

IOWA DEPARTMENT OF NATURAL RESOURCES

LEADING IOWANS IN CARING FOR OUR NATURAL RESOURCES

Dispersion Modeling June 8, 2023

• A tool used to approximate the concentration of pollutants in the air

- A tool used to...
 - Design projects so they comply with public air quality health standards
 - Help prevent modifications after construction is complete
 - Plan for future expansion
 - Evaluate possible sites for new construction

• Derived from physical models, but faster and less expensive

Tuned based on real-world observations to be most accurate for peak concentrations

Why Do We Model?

- Proactive protection of public health (NAAQS)
- The impact of sources that have not yet been constructed can only be determined through modeling
- Predict effect of modifying existing sources
- Planning

NAAQS

The National Ambient Air Quality Standards are Public health standards set by EPA

When Do We Model?

- Prior to issuance of a construction permit for air emissions
- Approximately 10% of applications are modeled
 - Project exceeds specific emission levels
 - If the project is at a "major" source $\rightarrow \mathsf{PSD}$
 - Projects in an area that may already be close to the NAAQS
 - SIP areas
 - Case-by-case

PSD "Prevention of Significant Deterioration" 1977 Clean Air Act Amendment

SIP

"State Implementation Plan" Used to attain/maintain NAAQS

When Do We Model? Non-PSD

- Project emission levels
- Availability of air resources (AAR)
- See Form MD (also available in EASY Air)

FORM MD: NON-PSD MODELING DETERMINATION FORM

Please see instructions on page three (3) of this form.

Company Name:

SECTION 1: PROJECT EMISSIONS												
1. Pollutant	2. Total N	let Change in Emiss from Project	3. Significant	4. Check box if net change is ≥								
	2a. Total Increase	2b. Total Decrease	2c. Net Change	Emission Rate (SER)	(Modeling is required)							
PM10	lb/hr -	lb/hr =	lb/hr	3.42 lb/hr								
PM2.5	lb/hr -	lb/hr =	lb/hr	2.28 lb/hr								
NO _X Non-intermittent sources only:	lb/hr -	lb/hr =	lb/hr	9.13 lb/hr								
NO _X All sources combined:	ton/yr -	ton/yr =	ton/yr	40 ton/yr								
SO ₂	lb/hr -	lb/hr =	lb/hr	9.13 lb/hr								
СО	lb/hr -	lb/hr =	lb/hr	22.8 lb/hr								

SECTION 2: AVAILABILITY OF AIR RESOURCES Only complete this section for pollutants with a net change (2c) greater than zero. Skip this section if the project is for a new facility or a portable plant.											
5. Pollutant	6. Averaging Period	7. Air Resources Currently Being Used (Visit http://www.iowadnr.gov/AAR if unknown)					8. Modeling Determination	9. Check if total is ≥			
		7a. Modelec Concentratio (µg/m ³)	n n	7b. Cur Backgro (µg/m	rent ound ³)	7c. Total (µg/m ³)	Threshold (MDT) (NAAQS – SIL)	(Modeling is required)			
PM10	24-hour		+		=		145				
PM _{2.5}	24-hour		+		=		33.8				
	Annual		+		=		11.7				
NO ₂	1-hour*		+		=		180.5				
	Annual		+		=		99				
SO ₂	1-hour*		+		=		188.1				
	3-hour		+		=		1,275				
со	1-hour		+		=		38,000				
	8-hour		+		=		9,500				

*Leave the 1-hour NO₂ and 1-hour SO₂ lines blank if this project consists of only intermittent sources as defined in Item 1 of the instructions.

When Do We Model? PSD

- Prevention of Significant Deterioration
- Applies only to large projects at major facilities (criteria set be federal government)
- Additional level of scrutiny
- PSD Increments provide additional protection to pristine areas and limit how much all areas of the country can be degraded

Increment

Maximum allowable increase in concentration...may limit an area to a lower level of pollution than the NAAQS would otherwise allow.

When Do We Model? SIP Areas

- State Implementation Plans
- Areas of specific concern
- Monitored high concentrations or exceedances of NAAQS
- Model every change at any facility in the SIP

When Do We Model?

Case-by-case

- All projects are unique, some reasons for case-by-case modeling include:
 - New facility locating in an already industrialized area where a majority of the air quality resource is already being utilized
 - New or modified portable plants
 - New sources with lead emissions, or increases in lead emissions from existing sources
 - Relaxation of permit limits or requirements originally established to protect the NAAQS
 - Changes to source location, stack design or facility layout
 - Direct ozone emissions
- DNR management reviews the need for all case-by-case modeling requests

Who Conducts the Modeling?

• PSD:

- Applicant or their consultant
- Project-specific modeling protocol proposed by applicant and agreed upon by DNR
- DNR reviews modeling
- All other:
 - DNR will conduct the modeling analysis if the applicant requests it
 - This typically means project design work is already complete
 - If modeling indicates changes are necessary, the design may need to be reworked
 - Applicants may conduct their own modeling
 - Allows dispersion modeling to be considered as part of the design process
 - Follow DNR modeling guidelines (currently being updated)
 - DNR reviews modeling

Modeling Procedure

- Create a 3D model of a facility and its surroundings in the computer
- Three main components
 - Source data
 - Terrain elevations
 - Atmospheric conditions
- AERMOD (EPA's preferred regulatory model)

Modeling Procedure Source Data

 Create a 3D representation of the facility and associated emission sources

Modeling Procedure Terrain Data

- Add elevation data to the 3D model
- Especially important in valleys and hilly areas

Modeling Procedure Meteorological Data

• Define atmospheric conditions

2015 - 2019 AERMOD Meteorological Data Map shows which surface meteorological station to use for AERMOD modeling in various areas of Iowa

Modeling Procedure Run the Model

- Can take a few minutes for simple models
- Can take several days if more complex

Modeling Procedure Review Results

- Incorporate existing pollutant levels (background)
- Compare results to standards
- Mitigate exceedances, if any are predicted
 - First, remove conservative assumptions from the analysis
 - If permit modifications are necessary the DNR modeler, permit engineer, applicant, and consultant discuss options

Modeling Procedure

- Final modeling report included in permit record
- AAR Summary provided to applicant with permit

Brad Ashton – Lead Dispersion Modeler

Brad.Ashton@dnr.iowa.gov

(515) 725-9527