River Restoration Toolbox Glossary of Equations and Computations



Iowa Department of Natural Resources

April, 2018

### 1.0 Channel Geometry Calculations

1.1 Entrenchment Ratio (ER)

$$ER = \frac{W_{FPA}}{W_{BKF}}$$
where...  $W_{FPA}$  = Floodprone Width
 $W_{BKF}$  = Bankfull Width

1.2 Bank Height Ratio (BHR)

$$BHR = \frac{LBH}{d_{max}}$$
where...  $LBH =$  Low Bank Height
$$d_{max} =$$
Maximum bankfull depth
measured at same location
as LBH

1.3 Mean Depth (dbkf)

$$d_{bkf} = \frac{A_{BKF}}{W_{BKF}}$$

where...  $A_{BKF}$  = Bankfull Cross-Sectional Area

1.4 Width to Depth Ratio (W/D)

$$W/D = \frac{W_{BKF}}{d_{BKF}}$$

$$A_{BKF} = W_{BKF} * d_{BKF}$$

1.6 Channel Sinuosity (k)

$$k = \frac{SL}{VL}$$

where... SL = Stream Length VL = Valley Length

1.7 Meander Width Ratio (MWR)

$$MWR = \frac{W_{BLT}}{W_{BKF}}$$

where...  $W_{BLT}$  = Stream Belt Width

1.8 Regional Curve for Cross Sectional Area (Western Minnesota)

$$A_{BKF} = 4.7456x^{0.6102}$$

- where... x = Drainage Area (sq mi)
- 1.9 Regional Curve for Cross-Sectional Area (Eastern Minnesota)

 $A_{BKF} = 5.3096 x^{0.7054}$ 

# 2.0 Hydraulic Calculations

2.1 Continuity Equation, Discharge (Q)

$$Q = VA$$
  
where...  $V = Average velocity (ft/s)$   
 $A = Cross-sectional area (sq ft)$ 

2.2 Velocity, Manning's (v)

$$V = \frac{1.49R^{\frac{2}{3}}S^{\frac{1}{2}}}{n}$$

where... R = Hydraulic radius (ft)

n = Manning's n

- *S* = Water surface slope (ft/ft)
- 2.3 Velocity, Darcy-Weisbach (v)

$$V = \sqrt{\frac{8gRS}{f}}$$

where... g = Acceleration due to gravity f = Darcy-Weisbach friction factor

2.4 Velocity, Chezy (v)

$$V = c\sqrt{RS}$$

where... c =Chezy coefficient

2.5 Velocity, Relative Roughness (v)

$$V = \left[2.83 + 5.66 \log \left(\frac{R}{D_{84}}\right)\right] u^*$$
  
where...  $D_{84}$  = Diamete

Diameter of of the 84<sup>th</sup> percentile of riffle bed material

 $u^*$  = Shear velocity  $(gRS)^{\frac{1}{2}}$ 

2.6 Weir Flow (Q)

$$Q = CLH^{\frac{3}{2}}$$

where... C = Weir discharge coefficient L = Weir length (ft) H = Approach head (ft) Q = Weir flow (cfs)  $\tau = \gamma RS$ where...  $\tau$  = Shear stress (lb/sq ft)  $\gamma$  = Unit weight of water

R = Hydraulic radius (ft)

S = Slope (ft/ft)

2.8 Stream Power ( $\Omega$ )

2.7 Shear Stress  $(\tau)$ 

$$\Omega = \gamma QS$$

where...  $\Omega$  = Stream power (lb/s) S = Water surface slope (ft/ft) Q = Discharge (cfs)

2.9 Unit Stream Power (ω)

$$\omega = \left(\frac{\Omega}{w}\right)$$
 where...  $\omega$  = Unit stream power (lb/ft/s)

w = Stream width (ft)

#### 3.0 Moveable Particle Calculations

3.1 Critical Dimensionless Shear Stress, Andrews, Sub-Surface ( $\tau_c^*$ )

$$\tau_c^* = 0.0834 * \left(\frac{D_{50}}{D_{50}^n}\right)^{-0}$$

where...  $au_c = Critical dimensionless shear stress$  $D_{50} = Median size of particle of riffle armor bed surface (mm)$ 

D<sup>n</sup><sub>50</sub> = Median size of sub-surface particle (mm)

Note: This equation applies when  $\frac{D_{50}}{D_{50}^n}$  is between 3 and 7

3.2 Critical Dimensionless Shear Stress, Andrews, Bed Surface  $(\tau_{c}{}^{*})$ 

$$\tau_c^* = 0.0384 * \left(\frac{D_{max}}{D_{50}}\right)^{-0.887}$$
where...  $D_{max}$  = Largest particle of material representative of subsurface (mm)  
 $D_{50}$  = Median size particle of the bed surface (mm)

<u>Note:</u> This equation applies when  $\frac{D_{max}}{D_{50}}$  is between 1.3 and 3

3.3 Required Depth to Entrain Largest Particle (Competency)

$$d = \frac{\tau_c^* \gamma_s D_{max}}{S}$$

where... 
$$d$$
 = Depth required to entrain  
largest particle (ft)  
 $D_{max}$  = Largest particle of material  
representative of subsurface  
(mm)  
 $\tau_c^*$  = Critical dimensionless shear  
stress  
 $\gamma_s$  = Submerged specific weight  
of sediment  
 $S$  = Slope (ft/ft)

3.4 Required Slope to Entrain Largest Particle (Competency)

$$S = \frac{\tau_c^* \gamma_s D_{max}}{d}$$

3.5 Lanes's Tractive Force (Shear stress)

$$\tau_c = dS = D$$

where...  $\tau_c$  = Shear stress (kg/sq m)

- d = Mean depth (mm)
- S = Water surface slope
- D = Incipient particle diameter (cm)

### 4.0 Scour Calculations

Refer to NRCS Technical Supplement 14B – Scour Calculations (Aug 2007) for more information

$$z_t = FS[Z_{ad} + Z_b + Z_b + Z_{bf} + Z_s]$$

where...  $z_t$  = Total scour depth

FS = Factor of safety

|          |   | 5                            |  |  |
|----------|---|------------------------------|--|--|
| $Z_{ad}$ | = | Bed elevation changes due    |  |  |
|          |   | to reach-scale deposition    |  |  |
|          |   | (aggradation) or bed erosion |  |  |
|          |   | (degradation)                |  |  |

 $Z_c$  = Concentration scour

 $Z_b$  = Scour on outside of bend

 $Z_{bf}$  = Bedform trough depth

*Z<sub>s</sub>* = Local scour depth associated with a structure

Refer to NRCS Technical Supplement 14B for guidance on how to compute each component of scour.

# 5.0 Permissible Shear and Velocity for Selected Lining Materials

Refer to Stability Thresholds for Stream Restoration Materials by Craig Fischenich (May 2001) for more information. Table 2 within this document is provided below.

|                            |                                | Permissible  | Permissible | Citation(s)   |
|----------------------------|--------------------------------|--------------|-------------|---------------|
| Boundary Category          | Boundary Type                  | Shear Stress | Velocity    |               |
|                            |                                | (lb/sq ft)   | (ft/sec)    |               |
| Soils                      | Fine colloidal sand            | 0.02 - 0.03  | 1.5         | Α             |
|                            | Sandy loam (noncolloidal)      | 0.03 - 0.04  | 1.75        | Α             |
|                            | Alluvial silt (noncolloidal)   | 0.045 - 0.05 | 2           | Α             |
|                            | Silty loam (noncolloidal)      | 0.045 - 0.05 | 1.75 - 2.25 | А             |
|                            | Firm loam                      | 0.075        | 2.5         | A             |
|                            | Fine gravels                   | 0.075        | 2.5         | Α             |
|                            | Stiff day                      | 0.26         | 3-4.5       | A. F          |
|                            | Alluvial silt (colloidal)      | 0.26         | 3.75        | A             |
|                            | Graded loam to cobbles         | 0.38         | 3.75        | А             |
|                            | Graded silts to cobbles        | 0.43         | 4           | A             |
|                            | Shales and hardpan             | 0.67         | 6           | Α             |
| Gravel/Cobble              | 1-in.                          | 0.33         | 2.5 - 5     | А             |
|                            | 2-in.                          | 0.67         | 3-6         | Α             |
|                            | 6-in.                          | 2.0          | 4 - 7.5     | А             |
|                            | 12-in.                         | 4.0          | 5.5 - 12    | Α             |
| Vegetation                 | Class A turf                   | 3.7          | 6 – 8       | E, N          |
|                            | Class B turf                   | 2.1          | 4 - 7       | E, N          |
|                            | Class C turf                   | 1.0          | 3.5         | E, N          |
|                            | Long native grasses            | 1.2 - 1.7    | 4 – 6       | G, H, L, N    |
|                            | Short native and bunch grass   | 0.7 - 0.95   | 3-4         | G. H. L. N    |
|                            | Reed plantings                 | 0.1-0.6      | N/A         | E, N          |
|                            | Hardwood tree plantings        | 0.41-2.5     | N/A         | E, N          |
| Temporary Degradable RECPs | Jute net                       | 0.45         | 1-2.5       | E, H, M       |
|                            | Straw with net                 | 1.5 - 1.65   | 1-3         | E, H, M       |
|                            | Coconut fiber with net         | 2.25         | 3-4         | E, M          |
|                            | Fiberglass roving              | 2.00         | 2.5 – 7     | E, H, M       |
| Non-Degradable RECPs       | Unvegetated                    | 3.00         | 5-7         | E, G, M       |
|                            | Partially established          | 4.0-6.0      | 7.5 – 15    | E, G, M       |
|                            | Fully vegetated                | 8.00         | 8 – 21      | F, L, M       |
| <u>Riprap</u>              | 6 – in. d <sub>50</sub>        | 2.5          | 5 – 10      | н             |
|                            | 9 – in. d <sub>so</sub>        | 3.8          | 7 – 11      | н             |
|                            | 12 – in. d <sub>50</sub>       | 5.1          | 10 – 13     | н             |
|                            | 18 – in. d <sub>50</sub>       | 7.6          | 12 – 16     | н             |
|                            | 24 – in. d <sub>50</sub>       | 10.1         | 14 – 18     | E             |
| Soil Bioengineering        | Wattles                        | 0.2 – 1.0    | 3           | C, I, J, N    |
|                            | Reed fascine                   | 0.6-1.25     | 5           | E             |
|                            | Coir roll                      | 3 - 5        | 8           | E, M, N       |
|                            | Vegetated coir mat             | 4 - 8        | 9.5         | E, M, N       |
|                            | Live brush mattress (initial)  | 0.4 – 4.1    | 4           | B, E, I       |
|                            | Live brush mattress (grown)    | 3.90-8.2     | 12          | B, C, E, I, N |
|                            | Brush layering (initial/grown) | 0.4 - 6.25   | 12          | E, I, N       |
|                            | Live fascine                   | 1.25-3.10    | 6 – 8       | C, E, I, J    |
|                            | Live willow stakes             | 2.10-3.10    | 3 – 10      | E, N, O       |
| Hard Surfacing             | Gabions                        | 10           | 14 – 19     | D             |
|                            | Concrete                       | 12.5         | >18         | Н             |

### 6.0 Rock Sizing Equations

Refer to US Army Corps of Engineers Engineering Manual EM 1110-2-1601 (July 1991) and revised (June 1994) for more information on rock sizing.

6.1 Rock Sizing, D<sub>30</sub>

$$D_{30} = \frac{1.95(S^{0.55})(q^{0.667})}{g^{0.333}}$$
  
where...  $D_{30}$  = Size fraction of which 30% of particles are finer  
 $S$  = Slope (ft/ft)  
 $q$  = Unit discharge (Q/bottom width) (cfs/ft)  
 $g$  = Gravitational constant

6.2 Rock Sizing, D<sub>50</sub>

$$D_{50} = D_{30} * 1.22$$

where...  $D_{50}$  = Size fraction of which 50% of particles are finer

6.3 Minimum Rock Thickness (R<sub>T</sub>)

$$R_T = D_{100} * 1.5$$

where...  $D_{100}$  = Largest size fraction of rock present in gradation

# 7.0 Buoyancy Calculation

7.1 Buoyancy (Fb)

$$F_b = \rho g V$$
where...  $g = Gravitational constant$ 

$$\rho = Density of the liquid (lb/cu ft)$$

$$V = Volume of liquid displaced$$
(cu ft)

7.2 Buoyancy (F<sub>b</sub>)

$$F_b = \rho g h A$$

where... 
$$h$$
 = Height of water displaced by  
a floating object (ft)  
 $A$  = Surface area of floating

A = Surface area of floating object (sq ft)