural bottom of the stream bed sufficient to protect the line. One foot of cover over the top of the line is required where the sewer is located in rock or cased and three feet of cover is required in other materials. In major streams, more than three feet of cover may be required.

In paved channels, the top of the sewer line should be placed below the bottom of the channel pavement. Sewer outfalls, headwalls, manholes, gate boxes, or other structures shall be so located that they do not interfere with...
the free discharge of flood flows of the stream. Sewers located along streamwaterways shall be located outside of the stream bed.

Sewers entering or crossing streamwaterways shall be constructed of cast iron pipe with mechanical restrained joints or shall be so otherwise constructed that they will remain water tight and free from changes in alignment or grade. Sewer systems shall be designed to minimize the number of streamwaterway crossings. The stream crossings shall be designed to cross the stream as nearly perpendicular to the stream flow as possible.

Construction methods that will minimize siltation shall be employed. Material used to backfill the trench shall be stone, course aggregate, washed gravel, or other materials which will not cause siltation. Upon completion of construction, the streamwaterway shall be returned as near as possible to its original condition. The stream banks shall be seeded and planted, or other methods employed to prevent erosion. The design engineer shall include in the project specifications the method or methods to be employed in the construction of sewers in or near streamwaterways to provide adequate control of siltation.

12.5.12 Aerial Crossings

Support shall be provided at all joints in pipes utilized for aerial crossings. The supports shall be designed to prevent frost heave, overturning and settlement.

Precautions against freezing, such as insulation and increased slope, shall be provided. Expansion jointing shall be provided between above-ground and below-ground sewers. Where buried sewers change to aerial sewers, special construction techniques shall be used to minimize frost heaving.

For aerial stream crossings the impact of flood waters and debris shall be considered. The bottom of the pipe should be placed no lower than the elevation of the fifty (50) year flood. Greater elevations may be required.

12.6 DETAILS OF CONSTRUCTION

12.5.13 Storm Sewer Crossings

Adequate support shall be provided where sanitary sewers cross storm sewers. A minimum vertical clearance of 6 inches should be provided. Special structural support should be considered if there is less than 18 inches of clearance.

12.6 DETAILS OF CONSTRUCTION

12.6.1 Excavation

12.6.1.1 Trench Bottom
The trench shall be excavated to line and grade. Bell holes shall be the minimum size that will permit construction of satisfactory joints and ensure uniform bearing of the barrel on the trench bottom, while avoiding bearing on the bells. If the material encountered at the bottom of the trench is not satisfactory for bedding pipe, the unsatisfactory material shall be removed and replaced by material that will give proper support and compaction.

12.6.1.2 Trench Width

The width of the trench shall be ample to allow the pipe to be laid and jointed properly and to allow the backfill bedding and launching to be placed and compacted as needed to adequately support the pipe. The trench sides shall be kept as nearly vertical as possible. When wider trenches are unspecified, appropriate bedding class and pipe strength shall be used.

12.6.1.3 Rock Removal

Ledge rock, boulders and large stones shall be removed to provide a minimum clearance of four inches below and on each side of all pipe.

12.6.1.4 Dewatering

All water entering the excavations or other parts of the work shall be removed until all the work has been completed. No sanitary sewer shall be used for the disposal of trench water, unless specifically approved by the engineer and then only if the trench water does not ultimately arrive at existing pumping or sewage treatment facilities.

12.6.2 Bedding, Haunching and Initial Backfill

12.6.2.1 Rigid Pipe

Bedding classes A, B, C, or C-crushed stone as described in ASTM C12-74 (ANSI A106.2) or ASCE MOP No. 37 shall be used for all rigid pipe provided the proper strength pipe is used with the specified bedding to support the anticipated load, based on the soil type(s) encountered and potential groundwater conditions.

12.6.2.2 Flexible Ductile Iron Pipe

Bedding classes I, II, or III. Embedment materials for bedding and initial backfill as described in ASTM D2321-74 (ANSI K65-74A) for Type
1 through Type 5 laying conditions shall be used for all flexible ductile iron pipe provided the proper strength pipe is used with the specified bedding to support the anticipated loads, based on the soil type(s) encountered and potential groundwater conditions.

12.6.2.3 Plastic Pipe

Embedment materials for bedding, haunching and initial backfill, Classes I, II, or III, as described in ASTM D2432 shall be used and carefully compacted for all plastic pipe provided the proper strength pipe is used with the specified bedding to support anticipated loads, based on the soil type(s) encountered and potential groundwater conditions.

12.6.2.4 Composite Pipe

Except as described in ASTM D2680-76, the bedding classes, haunching and initial backfill requirements for composite pipe shall be the same as for flexible plastic pipe.

12.6.2.4 Bearing and Support Installation

If the material encountered at the bottom of the trench is not satisfactory for bedding pipe, the unsatisfactory material shall be removed and replaced by material that will give proper support and compaction.

12.6.3 Installation

12.6.3.1 Rigid Pipe

Installation procedures, as described in ASTM C12-74 (ANSI A406.2) shall be used for all rigid pipe provided the proper strength of pipe is used.

12.6.3.2 Flexible Ductile Iron Pipe

Installation procedures as described in ASTM A746 for Type 1 through Type 5 laying conditions and applicable installation procedures as described in ANSI/AWWA C600 shall be used for ductile iron pipe provided the proper strength of pipe is used.

12.6.3.3 Plastic Pipe

Installation procedures as described in ASTM D2321-74 (ANSI K65-74) shall be used for all flexible plastic pipe provided the proper strength pipe is used.
12.6.3.34 Composite Pipe

Installation procedures for composite pipe shall be the same as for flexible plastic pipe except as specified in ASTM D2680-76.

12.6.4 Final Backfill

Backfill Final backfill shall be of suitable material removed from excavation except where other suitable material is specified. Debris, frozen materials, large clods or stones, organic matter, or other unstable materials shall not be used for backfill within 2 feet of the top of the pipe.

Backfill Final backfill shall be placed in such a manner as not to disturb the alignment of the pipe.

12.6.5 Alternative Installation Methods (Trenchless Technologies)

Alternative installation methods may be considered where minimal surface disturbance is desirable or where significant cost savings can be realized using trenchless construction or pipe renewal technologies. Where trenchless installation methods are proposed, grade control including maximum specified elevation tolerances shall be sufficient to meet the requirements of Section 12.5.3.

For new construction subsurface conditions shall be adequately characterized and verified along the bore path. The proper strength pipe and joining system shall be used to withstand anticipated installation and in situ loads, based on the installation method, soil type(s) encountered, potential groundwater conditions and, for pipe renewal methods, the structural condition of the existing pipe. The possibility of prism loading on the pipe shall be considered where live loads, fluctuating groundwater levels, unconsolidated soils or other conditions may cause borehole collapse during the design life of the sewer.

For flexible pipe, the design engineer shall consider the ability of the selected pipe material and pipe wall thickness to maintain long-term ring deflections within ASTM or the pipe manufacturer’s recommended design deflection limits under all anticipated loads using the pipe material 50-year modulus. All plastic
pipes installed using trenchless methods shall meet the requirements of Section 12.7.1.

12.7 TESTING

12.7.1 Deflection Test

Deflection tests shall be performed on all flexible plastic and composite pipes. The deflection test shall be conducted after the final backfill has been in place at least 30 days.

No pipe shall exceed a deflection of 5%.

If the deflection test is to be run using a rigid ball or mandrel, it shall have a diameter equal to not less than 95% of the base inside diameter or average inside diameter of the pipe depending on which is specified in the ASTM specification, including the appendix, to which the pipe is manufactured. The tests shall be performed without mechanical pulling devices.

12.7.2 Allowable Leakage

Leakage tests shall be specified and may include appropriate hydrostatic or air pressure testing. The testing methods selected should take into consideration the range in groundwater elevations during the test and anticipated during the life of the sewer. The maximum allowable infiltration or exfiltration as determined by hydrostatic testing for any new gravity sanitary sewer section, including all manholes, is 200100 gallons per inch of diameter per mile of pipe per day. Manholes may be tested separately.

12.7.3 Leakage Tests

12.7.3.1 Line Infiltration Test Using a Weir

The crown of the pipe shall be covered with not less than two feet of water at the highest point in the section tested. The test head shall be maintained for not less than 24 hours before a weir leakage measurement is made.

The infiltration should be measured by means of a V-notch weir located in the downstream manhole. All service connections and stubs shall be capped or plugged to prevent the entrance of ground water into the line at these connections.

12.7.3.2 Line Exfiltration Test

The inlet of the upstream manhole and downstream manhole test section outlet shall be closed with watertight bulkheads. Then the sewer and the upstream manhole shall be filled with water until the
12.7.3.3 Line Low-Air Pressure Air-Test

ASTM C828-78T, Low-Pressure Air Test of Vitrified Clay Pipe-Sewer Lines (4 to 12 in.), shall be utilized when air testing sewer pipe.

12.7.4 Manhole Exfiltration Test

The inlet and outlet of the manhole shall be plugged and the manhole filled to at least the depth that is used in testing the line. Allow the water to stand one hour and refill to the original elevation. After a specific time, usually 15 minutes to 1 hour, record the difference in elevation and convert into gallons/volume lost per hour.loss/unit time through manhole leakage.

To get actual line exfiltration subtract manhole loss from loss determined during line exfiltration test.

12.7.3.5 Manhole Air Test

Air testing shall conform to the test procedures described in ASTM C1244.

12.7.3.6 Exceptions

Replacement of existing sewers which have service connections may be exempted from the leakage testing requirements.
Sewers shall be checked for alignment by either using a laser beam or lamping. The light should be visible through the section of pipe lamped. The results of the alignment test shall be evaluated by the design engineer.

12.7.5 Video Inspection

Video inspection of all new and rehabilitated sewers after installation is recommended.
MINIMUM DESIGN FLOW PEAK RATIO

Curve Equation: Peak Ratio = \[\frac{(18 + P^{1/3})}{(4 + P^{1/3})} \] where \(P \) = population in thousands

APPENDIX 12-B: Kutter’s Formula

\[V = \left[\frac{1.811}{n} + 41.66 + \frac{0.00281}{S} \right] \sqrt{RS} \left[1 + \frac{n}{\sqrt{R}} \left(41.66 + \frac{0.00281}{S} \right) \right] \]

\(V = \) pipe velocity, feet per second
\(n = \) coefficient of roughness
\(S = \) slope, (unitless, e.g., ft/ft)
\(R = \) hydraulic radius, feet