Rapid Crown Decline and Mortality of Bitternut Hickory

Jennifer Juzwik\(^1\) and Ji-Hyun Park\(^2\)

\(^1\)Northern Research Station, USDA Forest Service, and \(^2\)formerly with Dept. of Plant Pathology, University of Minnesota, St. Paul

A five year investigation of the cause of rapid crown decline and mortality of bitternut hickory was concluded in September 2011. Results of a series of related studies found that multiple cankers and xylem (the water conducting tissue) dysfunction caused by *Ceratocystis smalleyi* are correlated with rapid crown decline typical of a limited vascular wilt disease. Because reproductive attacks by the hickory bark beetle (*Scolytus quadrispinosus*) also are correlated with canker and xylem lesion occurrence, the synergistic interaction of the beetle and the fungus in combination with host stress (e.g. drought) is important in disease development. This disease has been referred to as hickory decline or hickory in the past several decades; however, we propose hickory wilt as a more appropriate name based on our recent findings. A brief synopsis of the key results supporting these conclusions is presented in this report.

Hickory Bark Beetle (Hbb) – *Ceratocystis smalleyi* Association with Trees Exhibiting Crown Decline

Hundreds to over one thousand Hbb attacks were found on the main stem of three bitternut hickory with active crown decline (40, 55 and 80%) that had been felled and debarked. The extent of beetle colonization ranged from aborted to fully successful (i.e. full gallery system). Between 26 and 585 bark cankers and xylem lesions also were found on the main stems of the same trees. *C. smalleyi* is frequently isolated from such damaged tissues. A high percentage (92 to 94) of these cankers and lesions were associated with Hbb attacks. Female Hbbs captured while creating entry tunnels during initial attacks were found to commonly carry viable propagules of *C. smalleyi* on their bodies. Thus, the fungus spores dislodged from the beetles during tunneling germinate and infect the wounded bark and sapwood tissue, resulting in bark cankers and xylem lesions.

Bitternut Hickory Stem Colonization by *Ceratocystis smalleyi*

Up to 25 inch long bark cankers were produced within 12 months of hickory stem inoculation with a water suspension of the *C. smalleyi* spores. Long, narrow reddish-brown discoloration of
sapwood was always associated with each fungus inoculated point while wedge-shaped
discoloration was evident in cross-sections of stem sapwood samples. The fungus was commonly
observed in different elements of the xylem tissue such as vessel, parenchyma cells and fibers.
Tyloses (balloon-like structures) were abundant in early-wood vessels of the fungus-inoculated
trees. Multiple, contiguous tyloses were found to plug many more vessels in inoculated trees
compared to the fewer ones formed in response to water only inoculation. Gelatinous materials
produced by the fungus were also found to plug late-wood vessels. Thus, tree response to
infection as well as the presence of the fungus itself leads to physical plugging of the water-
transport system of infected bitternut hickory.

Effect of Cankers and Xylem Lesions on Water Transport in Affected Trees
The resulting impact of numerous bark canker and xylem lesion occurrence on sap flow rate was
experimentally tested in non-Hbb attacked, but fungus inoculated, bitternut hickory in two
natural stands. Sap flow rates were measured in both C. smalleyi-inoculated and water-
inoculated trees 13 months after treatment. Fifty inoculations were made between 6 and 13 feet
on the main stem of each poletimber-sized study tree. Significantly lower sap flow rates during
mid-day were found for fungus-inoculated trees compared to the controls. Statistical analyses
found significant interactions between average maximum sap flow rate and abundance of tyloses
in the outer two rings of study trees in both experimental sites. Significantly fewer tyloses were
found in the water-inoculated trees than the fungus-inoculated ones. Correlation analysis also
detected significant interactions between maximum sap flow rate and proportion of cankered
bark area of the study trees. Thus, reduced sap flow rates in bitternut hickory with numerous
stem infections apparently result from fungus-induced and fungus-produced obstructions in the
xylem vessels. Furthermore, multiple cankers and xylem lesions and resulting tree response can
logically explain the symptom of rapid crown decline with wilting foliage observed in affected
bitternut hickory. This disease situation is similar to that of infections of oaks in Japan by the
fungus Raffaelea quercivora following attacks by an ambrosia beetle species in a disease known
as Japanese oak wilt. Thus, hickory wilt is a logical name for this particular disease of hickory
based on its similarities to the Japanese oak wilt.

In summary, the results from the above series of studies document the deleterious effects of
multiple cankers and sap flow dysfunction caused by C. smalleyi on the health of bitternut
hickory. The synergistic interaction of Hbb and C. smalleyi results in numerous bark cankers and debilitating xylem lesions of affected trees that we hypothesize leads to rapid crown decline and tree death, especially following predisposing events such as drought that lead to build-up of the beetle population.