

Developing Statewide Consumption Guidelines for Iowa Sport Fish

Research Study 7064 Completion Report Federal Aid to Sport Fish Restoration Iowa Fisheries Research

Lewis J Bruce Period Covered: 1 July, 2019 - 30 June, 2023 Iowa Department of Natural Resources Kayla Lyon, Director This publication was funded under the Federal Aid in Sport Fish Restoration Program utilizing state fishing license money and federal grant funds derived from federal excise taxes on fishing tackle and other fishing related expenditures. Funds from the Sport Fish Restoration Program (also known as the Dingell-Johnson or D-J Programs) are used for aquatic education, fisheries research and management, and other activities that enhance sport fishing opportunities. The program is administered cooperatively by the Iowa Department of Natural Resources and the US Fish and Wildlife Service.

Equal Opportunity

Federal and State laws prohibit employment and/or public accommodation (such as access to services or physical facilities) discrimination on the basis of age, color, creed, disability (mental and/or physical), gender identity, national origin, pregnancy, race, religion, sex, or sexual orientation. If you believe you have been discriminated against in any program, activity or facility as described above, or if you desire further information, contact the Iowa Civil Rights Commission, 1-800-457-4416 or write to: Director, Iowa Department of Natural Resources, Wallace State Office Building, 502 East 9th Street, Des Moines, Iowa 50319-0034.

Alternative Formats

This information is available in alternative formats upon request by contacting the DNR at 515-725-8200. TTY users: Contact Relay Iowa at 800-735-2942

Table of Contents

Executive Summary	1
Approach 1: Measure mercury concentration in sport fish species caught in Iowa lakes and rivers	2
Introduction	2
Methods	2
Research Study 7064	2
Cashatt (2017)	3
Results and Discusion	4
Research Study 7064 and Cashatt (2017)	4
Fish Consumption Advisory	4
Largemouth Bass	5
Smallmouth Bass	6
Bluegill	7
Walleye	8
Paddlefish	10
Shovelnose Sturgeon	10
Crappie Spp	11
Flathead Catfish	12
Channel Catfish	13
Common Carp	15
Sucker Spp	15
Hybrid Striped Bass	16
White Bass	17
Sauger	
Muskellunge	19
Yellow Bass	19
Trout	20
Yellow Perch	20
Freshwater Drum	21
Northern Pike	22
Management Recommendations	24
Literature Cited	24
Table and Figures	

Executive Summary

The Environmental Protection Agency (EPA) and Food and Drug Administration (FDA) recommend eating fish weekly as part of a healthy diet. Iowa-caught fish are safe to consume for a majority of the population. The at-risk population (ARP) of people (i.e., pregnant women, women wanting to become pregnant, are breastfeeding, and those under 12 years of age) should monitor their consumption of fish containing methyl mercury. Elemental and inorganic mercury from natural and anthropogenic sources are deposited in lakes. Bacteria found in anaerobic sediments convert these two forms of mercury into methyl mercury. Methyl mercury bioaccumulates in animals found in lakes and rivers including fish and the highest concentrations can be found in top level predators. Angler surveys in Iowa have shown people would consume more Iowa-caught fish if they knew they were safe to eat. Current procedures post fish consumption advisories for individual lakes and river reaches. The application of statewide fish consumption advisories would be less confusing for consumers and encompass all waterbody types. Two Iowa studies were conducted to provide the ARP with consumption advisories for Iowa-caught fish.

Cashatt (2017) and this study were designed to improve the understanding of where high concentrations of methyl mercury in lowa-caught fish are located and provide recommendations for statewide length-based fish consumption advisories for commonly consumed fish species. Fish length is positively correlated with mercury concentrations in most species (i.e., as fish length increases for an individual so does methyl mercury concentration) and fish length is an easy to understand variable that any angler can determine on their own. In fact, most lowa anglers are already accustomed to measuring fish length as it is commonly used by anglers as a measure of success (i.e., proximity of their catch to eating size or trophy size) and because many species are managed with length-based harvest regulations. Top-level predators (i.e., Muskellunge and Largemouth Bass) typically have higher mercury concentrations than prey species (i.e., Bluegill and Yellow Perch). Some environmental variables (i.e., watershed size and land use) are also correlated with methyl mercury concentration, confirming that these two variables could be used to set statewide consumption advisories for lowa. Cashatt (2017) significantly improved the understanding of waterbodies that contain fish with high methyl mercury concentrations in lowa. Information from that study was used to design the current study and ultimately provide length-based advisories for lowa-caught fish.

Management Recommendations

- Iowa-caught sport fish are safe to eat for most people.
- Predator species (i.e., Largemouth Bass, Walleye, Northern Pike, Flathead Catfish, Muskellunge) had higher levels of mercury in their tissue than other species (i.e., Bluegill, Crappie Spp., Perch, Trout, Channel Catfish, and Common Carp).
- These consumption advisories are conservative recommendations for the ARP. Many of the samples collected in this study were targeted to collect samples containing mercury levels close to or above the 0.3 mg/kg advisory level. Therefore, these samples don't represent the true average of mercury concentrations in fish populations statewide.

Suggested citation format, American Fisheries Society Style Guide:

Bruce, LJ. 2023. Developing statewide consumption guidelines for Iowa sport fish. Iowa Department of Natural Resources. Federal Aid in Sport Fish Restoration, Completion Report, Des Moines, IA

INTRODUCTION

lowa anglers consumed an estimated 4.59 million meals of lowa-caught fish in 2018 (Responsive Management 2019). This survey also noted 52% of anglers that were not currently eating fish would consume fish if they felt consumption was safe. In Iowa, very few contaminants negatively affect fish consumption. Methyl mercury is the primary contaminant of concern with the angling population. Results from six consecutive cycles of the National Health and Nutrition Examination Survey (1999-2010) showed lower blood mercury concentrations and increased fish consumption 2009-2010 compared to 1999-2000 in women between 16 and 49 years of age (Cusack et al. 2017). These results suggest eating fish as part of a healthy diet can be accomplished by consuming species with low mercury concentrations. Inorganic and elemental mercury can be found in the environment (i.e., air, soil, and water) occurring naturally and from anthropogenic sources. Bacteria found in anerobic sediments convert the inorganic mercury deposited in a lake or river into a toxic organic form called methyl mercury, hereafter referred to as mercury. Mercury concentrations in Iowa waterbodies vary due to many environmental and species-specific factors (McMurtry et al. 1989, Selch et al. 2007, Weber and Cashatt 2020). Cashatt (2017) found that most Iowa fish had low levels of mercury contamination. Of all the fish analyzed during that study, 30% were below the detection limit of 0.05 mg/kg, and 90% were below the advisory level of 0.3 mg/kg (i.e., one-meal-per-week advisory) and the advisory level of 1.0 mg/kg (i.e., do-not-eat advisory). Mercury concentrations were highest in predator species (e.g., Muskellunge Esox masquinongy, Walleye Stizostedion vitreum, Largemouth Bass Micropterus salmoides, Smallmouth Bass M. dolomieu, Northern Pike E. lucius) and lowest in omnivorous and planktivorous species (e.g., Black Crappie Pomoxis nigromaculatus, White Crappie P. annularis, Bluegill Lepomis macrochirus, Channel Catfish Ictalurus punctatus), and positively related to fish length and age in all species. These relationships were stronger for predator species. Based on these results, the Iowa DNR drafted consumption advisories to protect at-risk population (ARP). The ARP for fish consumption regarding mercury concentrations is pregnant women, women wanting to become pregnant, are breastfeeding, and those under 12 years of age. Unfortunately, after this study was completed, a follow-up QAQC study determined that results from Iowa's State Hygienics Laboratory (i.e., the laboratory used for mercury analyses for Cashatt 2017) were 21% lower than two other laboratories that perform this type of analysis in the Midwest (Krogman 2019). Although Cashatt (2017) substantially improved our understanding of mercury contaminants in Iowa-caught fish, additional research was necessary to confirm the proposed statewide consumption advisories were based on accurate information.

The goal of Research Study 7064, Developing Statewide Consumption advisories for Iowa Sport Fish, was to create length-based consumption advisories for the ARP consuming Iowa-caught fish. Fish length is a variable that is positively related to mercury concentrations (Sackett et al. 2013). The two advisory levels, (i.e., 0.3 mg/kg and 1.0 mg/kg) were determined appropriate by the U.S. Food and Drug Administration to set one-meal-per-week and do-not-eat advisories, these advisory levels were adopted by the Iowa Department of Public Health and the Iowa DNR (USFDA 2022). Results from Cashatt (2017) were used to develop the methods section for Research Study 7064 (Krogman 2019). Analysis of data collected by Cashatt (2017) suggested Iower mercury levels were found in more productive lake systems (i.e., shallow, Iower Secchi depth, and higher algal densities; Krogman 2019). Results from river data showed there may be important spatial variation in mercury levels and length of fish explained a significant amount of variability for multiple species. This document summarizes tissue sample results collected by Cashatt (2017) and sample results collected between 2019 and 2021 as part of Research Study 7064.

METHODS

Research Study 7064

Samples collected between 2019 and 2021 don't represent the average mercury concentration values found throughout lowa. Targeted sampling was completed in areas that had the greatest chance of collecting individual fish with mercury concentrations above the \geq 0.3 mg/kg advisory level. The goal of this study was to create statewide length-based fish consumption advisories, therefore selecting lakes and rivers most likely to contain fish species with elevated mercury levels was necessary to make conservative recommendations.

Waterbodies were broken into the following five types: impoundments (manmade lakes with earthen built dams), large rivers (Mississippi River and Missouri River), natural lakes (lakes occurring naturally on the landscape and are often times shallow basins with small watersheds), rivers (all rivers within the state boundaries excluding the Mississippi River and

Missouri River), surface mines (excavated areas with small watersheds that are often connected to groundwater sources), and reservoirs (large impoundments with large watersheds and used for flood control). Sample sites were selected based on species abundance, fishery popularity (from Responsive Management 2019), waterbody type, and watershed characteristics. Study sites included some of the same systems from Cashatt (2017) for comparison, as well as new waterbodies not previously sampled (e.g., surface mines and impoundments in Community Fishing Program areas). Fish were collected using standard Iowa DNR sampling protocols (Schultz 2008). Proposed number of samples by species was selected based on the analysis completed by Krogman (2019), but were modified based on the results from FY2020 and FY2021 sampling efforts (Table 2). Results from Weber and Cashatt (2020) suggested detection of mercury in Largemouth Bass and Walleye could be accomplished by collecting larger fish and using 10-fish sample sizes in lakes. Bluegill and Crappie tissue samples from Cashatt (2017) were below the one-meal-per-week advisory level of 0.3 mg/kg; therefore, only a small sample size was collected to verify these results. New species added to this study (e.g., Shovelnose Sturgeon Scaphirhynchus platorynchus and Paddlefish Polyodon spathula) were sampled at a reduced sample size of 40 fish and across a broad range of length bins to determine if more sampling was necessary. Size of collected fish focused on length bins near the 0.3 mg/kg advisory level for each species (Krogman 2019). Collected fish were euthanized, wrapped in aluminum foil, frozen and stored in a -10°C freezer until mercury analysis was completed. The frozen fish were thawed in a laboratory and tissue plugs were removed from the fish to quantify mercury concentration in the tissue. Tissue plug samples processed in the field and the laboratory produced similar results to whole fillets, therefore all samples between 2019 and 2021 were collected using a 5 mm biopsy punch (Stahl et. al 2019). All tissue samples were skinless and removed from the dorsal axial muscle from each fish. Each tissue sample had a minimum weight of 0.2 g. Tissue samples were removed while wearing disposable gloves. Cross-contamination of samples was avoided by replacing gloves between fish and using a new biopsy punch for each fish. Fish tissue samples were stored in a -10°C freezer until transported to a laboratory for analysis. Tissue samples were kept in a cooler and on ice during transportation periods.

Fish of similar lengths and collected from the same waterbodies for both studies were analyzed for differences in mercury concentrations and fish length, this analysis was the only instance where results from Cashatt (2017) and Research Study 7064 were separated. Cashatt (2017) sampled random waterbodies and a wide range of length bins for each species. Research Study 7064 sampled a truncated number of length bins near the break point where mercury concentrations were ≥0.3 mg/kg advisory level. Tissue samples biased towards higher mercury concentrations were included in the analysis because the objective of this study was to determine statewide length-based consumption advisories instead of advisories for specific waterbodies. Length bins with mean values and 95% confidence intervals (CI) were used to determine maximum length for consumption of each fish species. The length bin with 95% CI closest to, but not exceeding the 0.3 mg/kg advisory level was recommended as the maximum size of fish to be consumed. Samples from both studies were used in the individual species analysis to determine length-based consumption advisories. Samples from Cashatt (2017) were analyzed at multiple laboratories. One of the laboratories used different methodology to process the tissue samples; analysis suggested data from the State Hygienics Laboratory (SHL) was precise but not accurate.

Cashatt (2017)

Tissue samples collected by Cashatt (2017) were analyzed to determine if the results could be combined with results from the 2019-2021 samples. Tissue sample results from the laboratory were tested in the models prepared by Krogman (2019). Natural lakes and impoundments were analyzed together. Surface mines were analyzed separately for some species based on analysis from Krogman (2019). When determining length-based consumption advisories, length bins of interest had a 95% probability of exceeding the 0.3 mg/kg advisory level. Mercury sample concentration results were combined for individual species analysis when all sample results were below the 0.3 mg/kg advisory level.

The consumption advisory template was provided by the EPA. Statewide length-based advisories were designed to communicate potential risks in eating lowa-caught fish using a portion size of 6-7 oz. Best, Good, and Avoid categories were used to define the three fish consumption choices for the ARP. The Best category were fish species with no consumption limit for the ARP, the Good category were fish species that are recommended to be eaten once per week by the ARP, and the Avoid category were fish species the ARP should not consume.

RESULTS AND DISCUSION

Research Study 7064 and Cashatt (2017)

T-tests were used to find significant differences between mercury concentration results for fish species sampled in this study and results from Cashatt (2017; Table 5); Turkey-Kramer tests were used to find significant differences between sample results from three laboratories used to process tissue samples from Cashatt (2017). Tukey-Kramer tests comparing the "slope" parameters for each lab indicated no significant difference between the USEPA Laboratory (EPA) and Minnesota Department of Agriculture (MDA) (P=0.486), a significant difference between USEPA and SHL (P<0.0001), and a significant difference between MDA and SHL (P<0.0001) (Iowa DNR unpublished data, April 2, 2018). When detectable, mercury concentration estimates from SHL were 21% lower than quality assurance results from MDA and EPA. Therefore, a correction factor of 21% was applied to the SHL sample results so results were comparable to those from Research Study 7064 (Krogman 2019). The total number of samples collected for Research Study 7064 and corrected from Cashatt (2017) was 2,329 and 2,747, respectively (Table 2). These studies sampled impoundments (N=34), natural lakes (n=11), reservoirs (n=4), and surface mines (n=9). Lakes (i.e., impoundments, reservoirs, and natural lakes) ranged in size from 2 ac to 15,000 ac.

Fish Consumption Advisory

Although length is positively correlated with mercury levels in fish, there are other fish variables (i.e., age and sex) and environmental variables (i.e., water chemistry, lake basin morphology, and watershed characteristics) known to influence mercury levels in fish. Recent studies showed similarities among fishes and systems throughout Iowa (Mills 2016; Milles et al. 2018). The proposed consumption advisories in this document were conservative, length based, and designed to provide information for the ARP regarding Iowa-caught fish (Table 3). General results were presented first and followed by species-specific analysis.

Mean mercury concentrations were highest in rivers and lowest in reservoirs for most species. Natural lakes had the most variability between individual sample results. The Upper Iowa River had higher levels of mercury than any other waterbody for all species sampled. Therefore, the statewide fish consumption advisories will need to be more conservative to protect anglers that may harvest fish from this resource (i.e., results from the Upper Iowa River lowered the safe length and number of species in the best choice category; Table 3). Specifically, the Upper Iowa River results moved Shorthead Redhorse *Moxostoma macrolepidotum* from the Best Choice to the Good Choice category; and reduced the acceptable size of Smallmouth Bass, Walleye, and Northern Pike in the Best Choices category. Sampling locations for Research Study 7064 were selected based on the goal of creating statewide recommendations, therefore river stretches or lakes were selected to identify issues similar to those detected in the Upper Iowa River with the idea that erring on the side of being more conservative was necessary to protect ARP.

Results for predator species found higher mercury concentrations than prey species and increased length was positively correlated with increased mercury concentration. This research also showed increased length of predator species increased the chance of sampling Largemouth Bass or Walleye that contain mercury concentrations >0.3 mg/kg. Longer fish required fewer samples to detect mercury levels >0.3 mg/kg, often times a sample of 10 fish was adequate. Consumption advisories were determined for individual species (Table 3). Some species (e.g., Hybrid Striped Bass and White Bass) are difficult to identify for the average angler. The length-based consumption recommendation was different for each of these species. Combining these species was overly conservative for the ARP consuming Hybrid Striped Bass but it would protect those who misidentify a White Bass.

Weber and Cashatt (2020) found that environmental factors, (e.g., percentage of grassland in the watersheds) can be an indicator of high or low mercury levels in Iowa sport fish species. Elevated mercury levels were also found in prey species collected from an impoundment that had a recent water-level drawdown. This may suggest drought conditions or a lake draw down may temporarily impact the availability of mercury in the water column. Drawdowns can occur naturally during drought conditions or artificially as a management tool to increase fish size structure in lakes. The consumption advisories recommended by this study were selected to protect ARP, even if they harvest fish from waters that could be influenced by these and other environmental factors.

Largemouth Bass

Largemouth Bass were sampled in impoundments (N=28), natural lakes (N=5), reservoirs (N=4), large rivers (N=1), and surface mines (N=9). Tissue samples collected for both studies from the same sites were not significantly different (Table 5). Natural Lake samples had the highest median mercury concentration of all waterbody types and impoundments had the highest individual mercury concentration level (Figure 1). The minimum value was 0.010 mg/kg and maximum value was 0.992 mg/kg (Figure 2). Using a 95% confidence level for each length bin Largemouth Bass <350 mm didn't require a consumption advisory for the ARP (Figure 3).

Hatarar impoundment eage first integration buriate inite

Figure 1. Largemouth Bass median mercury concentrations for five waterbody types with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 2. Mercury concentration results for Largemouth Bass (N=919) with 0.30 mg/kg and 1.0 mg/kg advisory levels.

Figure 3. Largemouth Bass average mercury concentrations with error bars representing the 95% confidence level (α =.05), sample size per length bin, and advisory levels at 0.3 mg/kg and 1.0 mg/kg.

Smallmouth Bass

Smallmouth Bass (N=393) were sampled at 14 sites on 9 rivers and the maximum mercury concentration was 1.041 mg/kg (Figure 4). Mercury concentration results for fish collected from the same sites during both studies were significantly different (Table 5). Mercury concentrations collected from Cashatt (2017) had a higher mean concentration than this study. Sites sampled in both studies were from river stretches where fish can migrate. The Upper Iowa River Upstream collection site had the highest mercury concentrations, with one sample result exceeding the 1.0 mg/kg advisory level (Figure 5). A 95% confidence level was used to determine ARP could consume Smallmouth Bass <350 mm without exceeding the advisory level of 0.3 mg/kg (Figure 6). The Upper Iowa River upstream site drove the highest mercury concentration values for Smallmouth Bass.

Figure 4. Mercury concentration results for Smallmouth Bass tissue samples collected in Iowa rivers with 0.3 mg/kg and 1.0 mg/kg advisory levels.

It is worth noting that black bass (i.e., Largemouth, Smallmouth, and Spotted Bass) are managed by a statewide minimum length limit of 381 mm in lakes and 305 mm in rivers; and exceptions to these statewide regulations are generally more restrictive (e.g., 457 mm minimum length limit or catch and release only regulation). Therefore, in most cases, black bass that are safe to eat for ARP are not legal to harvest from public lakes and the range of black bass that are legal to harvest and safe to eat is only 305 mm to 350 mm on public rivers. However, substantial Largemouth Bass harvest occurs on private ponds that are not regulated by these length limits and illegal harvest does occur on public waters. Therefore, a consumption advisory was still set to protect ARP in these and other situations that may result in harvest from lowa's black bass fisheries.

Figure 5. Smallmouth Bass median mercury concentrations for 14 sites on 9 rivers (upstream "U" and downstream "D") with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 6. Smallmouth Bass average mercury concentrations with error bars representing the 95% confidence level (α = .05), sample size per length bin, and advisory level at 0.3 mg/kg.

Bluegill

Bluegill (N=397) were sampled in impoundments (N=19), natural lakes (N=5), reservoirs (N=4), large rivers (N=1), and surface mines (N=4). Mercury concentration results for fish collected from the same sites during both studies were significantly different (Table 5). All Bluegill samples collected during Cashatt (2017) were below the detection level, therefore the *SD* for mercury concentration was 0.0 mg/kg. The maximum mercury concentration for all samples was 0.339 mg/kg. During Cashatt (2017) when the entire length range was sampled from each lake, only 0.004% of fish exceeded 0.3 mg/kg (after increasing sample results by 21%). During this study, when sample collection was intentionally biased towards size ranges with expected higher mercury concentrations, only five samples were collected that were above the 0.3 mg/kg advisory level (Figure 7). These five individual fish were collected from a surface mine and an impoundment (Figure 8). Krogman (2019) suggested using a simple proportion estimator to determine sample size because tissue samples collected by Cashatt (2017) were all below the 0.3 mg/kg advisory level after the 21% increase. Therefore, Bluegill samples collected for mercury tissue analysis were placed in length bins, a 95% confidence level was used to determine length bins below 0.3 mg/kg advisory level, and results suggested consumption advisories were not necessary for the ARP (Figure 9).

Figure 7. Mercury concentration for Bluegill tissue samples collected in Iowa rivers with advisory level at 0.3 mg/kg.

Figure 8. Bluegill median mercury concentrations for 35 sites in 5 waterbody types with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 9. Bluegill average mercury concentrations with error bars representing the 95% confidence level (α = .05), sample size per length bin, and advisory level at 0.3 mg/kg.

Walleye

Tissue samples from Walleye (N=867) were collected in impoundments (N= 5), large rivers (N=1), natural lakes (N=9), reservoirs (N=4), and interior rivers (N=8) (Figure 10). Mercury concentration results for fish of the same size range and collected from the same sites during both studies were not significantly different (Table 5). The highest individual

mercury concentrations were found in rivers and the lowest mean concentrations were found in impoundments (Figure 11). The Upper Iowa River had a significantly higher mercury concentration than other rivers and lakes (Figure 12). The maximum mercury concentration for all samples was 1.690 mg/kg (Figure 13). Mercury concentration was found to have a strong correlation with length in top level predators (Krogman 2019). Therefore, using length bins with error bars representing a 95% confidence level were used to determine the consumption advisory for the ARP could be a Best Choice <475 mm and a one meal per week ≥475 mm (Figure 11).

Figure 10. Walleye median mercury concentrations for 35 sites in 5 waterbody types with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 11. Walleye mean mercury concentrations with error bars representing the 95% confidence level (α =.05), sample size per length bin, and advisory level at 0.3 mg/kg and 1.0 mg/kg. Lake samples include reservoirs, surface mines, impoundments and natural lakes. River samples included both rivers and large rivers.

Figure 12. Walleye median mercury concentrations for 2 sites with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 13. Mercury concentration for Walleye tissue samples collected in 5 waterbody types with advisory level at 0.3 mg/kg and 1.0 mg/kg.

Paddlefish

Paddlefish (N=21) were collected from the Missouri and Mississippi Rivers (Figure 14). These two locations represent a majority of the locations where this species can be caught by anglers. Mean mercury concentration was .088 mg/kg with a maximum value of 0.166 mg/kg. Lengths of collected individuals represent sizes caught by anglers. No advisory for the ARP is necessary for Paddlefish. If additional sampling is conducted it should target larger-sized individuals from other pools in the Mississippi River and additional reaches of the Missouri River that weren't previously sampled.

Figure 14. Mercury concentration in Paddlefish tissue samples collected in 2 large rivers and a 0.3 mg/kg advisory level.

Shovelnose Sturgeon

Shovelnose Sturgeon (N=46) were sampled in rivers (N=2) and large rivers (N=1). The mean mercury concentration was 0.032 mg/kg with a maximum value of 0.197 mg/kg (Figure 15). Collected fish represent the range of sizes anglers can capture. None of the collected samples were above the one meal per week advisory level of 0.3 mg/kg. Eye-to-fork in the tail length measurements for all samples were between 373 mm and 734 mm. A mercury consumption advisory for the ARP is not necessary for Shovelnose Sturgeon.

Figure 15. Individual mercury concentrations for Shovelnose Sturgeon tissue samples collected in 2 rivers and 1 large river, the 0.3 mg/kg advisory level is also highlighted.

Crappie Spp.

Black, White and Hybrid Crappie were collected in impoundments (N=14), large river (N=1), natural lakes (N= 7), reservoirs (N=4), and surface mines (N=5; Figure 16). Mercury concentration results for fish of the same size range and collected from the same sites during both studies were significantly different (Table 5). This suggests there are more variables than just length associated with mercury concentrations in fish tissue. The maximum mercury concentration in crappie spp. was 0.386 mg/kg. All large river crappie samples were below the 0.3 mg/kg advisory level (Figure 17). Crappie sampled in other waterbody types had a smaller mean size than large rivers and individual samples tested above the advisory level of 0.3 mg/kg. Black Crappie had a mean mercury concentration of 0.061 (SD, 0.069) mg/kg and White Crappie had a mean concentration of 0.034 (SD, 0.051) mg/kg. Of the 447 crappie samples collected 6 were >0.3 mg/kg advisory level; these samples were collected from impoundments, natural lakes and surface mines. Crappie samples collected for mercury tissue analysis were placed in length bins, a 95% confidence level was used to determine length bins below 0.3 mg/kg advisory level, and results suggested consumption advisories are not necessary for ARP (Figure 18).

Figure 16. Individual mercury concentrations and the 0.3 mg/kg advisory level for crappie spp. tissue samples collected in 5 waterbody types.

Figure 17. Crappie spp. median mercury concentrations for 5 waterbody types with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 18. Crappie spp. mean mercury concentrations with error bars representing the 95% confidence level (α=.05), sample size per length bin, and advisory level at 0.3 mg/kg.

Flathead Catfish

Flathead Catfish *Pylodictis olivaris* (N=293) were sampled in 2 large rivers, 7 rivers, and 3 reservoirs. Mercury concentration results for fish of the same size range and collected from the same sites during both studies were significantly different even though length was not significantly different (Table 5). The maximum mercury concentration for Flathead Catfish was 0.98 mg/kg. Sample results exceeded the 0.3 mg/kg advisory level and were below the 1.0 mg/kg advisory level (Figure 19). Flathead Catfish mercury concentration results suggest this species is similar to other top-level predators in that increased length is positively associated with higher mercury concentration. Mercury concentrations in Flathead Catfish tissue samples were highest in rivers but tissue samples from length bins >550 mm were lacking in reservoirs (Figure 20). Additional samples in reservoirs and rivers could improve the precision in larger length bins. Sampling for this study was centered around the length bins where samples were most likely to increase above the 0.3 mg/kg advisory level. The recommended advisory for the ARP is one-meal-per-week for fish ≥475 mm (Figure 21).

Figure 19. Mercury concentration for Flathead Catfish tissue samples collected in reservoirs, rivers and large rivers with 0.3 mg/kg and 1.0 mg/kg advisory levels.

Figure 20. Flathead Catfish median mercury concentrations for lakes(reservoirs) and rivers (rivers and large rivers) with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 21. Flathead Catfish mean mercury concentrations with error bars representing the 95% confidence level (α = .05) and advisory levels at 0.3 mg/kg and 1.0 mg/kg.

Channel Catfish

Channel Catfish tissue samples (N=397) were collected from surface mines (N=4), impoundments (N=3), rivers (N=8), and large rivers (N=2). Mercury concentration results for fish of the same size range and collected from the same sites during both studies were not significantly different (Table 5). The maximum mercury concentration for all Channel

Catfish samples was 0.714 mg/kg (Figure 22). River samples had the highest mercury concentrations and surface mines had the lowest (Figure 23). Of the 22 samples above 0.3 mg/kg only one was from an impoundment. The recommended statewide advisory for the ARP is one-meal-per-week for fish ≥625 mm in total length (Figure 24).

Length (mm)

Figure 22. Mercury concentration for Channel Catfish tissue samples collected in reservoirs, rivers and large rivers with advisory levels at 0.3 mg/kg.

Figure 23. Channel Catfish median mercury concentrations for rivers, large rivers, surface mines and impoundments with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 24. Channel Catfish mean mercury concentrations with error bars representing the 95% confidence level (α=.05) and advisory level at 0.3 mg/kg.

Common Carp

Common Carp *Cyprinus carpio* tissue samples (N=70) were collected from 2 rivers, 1 impoundment, and 1 natural lake. All of the tissue samples tested below 0.3 mg/kg advisory level (Figure 25). The mean mercury concentration was 0.082 mg/kg. An advisory for the ARP is not necessary for Common Carp.

Length (mm)

Figure 25. Mercury concentration for Common Carp tissue samples collected in impoundments, rivers and large natural lakes with an advisory level of 0.3 mg/kg.

Sucker Spp.

Shorthead Redhorse tissue samples (N=40) were collected in 4 rivers (Figure 26). The mean mercury concentration was 0.145 mg/kg and the Upper Iowa River had the highest concentration of 0.425 mg/kg (Figure 27). The ARP should follow the one-meal-per-week advisory recommendations when consuming Shorthead Redhorse.

Figure 26. Mercury concentration for Shorthead Redhorse tissue samples collected in 4 rivers with an advisory level of 0.3 mg/kg.

Figure 27. Shorthead Redhorse median mercury concentrations for 4 river sites with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Hybrid Striped Bass

Hybrid Striped Bass *Morone saxatilis* x *M. chrysops* tissue samples (N=135) were collected from surface mines (N=2), reservoirs (N=3), natural lakes (N=1), impoundments (N=4). Mercury concentration results for fish of the same size range and collected from the same sites during both studies were significantly different (Table 5). The maximum mercury concentration for Hybrid Striped Bass was 0.452 mg/kg (Figure 28). Of the 9 sample results >0.3 mg/kg, 8 were from a single surface mine. Hybrid Striped Bass are also difficult to differentiate from White Bass *Morone chrysops* of the same size, therefore, these species were combined and the more conservative White Bass advisory was used. The advisory for the ARP is one-meal-per-week for Hybrid Striped Bass ≥525 mm (Figure 29).

Figure 28. Mercury concentration for Hybrid Striped Bass tissue samples collected in impoundments, natural lakes, reservoirs, and surface mines with an advisory level of 0.3 mg/kg.

Figure 29. Hybrid Striped Bass mean mercury concentrations with error bars representing the 95% confidence level (α= .05) and advisory level at 0.3 mg/kg.

White Bass

White Bass tissue samples (N=136) were collected in natural lakes (N=1), rivers (N=4), large rivers (N=1), reservoirs (N=2), and impoundments (N=1; Figure 30). Mercury concentration results for fish of the same size range and collected from the same sites during both studies were not significantly different (Table 5). The maximum mercury concentrations for White Bass was 0.511 mg/kg. Of the 10 sample results collected that were over 0.3 mg/kg, 4 were from the Maquoketa River. A one-meal-per-week advisory for the ARP was suggested for White Bass >400 mm (Figure 31). Combining Hybrid Striped Bass and White Bass made the one-meal-per-week advisory >400 mm for ARP.

Figure 30. Mercury concentration for White Bass tissue samples collected in impoundments, natural lakes, reservoirs, large rivers, and rivers with an advisory level of 0.3 mg/kg.

Figure 31. White Bass mean mercury concentrations with error bars representing the 95% confidence level (α= .05) and advisory level at 0.3 mg/kg.

Sauger

Sauger Sander canadense tissue samples (N=96) were collected from 2 large rivers. Mercury concentration results for fish of the same size range and collected from the same sites during both studies were significantly different (Table 5). The maximum mercury concentration was 0.556 mg/kg (Figure 32). The recommended advisory for ARP is one-meal-perweek of Sauger >400 mm (Figure 33).

Figure 32. Mercury concentration for Sauger tissue samples collected in impoundments, natural lakes, reservoirs, large rivers, and rivers with an advisory level of 0.3 mg/kg.

Figure 33. Sauger mean mercury concentrations with error bars representing the 95% confidence level (α =.05) and advisory level at 0.3 mg/kg.

Muskellunge

Muskellunge tissue samples (N=96) were collected from impoundments (N=2) and natural lakes (N=3) (Figure 34). The maximum mercury concentration was 3.049 mg/kg. Muskellunge are regulated with a 1016 mm minimum length limit in lowa and the mean mercury concentration for fish >1016 mm was 0.853 mg/kg. Therefore, Muskellunge were identified as the only species with a do-not-eat advisory (i.e., mercury concentration \geq 1.0 mg/kg) for the ARP.

Figure 34. Mercury concentration for Muskellunge tissue samples collected in impoundments and natural lakes with advisory levels 0.3 mg/kg and 1.0 mg/kg.

Yellow Bass

Yellow Bass *Morone mississippiensis* tissue samples were collected in natural lakes (N=3) and impoundments (N=1). The maximum mercury concentration was 0.254 mg/kg. All samples were below the advisory level of 0.3 mg/kg (Figure 35). A consumption advisory was not necessary for the ARP consuming Yellow Bass.

Figure 35. Mercury concentration for Yellow Bass tissue samples collected in impoundments and natural lakes with an advisory level of 0.3 mg/kg.

Trout

Brook Trout *Salvelinus fontinalis* (N=20), Brown Trout *Salmo trutta* (N=31), and Rainbow Trout *Oncorhynchus mykiss* (N=20) were collected in 5 trout streams and 1 hatchery in Northeast Iowa (Figure 36). The maximum mercury concentration for all samples was 0.181 mg/kg. All samples were below the 0.3 mg/kg advisory level. Therefore, an advisory for ARP was not necessary.

Figure 36. Mercury concentration for Brook, Brown, and Rainbow Trout tissue samples collected in a Northeast Iowa fish hatchery and 5 trout streams with an advisory level of 0.3 mg/kg.

Yellow Perch

Yellow Perch *Perca flavescens* tissue samples (N=143) were collected from natural lakes (N=5), impoundments (N=2), and large rivers (N=1) (Figure 37). The maximum mercury concentration was 0.242 mg/kg. All samples were below the 0.3 mg/kg advisory level. Yellow Perch can be consumed at any length, and an advisory for the ARP was not necessary for this species.

Figure 37. Mercury concentration for Yellow Perch tissue samples collected in natural lakes, impoundments, and large rivers with an advisory level of 0.3 mg/kg.

Freshwater Drum

Freshwater Drum *Aplodinotus grunniens* (N=114) were sampled in three pools of the Upper Mississippi River (Figure 38). Mercury concentration results for fish of the same size range and collected from the same sites during both studies were significantly different (Table 5). The maximum mercury concentration for Freshwater Drum was 0.793 mg/kg (Figure 39). These fish can also be found in surface mines, other rivers and some natural lakes such as West Okoboji. Future sampling should be conducted to include these waterbody types. Until then, a conservative advisory for the ARP of onemeal-per-week for fish ≥450 mm was recommended (Figure 40).

Figure 38, Mercury concentration for Freshwater Drum tissue samples collected from 3 pools in the Upper Mississippi River with an advisory level of 0.3 mg/kg.

Figure 39. Freshwater Drum median mercury concentrations for 3 Upper Mississippi River pools with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 40. Freshwater Drum mean mercury concentrations with error bars representing the 95% confidence level (α= .05) and advisory level at 0.3 mg/kg.

Northern Pike

Northern Pike tissue samples were collected from natural lakes (N=6), rivers (N=6), large rivers (N=1), and surface mines (N=1) (Figure 41). Mercury concentration results for fish of the same size range and collected from the same sites during both studies were significantly different (Table 1 and Table 5). The maximum mercury concentration for Northern Pike was 0.787 mg/kg. Impoundments had the highest individual sample concentration and surface mines had the highest median value (Figure 42). The advisory for ARP is one-meal-per-week for Northern Pike ≥475 mm (Figure 43). Additional samples could be collected from East and West Okoboji Lakes to monitor changes in mercury level concentrations. Additional samples could also be collected on the Upper Mississippi River pools to monitor higher than average values in the UMR pools (Figure 44).

Figure 41. Mercury concentration for Northern Pike tissue samples collected from natural lakes, rivers, large rivers, and surface mines with an advisory level of 0.3 mg/kg.

 Table 1. Mean total length and mercury concentration for Northern Pike collected at two different time periods in East and West

 Okoboji lakes student t-test results, P values < .05 were considered significant.</td>

Collection Period	mean Total Length (mm)	mean Hg conc (mg/kg)
Study 7044 (N=22)	639	0.259
Study 7064 (N=21)	648	0.115
P Value	0.826	<.001

Figure 42. Northern Pike median mercury concentrations for natural lakes, large rivers, rivers, and surface mines. Upper Mississippi River pools with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Figure 43. Northern Pike mean mercury concentrations with error bars representing the 95% confidence level (α =.05) and advisory level at 0.3 mg/kg.

UMR Pool 10 UMR Pool 11 UMR Pool 13 UMR Pool 16

Figure 44. Northern Pike median mercury concentrations for 4 pools in the Upper Mississippi River. Upper Mississippi River pools with the ends of the boxes displaying the 25th and 75th percentile and error bars defining the 10th and 90th percentiles.

Management Recommendations

- Iowa-caught sport fish are safe to eat for most people.
- Predator species (i.e., Largemouth Bass, Walleye, Northern Pike, Flathead Catfish, Muskellunge) had higher levels of mercury in their tissue than other species (i.e., Bluegill, Crappie Spp., Perch, Trout, Channel Catfish, and Common Carp).
- These consumption advisories are conservative recommendations for the ARP. Many of the samples collected in this study were targeted to collect samples containing mercury levels close to or above the 0.3 mg/kg advisory level. Therefore, these samples don't represent the true average of mercury concentrations in fish populations statewide.

LITERATURE CITED

ESRI. 2017. ArcGIS Desktop. Release 10.5. Redlands, CA: Environmental Systems research Institute

- Cashatt, DN. 2017. Factors affecting mercury concentration in Iowa fishes. Iowa Department of Natural Resources. Federal Aid in Sport Fish Restoration, Completion Report, Des Moines.
- Cusack, LK, E Smit, ML Kile, and AK Harding. 2017. Regional and temporal trends in blood mercury concentrations and fish consumption in women of child bearing age in the united states using NHANES data from 1999-2010. Environ Health. 2017 16:10
- Iowa DNR. 2019. 2019 Iowa fishing regulations. Fisheries Bureau. Iowa Department of Natural Resources, Des Moines.
 Krogman, RM. 2019. Patterns in mercury bioaccumulation in fishes of Iowa lakes, and recommendations for strategic sampling. Iowa Department of Natural Resources. Department Report, Des Moines.

Responsive Management. 2008. Iowa Angler Survey. Harrisonburg, VA. 360 pages

Responsive Management. 2019. Iowa anglers' participation in and attitudes toward fishing and the Iowa DNR. Harrisonburg, VA.

Sackett, DK, WG Cope, JA Rice, and DD Aday. 2013. The influence of fish length on tissue mercury dynamics: Implications for natural resource management and human health risk. International Journal of Environmental Research and Public Health. 10:638-659

Selch, TM, CW Hoagstrom, EJ Weimer, JP Duehr, and SR Chipps. 2007. Influence of fluctuating water levels on mercury concentrations in adult Walleyes. Bull Environ Contam Toxicol 79:36-40

- Schultz, RD, editor. 2009. Standard gear and techniques for fisheries surveys in Iowa. Iowa Department of Natural Resources Job Completion Report, Des Moines, 186 pages.
- Stahl, L, B Snyder, H McCarty, T Cohen, K Miller, M Fernandez, and J Healey. 2019. Evaluating alternatives for monitoring mercury in fish tissue: fish biopsy punch versus homogenized whole fillet samples. EPA
- McMurtry MJ, DL Wales, WA Scheider, GL Beggs, and PE Dimond. 1989. Relationship of mercury concentrations in lake trout. Canada Journal of Fish Aquatics Science 46:426–434
- Mills, N. 2016. Factors affecting mercury concentrations in Iowa fishes. MS thesis, Iowa State University, Ames, Iowa https://lib.dr.iastate.edu/etd/15976
- Mills, N, D Cashatt, MJ Weber, and CL Pierce. 2018. A case study and a meta-analysis of seasonal variation in fish mercury concentrations. Ecotoxicology 27:641–649
- Mills, N, MJ Weber, D Cashatt, CL Pierce, and P Dixon. 2022. Factors related to fish mercury concentrations in Iowa Lakes. Environ Monit Assess 194:721
- Weber, MJ and D Cashatt. 2020. Use of occupancy modelling to identify sample sizes and waterbodies with fish exceeding mercury consumption advisory thresholds. Ecotoxicology 30:323-330.

USFDA (U.S. Food and Drug Administration). 2022. Advice about Eating Fish. https://www.fda.gov/food/consumers/advice-about-eating-fish

TABLE AND FIGURES

Common Name	Scientific Name	River	Lake	Surface
Common Name	Scientific Name	Sample	Sample	Mine
Largemouth Bass	Micropterus salmoides	60	211	100
Walleye	Sander vitreus	147	191	
Bluegill	Lepomis macrochirus	40	40	40
Crappie spp.	Pomoxis spp.	40	40	50
Channel Catfish	Ictalurus punctatus	90	28	40
Flathead Catfish	Pylodictis olivaris	61	70	
Smallmouth Bass	Micropterus dolomieu	204		
Trout spp.	Salmonid spp.	40		
Yellow Perch	Perca flavescens	40	40	
Sauger	Stizostedion canadense	71		
Northern Pike	Esox lucius	97	71	10
Muskellunge	Esox masquinongy		25	
Hybrid Striped Bass	Morone saxatilis x M. chrysops		35	40
White Bass	Morone chrysops	51	40	
Yellow Bass	Morone mississippiensis		40	
Common Carp	Cyprinus carpio	30	40	
Freshwater Drum	Aplodinotus grunniens	100		
Sucker spp.	Catastomide spp.	40		
Shovelnose Sturgeon	Scaphirhynchus platorynchus	46		
Paddlefish	Polyodon spathula	21		
	Total	1178	871	280

 Table 2. Species and number of sport fish collected and analyzed for mercury contamination in tissue, species listed in descending order of angler preference with Largemouth bass being the most preferred (FY20-FY22).

 Table 3. Suggested statewide fish consumption advisories for the at-risk population consuming fish caught in lowa lakes and rivers.

Best Choices		Good Choices EAT 1 SERVING A WEEK					
Largemouth Bass < 13" Smallmouth Bass < 13" Bluegill Walleye < 19" Paddlefish	Channel Catfish ≤ 24" Common Carp White Bass ≤ 15" Freshwater Drum ≤ 17" Hybrid Striped Bass < 20"	Largemouth Bass > 13" Smallmouth Bass > 13" Walleye > 19" Flathead Catfish > 19" Channel Catfish > 24"	White Bass > 15" Hybrid Striped Bass > 20" Freshwater Drum > 17" Shorthead Redhorse Northern Pike				
Shovelnose Sturgeon	Yellow Bass						
Crappie Spp. Sauger < 15"	Trout Spp. Yellow Perch	Choices to Av	void				
Flathead Catfish < 18"		Muskellunge					
		www.iowadnr/fishadvi	state of IOWA DEPARTMENT OF Health and Human services				

Figure 45. Locations of sample sites for fish tissue samples collected for fish consumption advisories.

Site NameDNR CodeWaterbody TypeX-CoordY-CoordAnkeny Lake (DMACC)ANK77Impoundment4495124617135Badger Creek LakeBAC61Impoundment4238944591432Beeds LakeBEE35Impoundment4383214629479Briggs Woods LakeBIC77Impoundment4383214699494Cold Springs LakeCSP15Impoundment4503194593421Lake AnquabiAHQ91Impoundment4503194571426Lake AnquabiAHQ91Impoundment4503194571451Lake GeodeGE044Impoundment5367974802512Lake AnquabiICA02Impoundment531244545986Lake MacbrideMAC52Impoundment512934551707Lake IcariaICA02Impoundment512934551871Lake MacbrideMAC52Impoundment512934551707Lake MaimiMIA68Impoundment512934551707Lake Grine FiresTFI87Impoundment535764518715Lake Grine FiresTFI87Impoundment535764518715Lake WapelloWAP26Impoundment512934551707Morrina Creek LakeRIC37Impoundment512934551707Morrina Creek LakeRHA59Impoundment512934551707Morrina Creek LakeRHA59Impoundment512934551707Morrina Creek LakeRHA59Impoundment512934551871 <th colspan="9">Table 4. Site names and waterbody types sampled.</th>	Table 4. Site names and waterbody types sampled.								
Code Type Ankeny Lake (DMACC) ANK77 Impoundment 449512 4617135 Badger Creek Lake BEC51 Impoundment 423894 4591432 Beeds Lake BEE35 Impoundment 438321 4629479 Briggs Woods Lake BWO40 Impoundment 43321 4629479 Briggs Woods Lake BRC94 Impoundment 43317 4693494 Cold Springs Lake CSP15 Impoundment 450319 4571146 Lake Anita AHQ91 Impoundment 450319 4571146 Lake Anita AHQ91 Impoundment 351184 458776 Lake Anita AHQ91 Impoundment 353124 4545986 Lake Adotride MAC52 Impoundment 58587 4780856 Lake Macbride MAC52 Impoundment 51293 4551707 Lake Macbride MIA68 Impoundment 51293 4551707 Lake Macbride MIA68 Impoundment 512933 4551707	Site Name	DNR	Waterbody	X-Coord	Y-Coord				
Ankery Lake (JMACC) ANK77 Impoundment 449512 4451135 Badger Creek Lake BAC61 Impoundment 423894 4591432 Beeds Lake BEC35 Impoundment 438056 4735292 Briggs Woods Lake BIC77 Impoundment 434799 4698625 Brushy Creek Lake BRC94 Impoundment 431717 4693494 Cold Springs Lake CSP15 Impoundment 35124 4573271 Lake Anita ANI15 Impoundment 351184 458776 Lake Goode GEO44 Impoundment 536797 4802512 Lake Anita ANI15 Impoundment 536797 4802512 Lake Goode GEO44 Impoundment 536797 4802512 Lake Karia ICA02 Impoundment 536797 4802512 Lake Mapeir MAC52 Impoundment 536797 458585 Lake Maimi MIA68 Impoundment 53756 4518715 Lake Mapeilo WAP26 Impoundment<			Iype	440542	4617125				
Badger Creek Lake BACE1 Impoundment 423634 4331432 Beeds Lake BEE35 Impoundment 480056 4735292 Big Creek Lake BIC77 Impoundment 438321 4629479 Briggs Woods Lake BWO400 Impoundment 419317 4693494 Cold Springs Lake CSP15 Impoundment 450319 4571146 Lake Anita AN15 Impoundment 351184 4587776 Lake Anita AN15 Impoundment 536797 4802512 Lake Anita AN15 Impoundment 536797 4802512 Lake Anita CA02 Impoundment 536797 4802512 Lake Macbride MAC52 Impoundment 536797 4802512 Lake Macbride MAC52 Impoundment 53124 4545986 Lake Macbride MAC52 Impoundment 512953 4551707 Lake Macbride MEY96 Impoundment 53276 4518715 Lake Mapello WAP26 Impoundment <td>Ankeny Lake (DIVIACC)</td> <td></td> <td>Impoundment</td> <td>449512</td> <td>401/135</td>	Ankeny Lake (DIVIACC)		Impoundment	449512	401/135				
Decks Lake BELS3 Impoundment 430356 473232 Big Creek Lake BIC77 Impoundment 438321 4629479 Briggs Woods Lake BWO40 Impoundment 43179 4639494 Cold Springs Lake CSP15 Impoundment 419317 4639494 Cold Springs Lake CSP15 Impoundment 351184 4587776 Lake Anita ANI15 Impoundment 636088 4519879 Lake Anita ANI15 Impoundment 536797 4802512 Lake Hendricks HEN45 Impoundment 536797 4802512 Lake Macbride MAC52 Impoundment 53877 4780856 Lake Maimi MIA68 Impoundment 512953 4551707 Lake Miami MIA68 Impoundment 535776 4518715 Lake of the Hills LTH82 Impoundment 535776 4518715 Lake Sugema SUG89 Impoundment 53576 4518715 Little River Watershed Lake LR127	Badgel Cleek Lake	DEESE	Impoundment	423094	4391432				
Bit Crew Lake Bit Cr Impoundment 433221 4629479 Briggs Woods Lake BWO40 Impoundment 434799 4698625 Brushy Creek Lake BRC94 Impoundment 419317 4693494 Cold Springs Lake CSP15 Impoundment 325247 4573271 Lake Anta ANI15 Impoundment 450319 4571146 Lake Anita ANI15 Impoundment 636088 4519879 Lake Anita ANI15 Impoundment 536797 4802512 Lake Hendricks HEN45 Impoundment 536797 4802512 Lake Macbride MAC52 Impoundment 536797 4802512 Lake Maimi MIA68 Impoundment 51987 4780856 Lake Miami MIA68 Impoundment 512953 4551707 Lake of Three Fires TFI87 Impoundment 53721 4508111 Lake Sugema SUG89 Impoundment 53276 4518715 Littke River Watershed Lake LR127	Beeus Lake	BEESS	Impoundment	480050	4/35292				
Briggs woods Lake BW040 Impoundment 434799 4693623 Brushy Creek Lake BRC94 Impoundment 419317 4693494 Cold Springs Lake CSP15 Impoundment 325247 4573271 Lake Ahquabi AHQ91 Impoundment 450319 4571146 Lake Anita ANI15 Impoundment 536797 4802512 Lake Aenita ICA02 Impoundment 536797 4802512 Lake Hendricks HEN45 Impoundment 619078 4628229 Lake Macbride MAC52 Impoundment 536797 4802512 Lake Maimi MIA68 Impoundment 512953 4551707 Lake of the Hills LTH82 Impoundment 537231 4508111 Lake Sugema SUG89 Impoundment 53776 4518715 Little River Watershed Lake LR127 Impoundment 535776 4518715 Little River Watershed Lake PLC57 Impoundment 512953 4551707 Morina Cove <t< td=""><td></td><td>BIC//</td><td>Impoundment</td><td>438321</td><td>4629479</td></t<>		BIC//	Impoundment	438321	4629479				
Brushy Creek LakeBRC94Impoundment41931/4693494Cold Springs LakeCSP15Impoundment3252474573271Lake AhquabiAHQ91Impoundment4503194578776Lake AnitaANI15Impoundment3511844587776Lake GeodeGEO44Impoundment6360884519879Lake HendricksHEN45Impoundment5367974802512Lake IcariaICA02Impoundment531244545986Lake MacbrideMAC52Impoundment512934551707Lake MeyerMEY96Impoundment5129534551707Lake MeyerMEY96Impoundment5372144508111Lake of the HillsLTH82Impoundment537764518715Lake SugemaSUG89Impoundment5357764518715Little River Watershed LakeLR127Impoundment530544566934Pleasant Creek LakePLC57Impoundment510234664126Prairie Lakes NorthRHA59Impoundment3150234608076Red Haw LakeTHM88Impoundment3979114547597Twelve Mile Creek LakePIC57Impoundment322404538562Prairie Rose LakeRHA59Impoundment3979114547597Twelve Mile Creek LakeTHM88Impoundment3979114547597Velve Mile Creek LakeVIK69Impoundment322402453807Volga LakeVIK69Impoundment303776 <t< td=""><td>Briggs Woods Lake</td><td>BWO40</td><td>Impoundment</td><td>434799</td><td>4698625</td></t<>	Briggs Woods Lake	BWO40	Impoundment	434799	4698625				
Cold Springs LakeCSP15Impoundment3252474573271Lake AnuabiAHQ91Impoundment4503194571146Lake AnitaANI15Impoundment3511844587776Lake GeodeGEO44Impoundment6360844519879Lake HendricksHEN45Impoundment5367974802512Lake IcariaICA02Impoundment531244545986Lake MacbrideMAC52Impoundment6190784628229Lake MeyerMEY96Impoundment5129534551707Lake MiamiLTH82Impoundment5372314508111Lake of the HillsLTH82Impoundment5357764518715Lake SugemaSUG89Impoundment5357764518715Little River Watershed LakeLRI27Impoundment530544566934Pleasant Creek LakePLC57Impoundment372314508112Prairie Lakes NorthRHA59Impoundment3150234664126Prairie Rose LakePRO83Impoundment3150234608076Red Haw LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeVIK69Impoundment329024538071Volga LakeVIK69Impoundment329024538071Volga LakeVIK69Impoundment307776450281Vello Smoke Park LakeVIK69Impoundment3023774543856Vising LakeVIK69Impoundment32902453871<	Brushy Creek Lake	BRC94	Impoundment	419317	4693494				
Lake AhquabiAHQ91Impoundment4503194571146Lake AnitaANI15Impoundment3511844587776Lake GeodeGEO44Impoundment6360884519879Lake HendricksHEN45Impoundment5367974802512Lake IcariaICA02Impoundment531244545986Lake MacbrideMAC52Impoundment6190784628229Lake MeyerMEY96Impoundment5885874780856Lake MiamiMIA68Impoundment5129534551707Lake of the HillsLTH82Impoundment6937994599252Lake of Three FiresTFI87Impoundment5856614504194Lake SugemaSUG89Impoundment5357764518715Little River Watershed LakeLR127Impoundment536234551707Mormon Trail LakeMTR01Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment315023450876Prairie Rose LakePR083Impoundment3150234608076Red Haw LakeTHM88Impoundment3945484546017Union Grove LakeVIK69Impoundment32902453871Volga LakeVOL33Impoundment32902453871Volga LakeVOL33Impoundment30776453280Viking LakeVS20Impoundment30776453293Vellow Smoke Park LakeYSM24Impoundment30776453293Vel	Cold Springs Lake	CSP15	Impoundment	325247	45/32/1				
Lake Anita ANI15 Impoundment 351184 4587776 Lake Geode GEO44 Impoundment 636088 4519879 Lake Hendricks HEN45 Impoundment 536797 4802512 Lake Icaria ICA02 Impoundment 536797 4802512 Lake Icaria ICA02 Impoundment 53124 4545986 Lake Macbride MAC52 Impoundment 619078 4628229 Lake Meyer MEY96 Impoundment 512953 4551707 Lake of the Hills LTH82 Impoundment 537231 4508111 Lake Sugema SUG89 Impoundment 535776 4518715 Little River Watershed Lake LR127 Impoundment 535776 4518715 Little River Watershed Lake PLC57 Impoundment 53620 4664126 Prairie Lakes North RHA59 Impoundment 397911 4538562 Prairie Rose Lake PR083 Impoundment 397911 4547597 Three Mile Lake T	Lake Ahquabi	AHQ91	Impoundment	450319	4571146				
Lake Geode GEO44 Impoundment 636088 4519879 Lake Hendricks HEN45 Impoundment 536797 4802512 Lake Icaria ICA02 Impoundment 353124 4545986 Lake Macbride MAC52 Impoundment 619078 4628229 Lake Meyer MEY96 Impoundment 588587 4780856 Lake Miami MIA68 Impoundment 512953 4551707 Lake of the Hills LTH82 Impoundment 693799 4599252 Lake of Three Fires TFI87 Impoundment 55561 4504194 Lake Sugema SUG89 Impoundment 535776 4518715 Little River Watershed Lake LR127 Impoundment 512953 4551707 Mornon Trail Lake MTR01 Impoundment 59250 4566134 Pleasant Creek Lake PLC57 Impoundment 363054 4566934 Prairie Rose Lake RHA59 Impoundment 315023 4608076 Red Haw Lake THM88<	Lake Anita	ANI15	Impoundment	351184	4587776				
Lake Hendricks HEN45 Impoundment 536797 4802512 Lake Icaria ICA02 Impoundment 353124 4545986 Lake Macbride MAC52 Impoundment 619078 4628229 Lake Meyer MEY96 Impoundment 588587 4780856 Lake Miami MIA68 Impoundment 512953 4551707 Lake of the Hills LTH82 Impoundment 693799 4599252 Lake of Three Fires TFI87 Impoundment 55561 4504194 Lake Sugema SUG89 Impoundment 535776 4518715 Little River Watershed Lake LR127 Impoundment 512953 4551707 Mornon Trail Lake MTR01 Impoundment 512953 4551707 Mornon Trail Lake PLC57 Impoundment 59200 4664126 Prairie Rose Lake PR083 Impoundment 315023 4608076 Red Haw Lake THM88 Impoundment 397911 4547597 Twee Mile Creek Lake <t< td=""><td>Lake Geode</td><td>GEO44</td><td>Impoundment</td><td>636088</td><td>4519879</td></t<>	Lake Geode	GEO44	Impoundment	636088	4519879				
Lake IcariaICA02Impoundment3531244545986Lake MacbrideMAC52Impoundment6190784628229Lake MeyerMEY96Impoundment5885874780856Lake MiamiMIA68Impoundment5129534551707Lake of the HillsLTH82Impoundment6937994599252Lake of Three FiresTFI87Impoundment585614504194Lake SugemaSUG89Impoundment5357764518715Little River Watershed LakeLRI27Impoundment5357764512932Marina CoveMIA68Impoundment5129534551707Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Rose LakePRO83Impoundment3150234608076Red Haw LakeRHA59Impoundment3979114538562Three Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeVIK69Impoundment329024538071Volga LakeVOL33Impoundment307764655290Viking LakeVS204Impoundment30776455292UMR Pool 10UMR10Large River659644749599UMR Pool 113RMR49Large River7130084680823	Lake Hendricks	HEN45	Impoundment	536797	4802512				
Lake MacbrideMAC52Impoundment6190784628229Lake MeyerMEY96Impoundment588574780856Lake MiamiMIA68Impoundment5129534551707Lake of the HillsLTH82Impoundment6937994599252Lake of Three FiresTFI87Impoundment3572314508111Lake SugemaSUG89Impoundment5856614504194Lake WapelloWAP26Impoundment5357764518715Little River Watershed LakeLR127Impoundment5129534551707Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment3150234608076Red Haw LakePR083Impoundment3150234608076Red Haw LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3290024538071Union Grove LakeVOL33Impoundment329024538071Volga LakeVOL33Impoundment307764655290Viking LakeVS204Impoundment30776455292UMR Pool 10UMR10Large River659644749599UMR Pool 113RMR49Large River7130084680823	Lake Icaria	ICA02	Impoundment	353124	4545986				
Lake MeyerMEY96Impoundment5885874780856Lake MiamiMIA68Impoundment5129534551707Lake of the HillsLTH82Impoundment6937994599252Lake of Three FiresTF187Impoundment3572314508111Lake SugemaSUG89Impoundment5856614504194Lake WapelloWAP26Impoundment5357764518715Little River Watershed LakeLR127Impoundment5357764518715Marina CoveMIA68Impoundment5129534551707Mormon Trail LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePR083Impoundment3150234608076Red Haw LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeVIK69Impoundment3290024538071Union Grove LakeVIK69Impoundment3228004664064Viking LakeVOL33Impoundment322774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River659644749599UMR Pool 10UMR10Large River655854737777UMR Pool 13RMR49Large River7130084680823	Lake Macbride	MAC52	Impoundment	619078	4628229				
Lake MiamiMIA68Impoundment5129534551707Lake of the HillsLTH82Impoundment6937994599252Lake of Three FiresTFI87Impoundment3572314508111Lake SugemaSUG89Impoundment5856614504194Lake WapelloWAP26Impoundment5357764518715Little River Watershed LakeLRI27Impoundment5357764518707Marina CoveMIA68Impoundment5129534551707Mormon Trail LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePRO83Impoundment3150234608076Red Haw LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeVIK69Impoundment3290024538071Union Grove LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River659644749599UMR Pool 10UMR10Large River655854737777UMR Pool 13RMR49Large River7130084680823	Lake Meyer	MEY96	Impoundment	588587	4780856				
Lake of the HillsLTH82Impoundment6937994599252Lake of Three FiresTFI87Impoundment3572314508111Lake SugemaSUG89Impoundment5856614504194Lake WapelloWAP26Impoundment5357764518715Little River Watershed LakeLRI27Impoundment4341024512932Marina CoveMIA68Impoundment5129534551707Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePR083Impoundment3150234608076Red Haw LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment307776455280Yellow Smoke Park LakeYSM24Impoundment307776455290Missouri RiverRMR78Large River6579854737777UMR Pool 10UMR10Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Lake Miami	MIA68	Impoundment	512953	4551707				
Lake of Three FiresTFI87Impoundment3572314508111Lake SugemaSUG89Impoundment5856614504194Lake WapelloWAP26Impoundment5357764518715Little River Watershed LakeLRI27Impoundment4341024512932Marina CoveMIA68Impoundment5129534551707Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment3150234608076Red Haw LakePR083Impoundment3150234608076Three Mile LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3979114547597Union Grove LakeUGR86Impoundment3290024538071Volga LakeVOL33Impoundment3077764652290West Lake (Osceola)WOS20Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Lake of the Hills	LTH82	Impoundment	693799	4599252				
Lake SugemaSUG89Impoundment5856614504194Lake WapelloWAP26Impoundment5357764518715Little River Watershed LakeLRI27Impoundment4341024512932Marina CoveMIA68Impoundment5129534551707Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePR083Impoundment3150234608076Red Haw LakeRHA59Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3979114547597Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 13RMR49Large River7130084680823	Lake of Three Fires	TFI87	Impoundment	357231	4508111				
Lake WapelloWAP26Impoundment5357764518715Little River Watershed LakeLRI27Impoundment4341024512932Marina CoveMIA68Impoundment5129534551707Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePR083Impoundment3150234608076Red Haw LakeRHA59Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3979114547597Union Grove LakeUGR86Impoundment3290024538071Viking LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River655854737777UMR Pool 13RMR49Large River7130084680823	Lake Sugema	SUG89	Impoundment	585661	4504194				
Little River Watershed LakeLRI27Impoundment4341024512932Marina CoveMIA68Impoundment5129534551707Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePRO83Impoundment3150234608076Red Haw LakeRHA59Impoundment3979114547597Twelve Mile Creek LakeTHI88Impoundment3979114547597Twelve Mile Creek LakeUGR86Impoundment3290024538071Union Grove LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 13RMR49Large River7130084680823	Lake Wapello	WAP26	Impoundment	535776	4518715				
Marina CoveMIA68Impoundment5129534551707Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePRO83Impoundment3150234608076Red Haw LakeRHA59Impoundment4770894538562Three Mile LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeUGR86Impoundment3290024538071Volga LakeVOL33Impoundment329002453058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6550644749599UMR Pool 10UMR10Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Little River Watershed Lake	LRI27	Impoundment	434102	4512932				
Mormon Trail LakeMTR01Impoundment3630544566934Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePR083Impoundment3150234608076Red Haw LakeRHA59Impoundment4770894538562Three Mile LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 13RMR49Large River7130084680823	Marina Cove	MIA68	Impoundment	512953	4551707				
Pleasant Creek LakePLC57Impoundment5982004664126Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePR083Impoundment3150234608076Red Haw LakeRHA59Impoundment4770894538562Three Mile LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 13RMR49Large River7130084680823	Mormon Trail Lake	MTR01	Impoundment	363054	4566934				
Prairie Lakes NorthRHA59Impoundment4770894538562Prairie Rose LakePRO83Impoundment3150234608076Red Haw LakeRHA59Impoundment4770894538562Three Mile LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 13RMR49Large River7130084680823	Pleasant Creek Lake	PLC57	Impoundment	598200	4664126				
Prairie Rose LakePRO83Impoundment3150234608076Red Haw LakeRHA59Impoundment4770894538562Three Mile LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6550644749599UMR Pool 10UMR10Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Prairie Lakes North	RHA59	Impoundment	477089	4538562				
Red Haw LakeRHA59Impoundment4770894538562Three Mile LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 13RMR49Large River7130084680823	Prairie Rose Lake	PRO83	Impoundment	315023	4608076				
Three Mile LakeTHM88Impoundment3979114547597Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 13RMR49Large River7130084680823	Red Haw Lake	RHA59	Impoundment	477089	4538562				
Twelve Mile Creek LakeTMI88Impoundment3945484546017Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 11RMR22Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Three Mile Lake	THM88	Impoundment	397911	4547597				
Union Grove LakeUGR86Impoundment5228004664064Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 11RMR22Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Twelve Mile Creek Lake	TMI88	Impoundment	394548	4546017				
Viking LakeVIK69Impoundment3290024538071Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 11RMR22Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Union Grove Lake	UGR86	Impoundment	522800	4664064				
Volga LakeVOL33Impoundment6003414750281West Lake (Osceola)WOS20Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 11RMR22Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Viking Lake	VIK69	Impoundment	329002	4538071				
West Lake (Osceola)WOS20Impoundment4323774543058Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 11RMR22Large River6559854737777UMR Pool 13RMR49Large River7130084680823	Volga Lake	VOL33	Impoundment	600341	4750281				
Yellow Smoke Park LakeYSM24Impoundment3077764655290Missouri RiverRMR78Large River6979544612222UMR Pool 10UMR10Large River6550644749599UMR Pool 11RMR22Large River6559854737777UMR Pool 13RMR49Large River7130084680823	West Lake (Osceola)	WOS20	Impoundment	432377	4543058				
Missouri River RMR78 Large River 697954 4612222 UMR Pool 10 UMR10 Large River 655064 4749599 UMR Pool 11 RMR22 Large River 655985 4737777 UMR Pool 13 RMR49 Large River 713008 4680823	Yellow Smoke Park Lake	YSM24	Impoundment	307776	4655290				
UMR Pool 10 UMR10 Large River 655064 4749599 UMR Pool 11 RMR22 Large River 655985 4737777 UMR Pool 13 RMR49 Large River 713008 4680823	Missouri River	RMR78	Large River	697954	4612222				
UMR Pool 11 RMR22 Large River 655985 4737777 UMR Pool 13 RMR49 Large River 713008 4680823	UMR Pool 10	UMR10	Large River	655064	4749599				
UMR Pool 13 RMR49 Large River 713008 4680823	UMR Pool 11	RMR22	Large River	655985	4737777				
	UMR Pool 13	RMR49	Large River	713008	4680823				
UMR Pool 16 RMR70 Large River 682997 4591858	UMR Pool 16	RMR70	Large River	682997	4591858				
Big Spirit Lake SPL30 Natural 329967 4812894	Big Spirit Lake	SPL30	Natural	329967	4812894				
Blackhawk Lake BHA81 Natural 333592 4684764	Blackhawk Lake	BHA81	Natural	333592	4684764				
Clear Lake CI F17 Natural 468224 4775663	Clear Lake	CLE17	Natural	468224	4775663				
Crystal Lake CRY44 Natural 435752 4786527	Crystal Lake	CRY44	Natural	435752	4786527				

		Watarhady.				
Site Name	Code	Type	X-Coord	Y-Coord		
East Okoboji Lake	EOK30	Natural	328395	4805142		
Lake Manawa	MAN78	Natural	260203	4565635		
Little Wall Lake	LWA40	Natural	447509	4679896		
Lost Island lake	LIS74	Natural	345237	4781981		
North Twin Lake	NTW13	Natural	366058	4704862		
Silver Lake (Dickinson)	SIL30	Natural	310997	4813089		
Storm Lake	STL11	Natural	320724	4720590		
West Okoboji Lake	EOK30	Natural	328395	4805142		
Coralville Reservoir	COR52	Reservoir	622294	4620498		
Rathbun Reservoir	RAT04	Reservoir	507934	4521817		
Red Rock Reservoir	RRO63	Reservoir	500001	4581032		
Saylorville Reservoir	SAY77	Reservoir	442685	4618589		
Big Mill Creek	TBM49	River	704699	4682593		
Cedar River (U)	RCR07	River	553557	4706183		
Cedar River (D)	RCR16	River	639956	4627789		
Des Moines River (D)	RDR89	River	457456	4601676		
Des Moines River (U)	RDR77	River	457456	4601676		
East Nishnabotna River (D)	REN36	River	282164	4507273		
East Nishnabotna River (U)	REN69	River	311476	4542087		
Fountain Springs	TFS28	River	638639	4719344		
French Creek	TFR03	River	627633	4802344		
Iowa River (D)	RIR52	River	622229	4609708		
Iowa River (U)	RIR64	River	508658	4657393		
Little Sioux River (U)	RLS11	River	316584	4751679		
Little Sioux River (D)	RLS43	River	245262	4632381		
Manchester Fish Hatchery	MNH01	River	631870	4702267		
Maquoketa River (U)	RMR28	River	636388	4696604		
Maquoketa River (D)	RMR49	River	712122	4661938		
North Cedar Creek	TNC22	River	644451	4757794		
Pine Creek	TPI03	River	613053	4805823		
Rock River	RRR84	River	228638	4788330		
Skunk River	RSR92	River	596775	4564380		
Upper Iowa River (D)	RUI03	River	629719	4809687		
Upper Iowa River (U)	RUI096	River	558315	4812722		
Wapsipinicon River (D)	RWR53	River	649311	4650310		
Wapsipinicon River (U)	RWR10	River	584223	4707149		
Ada Hayden Heritage Park Lake	AHL85	Surface Mine	448174	4657208		
Arrowhead Lake	ARR81	Surface Mine	330912	4684794		
Banner Lake (North)	BLN91	Surface Mine	454077	4588169		
Blue Heron Lake	RRP77	Surface Mine	439021	4599899		
Copper Creek	COC77	Surface Mine	455930	4605980		
George Wyth Lake	GWY07	Surface Mine	549305	4709368		
Grays Lake	GRL77	Surface Mine	446620	4602227		

Site Name	DNR Code	Waterbody Type	X-Coord	Y-Coord	
Lake Petocka	BOL77	Surface Mine	463217	4617300	
Plainfield Lake	PLA09	Surface Mine	537455	4744520	

Table 5. Descriptive statistics and T-test results comparing mercury concentration and total fish length for 12 species where fish were collected for both study 7064 and Cashatt (2017) with significant P values, α=.05, in bold text.

Species	Variable	Study	N	Mean	Std Dev	Range	Max	Min	Median	т	P Value			
		7064	121	341	33	155	437	282	340	42205	-0.001			
Largemouth	Length (mm)	Cashatt	186	369	33	147	434	287	373	13285	<0.001			
Bass		7064	121	0.203	0.124	0.613	0.646	0.033	0.174	17425 5	0 1 1 2			
	Hg Conc.	Cashatt	186	0.214	0.134	0.642	0.653	0.011	0.23	17425.5	0.112			
	Longth (mm)	7064	10	187	12	36	213	177	184	0.0049	0.021			
Dhuogill	Length (mm)	Cashatt	4	188	10	23	196	173	191	-0.0946	0.951			
ыцевш	Ha Conc	7064	10	0.0863	0.0369	0.107	0.144	0.037	0.081	6 452	0.002			
	ng conc.	Cashatt	4	0.011	0	0	0.011	0.011	0.011	-0.455	0.002			
	Longth (mm)	7064	245	475	45	360	645	285	474	70207	0.420			
	Length (mm)	Cashatt	409	479	98	358	645	287	480	/050/	0.429			
walleye	Ha Conc	7064	245	0.206	0.209	1.678	1.69	0.012	0.16	76250	0.006			
Hg Co	ng conc.	Cashatt	409	0.209	0.164	1.308	1.319	0.011	0.182	70550	0.090			
	Longth (mm)	7064	37	261	34	136	318	182	259	0.09	0 226			
Crannia Con	Length (mm)	Cashatt	59	254	36	142	325	183	251	0.98	0.550			
Crapple Spp. Hg Conc.		7064	37	0.14	0.0724	0.311	0.364	0.053	0.112	2501 5	<0.001			
	ng conc.	Hg Conc.	ng conc.	ng conc.	ng conc.	Cashatt	59	0.0458	0.0612	0.279	0.29	0.011	0.011	2391.3
	Length (mm)	706 Length (mm) Cash nnel Cash	Jongth (mm)	7064	70	496	47	190	610	420	490	2012	0 71 1	
Channel			Cashatt	38	495	52	190	612	422	483	2013	0.711		
Catfish	Hg Conc.	Hg Conc.	7064	70	0.145	0.0766	0.381	0.391	0.01	0.121	2070	0.000		
			ng conc.	Cashatt	38	0.157	0.107	0.569	0.617	0.048	0.133	2079	0.902	
	Longth (mm)	7064	40	495	76	254	634	380	501	C02 F	0 5 2 0			
Flathead	Length (mm)	Cashatt	23	483	73	241	627	386	462	692.5	0.539			
Catfish	Hg Conc.	7064	40	0.196	0.0868	0.381	0.449	0.068	0.171		0.045			
		Cashatt	23	0.16	0.0772	0.254	0.327	0.073	0.133	595.5	0.045			
		7064	35	462	47	190	540	350	471	0.070	0.200			
Freshwater	Length (mm)	Cashatt	11	482	71	183	559	376	483	0.878	0.396			
Drum		7064	35	0.174	0.0474	0.21	0.298	0.088	0.173	2 477	10 001			
	Hg Conc.	Cashatt	11	0.325	0.142	0.412	0.557	0.145	0.29	-3.477	<0.001			
	id Length (mm) 7064 . Cashat	7064	44	486	39	213	565	352	487.5	4 202	0.110			
Hybrid Stripped Bass		Length (mm)	Length (mm)	Length (mm) Cashatt	23	467	59	216	569	353	478	1.393	0.119	
		7064	44	0.161	0.126	0.442	0.452	0.01	0.0965	620				
	Hg Conc.	Cashatt	23	0.105	0.111	0.328	0.339	0.011	0.073	628	0.042			
	70	706	7064	50	688	95	432	955	523	696	2 0 2 7			
Northern	Length (mm)	Cashatt	52	750	115	409	945	536	758	-2.937	0.004			
Pike		7064	50	0.149	0.0549	0.255	0.322	0.067	0.141	4074 5				
		Hg Conc.	Cashatt	52	0.277	0.196	0.776	0.787	0.011	0.26	18/1.5	<0.001		

Species	Variable	Study	Ν	Mean	Std Dev	Range	Max	Min	Median	т	P Value	
Smallmouth		7064	174	295	64	262	450	188	284		0.400	
	Length (mm)	Cashatt	169	304	66	264	452	188	295	30283	0.186	
Bass	Liz Cono	7064	174	0.203	0.15	0.862	0.904	0.042	0.152	22004	0.001	
	Hg Conc.	Cashatt	169	0.231	0.15	1.005	1.041	0.036	0.194	32004	0.001	
Sauger	Length (mm)	7064	34	320	37	123	383	260	332	0 151	0.87	
		Cashatt	11	323	44	135	389	254	323	-0.151		
	Hg Conc.	Hg Conc.	7064	34	0.126	0.0812	0.497	0.556	0.059	0.115	240 5	0.011
			Cashatt	11	0.141	0.0316	0.109	0.194	0.085	0.133	549.5	0.011
White Bass	Length (mm)	7064	51	313	53	174	414	240	312	1870	0 186	
		Cashatt	38	328	51	170	411	241	336	10/0	0.100	
	Ha Conc	7064	51	0.125	0.0851	0.45	0.477	0.027	0.107	1919 5	0 37	
	ng conc.	Cashatt	38	0.131	0.0732	0.303	0.339	0.036	0.121	1010.3	0.57	