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ABSTRACT 
 
Loss of habitat is one of the primary factors affecting population declines of grassland birds, 

and recovery efforts have focused on increasing the amount of grassland habitat in the 

landscape.  Assessing the value of habitat restorations for grassland birds is an essential 

component of grassland bird conservation.  We compared grassland bird habitat use, 

reproductive success, nestling growth rates, nestling baseline corticosterone, and blood 

glucose levels among restored grasslands planted with seed mixes of varying plant species 

diversity.  In addition, we tested the ability of a conspecific song playback system to attract 

Henslow’s sparrows to previously unoccupied restored habitat. We selected 4 grassland 

planting types, cool-season, warm-season (newly planted and mature), and high diversity for 

our study to encompass the range of planting mixtures typically available to land managers.  

The most common bird species we encountered were Bobolink (Dolichonyx oryzivorus), 

Common Yellowthroat (Geothlypis trichas), Red-winged Blackbird (Agelaius phoeniceus), 

and Sedge Wren (Cistothorus platensis).  Bird densities overall were not consistently higher 

or lower in any one of the 4 planting types.  Bobolink densities, however, were higher in 

Cool-season fields than in any of the other field types.  Models of the relationships between 

bird density/bird species richness and habitat characteristics revealed that both vegetation 

characteristics and food resources were important in explaining grassland bird densities.  Our 

habitat models showed that different species, even those within a species category, were 

influenced by different habitat characteristics.  Given the importance of cool-season, non-

native grass plantings for Bobolinks in our study, consideration must be given to the impact 

that elimination of these plantings may have on the future of Bobolink populations.  Red-

winged Blackbird nest survival was influenced by year, visual obstruction, and variation in 
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the availability of invertebrate food resources throughout the nesting season.  We found 

evidence for a difference in daily nest survival among planting types (P=0.06).  Specifically, 

estimated nest survival was more than twice as high in mature warm-season fields (36%) 

than in cool-season fields (14%).  Red-winged Blackbird nestling size at fledging differed 

among grassland planting type.  Male nestlings were larger than females at fledging with 

regard to mass, wing, and tarsus measurements.  Nestling growth rates did not differ either 

among grassland restoration planting types or between sexes.  Invertebrate food resource 

availability did not appear to affect growth rates of nestling Red-winged Blackbirds.  Red-

winged Blackbird nestling baseline corticosterone levels were lower in the warm-season 

planting type than in either cool-season or high diversity plantings.  We found no evidence of 

differences in baseline corticosterone levels or blood glucose levels between males and 

females.  We found no relationship between baseline corticosterone levels and body mass or 

between baseline corticosterone levels and blood glucose for male or female nestlings.  

Blood glucose levels in male nestlings had a significant positive relationship with nestling 

mass, but not in female nestlings.  Management activity and brood size had positive 

relationships with baseline corticosterone, suggesting that more intensive management 

activity and larger brood sizes were related to increased stress levels.  Nestling age and 

temperature during the nestling period were positively related to blood glucose levels.  We 

successfully attracted Heslow’s Sparrows to 3 of 7 treatment plots using conspecific song 

playbacks and we found no Henslow’s Sparrows in control plots. The addition of social cues 

using playback systems in restored grassland habitats may aid conservation efforts of 

Henslow’s Sparrows to available habitat.  We conclude a variety of planting types and 

management strategies may be necessary to successfully conserve grassland birds.
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CHAPTER ONE: GENERAL INTRODUCTION 

 As a result of rapid settlement and conversion to agriculture, the tallgrass prairie 

ecosystem of North America is one of the most endangered ecosystems on earth (Smith 

1981, Noss et al. 1995) and in Iowa, less than 0.01% of the original 12 million hectares of 

prairie remains (Sampson and Knopf 1994).  Loss of habitat is one of the primary factors 

affecting population declines of grassland birds over the last several decades (Herkert 1995, 

Fletcher and Koford 2003, Herkert et al. 2003).  Efforts to aid in the recovery of grassland 

bird populations have focused on increasing the amount of grassland habitat in the landscape.  

However, the extent to which the ecological function of these plantings has been restored is 

unknown. 

 Recent habitat restoration efforts focused on mitigating external environmental 

threats alone, such as habitat destruction, may not be enough to conserve imperiled songbird 

species (Ward and Schlossberg 2004, Ahlering and Faaborg 2006). Animal behavior has 

recently been recognized as playing an important role in species conservation (Ward and 

Schlossberg 2004, Ahlering and Faaborg 2006). Social information and conspecific attraction 

may be important for many species. In fact, a recent review found that in 20 out of 24 studies 

examining conspecific attraction in songbirds, birds were successfully attracted using social 

cue manipulation (Ahlering et al. 2010).  In territorial songbirds, the presence of conspecific 

individuals may provide important cues about habitat use. 

 Grassland vegetation structure is a key habitat component for grassland songbirds 

(McCoy et al. 2001, Chapman et al. 2004).  Seed mixtures used for grassland plantings in the 

Midwest vary widely.  Thus, the resulting vegetation structure and composition vary 

significantly among different types of restored grassland plantings (McCoy et al. 2001).  The 
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plant species diversity in seed mixes used for grassland restoration plantings may have 

lasting effects on the resulting grassland bird community.   

 Because grassland bird food resources in the form of arthropods vary with plant 

diversity (Jamison et al. 2002, Benson 2003, Leathers 2003, Harveson et al. 2004, Sutter and 

Ritchison 2005), the choice of planting mix for a grassland restoration may have important 

implications for the reproductive success of grassland birds.  The availability of food 

resources near the nest location may contribute to the success or failure of grassland bird 

nests.  Birds spend more time foraging and fly longer distances to forage when their nests are 

located in areas with reduced food availability (Adams et al. 1994).  Sparling et al. (2007) 

found that, for Red-winged Blackbirds (Agelaius phoeniceus), habitat types with the lowest 

invertebrate diversity had the lowest levels of nest success.  Birds that locate their nests in 

areas with high food availability may need to spend less time off the nest foraging for food.  

Less time spent away from the nest may translate into lower nest predation and brood 

parasitism.  Food supplementation of Song Sparrows (Melospiza melodia) lowered nest 

predation rates through its influence on adult antipredator behavior (Rastogi et al. 2006).  In 

addition, Dearborn et al. (1998) found that parental nest attendance is an important 

component of nest defense, and therefore, an important component of nest success.  

 Nestling growth rates in altricial birds are influenced by many external factors related 

to the availability of food resources (O’Connor 1984).  Both the quality and quantity of food 

delivered to young in the nest are potentially important in determining growth and 

reproductive success (Boag 1987, Reynolds et al. 2003, Granbom and Smith 2006). Food 

resources may affect nestling growth rates differently in different systems (Granbom and 

Smith 2006).  Differences in how food resources influence growth rates may be related to 
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food resource variability among habitat types and may depend on whether food resources are 

a limiting factor in those systems.  Avian growth rates may also differ both seasonally and 

annually within habitats.   Estimates of food resource availability for insectivorous birds have 

been measured as parameters of interest in the study of avian systems.  Many of these studies 

have found that food availability is associated with bird abundance in both grassland and 

forested systems (Brush and Stiles 1986; Davros 2005, Benson et al. 2007). 

 Corticosterone is a steroid hormone that is released by the adrenal complex in response 

to stress in vertebrate animals (Siegel 1980).  Baseline corticosterone levels in blood plasma 

are associated with food resource availability in birds (Kitaysky et al. 1999, Saino et al. 2003, 

Schoech et al. 2004, Pravosudov and Kittaysky 2006, Jenni-Eiermann et al. 2008).  Increased 

baseline corticosterone levels have been associated with poor feeding conditions in adult and 

developing birds (Saino et al. 2003, Pravosudov and Kitaysky 2006, Kempster et al. 2007, 

Jenni-Eiermann et al. 2008).  In addition, plentiful food resource availability has been linked 

to lower baseline corticosterone levels.  Baseline corticosterone levels have also been used as 

indicators of habitat quality in birds.  In a study of American Redstarts (Setophaga ruticilla), 

birds in lower quality habitat had higher baseline corticosterone levels than those in higher 

quality habitat (Marra and Holberton 1998). 

Blood glucose levels in birds are higher and more variable than in other vertebrates 

(Braun and Sweazea 2008, Lobban et al. 2010).  It is unknown how birds can tolerate these 

higher and more variable blood glucose levels without experiencing the negative effects, 

such as tissue damage and death that can occur in other animals (Beuchat and Chong 1998).  

Blood glucose levels are a reflection of the diet and the recent level of food ingestion by 

birds (Davey et al. 2002) and blood glucose levels in birds have been shown to be affected by 
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experimental food restrictions (Altan et al. 2005, Kempster 2007).  Blood glucose levels may 

provide an additional indicator of an individual’s physiological condition.   

 Red-winged Blackbirds are one of the most common bird species in North America 

(Beletsky 1996).  They nest in a variety of habitat types including marshes and uplands 

(Beletsky 1996, Swain et al. 2003, Sparling et al. 2007).  Because of their adaptability to 

different habitats, they provide an excellent opportunity to evaluate differences in nest 

survival, nestling growth, and physiological condition among different habitat types.  

 

Dissertation Organization 

 This dissertation is composed of seven chapters.  Chapter one contains a general 

introduction to the dissertation.  Chapter two is a paper written to be submitted to the Journal 

of Wildlife Management.  Chapter two compares grassland bird habitat use among restored 

grasslands planted with seed mixes of varying plant species diversity.  Chapter three is a 

paper written for submission to the journal Restoration Ecology.  Chapter three examines the 

effects of grassland restoration planting type and invertebrate food resource availability on 

the reproductive success of a grassland specialist, the Red-winged Blackbird (Agelaius 

phoeniceus).  Chapter four is a paper written to be submitted to the Wildlife Society Bulletin.  

Chapter four examines whether nestling growth rates and nestling size at fledging differed 

among grassland restoration plantings with varying plant species diversity and to examine 

how the availability of invertebrate food resources affected the growth rates of grassland 

songbirds.  Chapter five is a paper written for submission to the Journal of Wildlife 

Management.  Chapter five examines how restored grassland habitat type affects the 

physiological condition of nestling Red-winged Blackbirds in grasslands.  Chapter six is a 
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paper that is published in The Prairie Naturalist.  Chapter six tested the ability of a 

conspecific song playback system to attract Henslow’s sparrows to previously unoccupied 

restored habitat.  Chapter seven contains a general conclusion to the dissertation.  All 

components of this dissertation including data collection, data analysis, and written text were 

completed by Jennifer A. Vogel under the guidance of Rolf R. Koford and David L. Otis. 
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CHAPTER TWO:  BIRD RESPONSE TO ENHANCED VEGETATION DIVERSIT Y 
IN GRASSLAND RESTORATION PLANTINGS 

 
A paper to be submitted to the Journal of Wildlife Management 

 
Jennifer A. Vogel1, Rolf R. Koford2, and David L. Otis2 

 1Department of Natural Resource Ecology and Management, Iowa State University, Ames, 

IA, USA 

2U.S. Geological Survey, Iowa Cooperative Fish and Wildlife Research Unit, Iowa State 

University, Ames, IA, USA  

 

ABSTRACT Loss of habitat is one of the primary factors affecting population declines of 

grassland birds, and recovery efforts have focused on increasing the amount of grassland 

habitat in the landscape.  We compared grassland bird habitat use among restored grasslands 

planted with seed mixes of varying plant species diversity.  We selected 4 grassland planting 

types, cool-season, warm-season (newly planted and mature), and high diversity, for our 

study to encompass the range of planting mixtures typically available to land managers.  The 

most common bird species we encountered were bobolink (Dolichonyx oryzivorus), common 

yellowthroat (Geothlypis trichas), red-winged blackbird (Agelaius phoeniceus), and sedge 

wren (Cistothorus platensis).  Bird densities overall were not consistently higher or lower in 

any one of the 4 planting types.  Bobolink densities, however, were higher in cool-season 

fields than in any of the other field types.  Given the importance of cool-season, non-native 

grass plantings for bobolinks in our study, consideration must be given to the impact that 

elimination of these plantings may have on the future of bobolink populations. Our habitat 

models revealed that both vegetation characteristics and food resources were important in 



12 
 

explaining grassland bird densities and that different species, even those within a species 

category, were influenced by different habitat characteristics.  Therefore, we conclude a 

variety of planting types and management strategies may be necessary to successfully 

conserve grassland birds.   

KEY WORDS  grassland birds, Conservation Reserve Program, habitat restoration  

 

INTRODUCTION  

 As a result of rapid settlement and conversion to agriculture, the tallgrass prairie 

ecosystem of North America is one of the most endangered ecosystems on earth (Smith 

1981; Noss et al. 1995).  Loss of habitat is one of the primary factors affecting population 

declines of grassland birds over the last several decades (Herkert 1995; Fletcher and Koford 

2003; Herkert et al. 2003).  Efforts to aid in the recovery of grassland bird populations have 

focused on increasing the amount of grassland habitat in the landscape.  However, the extent 

to which the ecological function of these plantings has been restored is unknown. 

 In Iowa, less than 0.01% of the original 12 million hectares of prairie remains 

(Sampson and Knopf 1994).  Historically, the region was characterized by a mix of mesic to 

dry tallgrass prairies.   Current land use in Iowa is approximately 94% agricultural, with corn 

(Zea mays) and soybeans (Glycine max) as the primary crop types (Jackson et al. 1996). 

A major component in the conversion of agricultural lands back to grassland habitat has been 

the Conservation Reserve Program (CRP) of the United States Department of Agriculture 

(Johnson and Schwartz 1993).  The goal of this program is to reduce soil erosion by 

removing erodible farm land from production.  This goal is achieved by offering 

compensation to landowners who plant their marginal lands to perennial grasslands.   
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 Planting mixtures used in CRP vary widely in composition from cool-season, non-

native grass plantings to diverse mixtures of native forbs and grasses.  The costs associated 

with planting and maintaining these different types of CRP plantings also vary.  Seed costs 

range from approximately $50/ha for cool-season, non-native plantings, to an intermediate 

cost of $285/ha for native warm-season grasses, to $2840/ha for a diverse mix of native 

grasses and forbs (Prairie Seed Farms 2008).  In addition, the cost of maintaining a more 

diverse planting type is higher than the cost of maintaining a less diverse (grass only) 

planting type.  

 Choice of CRP planting type influences both the composition and structure of the 

resulting vegetation.  Many studies have demonstrated relationships between bird abundance 

and vegetation structure and composition (King and Savidge 1995; Patterson and Best 1996; 

Delisle and Savidge 1997; Hughes et al. 1999; McCoy et al. 2001), however, individual 

species may respond differently.  For example, dickcissel (Spiza americana) abundance has 

been associated with forb cover (Patterson and Best 1996) and tall, dense vegetation 

(Patterson and Best 1996; Delisle and Savidge 1997; Hughes et al. 1999) in grassland 

habitats.  In contrast, bobolink (Dolichonyx oryzivorus) abundance has been negatively 

associated with both forb cover (Patterson and Best 1996) and vertical density (Delisle and 

Savidge 1997).  Because of differences in how individual species respond to vegetation 

characteristics in grassland habitats, comparisons of overall bird abundance between different 

types of CRP plantings may show no differences based on planting type despite having 

significant differences in vegetation composition and structure (King and Savidge 1995; 

Delisle and Savidge 1997).  Conservation of grassland birds as a group may require a 

diversity of grassland habitat types (Ribic et al. 2009). 
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Grassland bird food resources in the form of arthropods vary with plant diversity 

(Jamison et al. 2002; Benson 2003; Leathers 2003; Harveson et al. 2004; Sutter and 

Ritchison 2005).  As a result, the choice of planting mix for a grassland restoration may 

affect use by grassland birds.  Comparisons of short-grass CRP fields in Texas found that 

arthropods in CRP plantings can provide important prey resources for grassland birds 

(McIntyre and Thompson 2003).  Among the different exotic and native short-grass CRP 

types studied in Texas, no differences in arthropod diversity or biomass were found 

(McIntyre and Thompson 2003).  None of the short-grass CRP plantings studied, however, 

had a seeded forb component, and none had arthropod diversities that were comparable to 

native short-grass prairie (McIntyre and Thompson 2003).  Adding a forb component to CRP 

plantings may increase invertebrate food resources for grassland birds (Doxon and Carrol 

2007).  For example, in Kansas CRP fields planted to native grasses, there was not a 

relationship between forb abundance and invertebrate abundance or biomass (Hull et al. 

1996). 

 Given a strong relationship between vegetation type and arthropod food resource 

availability, it is difficult to separate the effects of each factor on bird use of grassland 

habitats.  For example, evaluations of bobolink territory quality in Oregon found that 

territories of mated males had a higher percentage of forbs and higher caterpillar abundances 

than territories of un-mated males (Wittenberger 1980).  Alternatively, in the pine barrens of 

New Jersey, arthropod biomass was a better predictor of bird habitat use than measures of 

vegetation and regardless of vegetation type; bird abundance was higher in areas with higher 

arthropod biomass (Brush and Stiles 1986). 
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 The objective of our study was to compare bird use of restored grasslands planted 

with seed mixes of varying plant species diversity.  We wanted to compare bird density/ bird 

species richness and vegetation composition/ structure in each of the planting types.  We also 

wanted to examine the relationships between bird density/species richness and habitat 

characteristics such as vegetation structure/composition and food resource availability. 

 
METHODS  

Study Area 

 The Spring Run Wetland Complex is a mix of over 1600 ha of wetlands and 

reconstructed grasslands located in Dickinson County in northwest Iowa, USA.  This area is 

managed by the Iowa Department of Natural Resources and is one of the largest examples of 

a prairie pothole landscape in the state. 

 We selected 4 restoration/planting types for our study to encompass the range of 

planting mixtures typically available to land managers.  The planting types we selected were 

(1) cool-season - plantings of non-native, cool-season grasses (e.g.g. smooth brome (Bromus 

inermis), timothy (Phleum pratense), reed canary grass (Phalaris arundinacea), and 

Kentucky bluegrass (Poa pratensis)), (2) warm-season - a mix of native warm-season grasses 

divided into 2 groups by age of planting (e.g.g. switch grass (Panicum virgatum), Indian 

grass (Sorghastrum nutans), big bluestem (Andropogon gerardii), little bluestem 

(Schizachyrium scoparium), and side-oats grama (Bouteloua curtipendula)), and (3) high 

diversity - a mixture of over 40 species of native grasses and forbs.  Within the study area, 

reconstructed fields were selected or planted in a block design, with each of the planting 

types occurring in each block (Fig. 1).  We surveyed a total of 6 complete blocks. 
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Vegetation Composition and Structure 

 We surveyed upland vegetation at 25 m intervals along randomly located transects in 

each field during May and July each summer in 2007, 2008, and 2009.  The 2 rounds of 

vegetation surveys coincided with peak height of cool season and warm-season grasses 

respectively.  We established vegetation transects in the fields independently of the bird 

survey transects.  The shape and size of the fields determined the number of transects and 

therefore the number of survey locations (ranged from 24-30 survey locations per field).  At 

each survey point along the vegetation transect, we estimated the percent cover of warm- 

season native grasses, cool-season native grasses, warm-season exotic grasses, cool-season 

exotic grasses, native forbs, exotic forbs, standing dead vegetation, woody vegetation, bare 

ground, and litter in 0.5 m x 0.5 m Daubenmire frames (Daubenmire 1959).  In addition, we 

recorded the number of species in each of the 6 grass/forb categories listed above to get a 

measure of species richness for each category within each field.  We measured litter depth 

with a ruler and visual obstruction using a Robel pole in each cardinal direction at each 

survey location (Robel et al. 1970).   

Density Estimates 

 We surveyed grassland birds along 100 m transects in each field.  We selected survey 

transect locations to maximize the number of transects in each field.  The size and shape of 

each field determined the number of transects (ranged from 7 to 10 transects per field).  We 

placed transects only in upland vegetation, and we did not locate transects near field edges or 

wetlands. 

 We conducted bird surveys in each field once per week for 6 weeks in June and July 

of 2007, 2008, and 2009 following the line-transect method of Buckland et al. (1993).  We 
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conducted bird surveys between sunrise and 1000 hours and we did not conduct bird surveys 

on days where weather conditions could have impeded visibility or audibility (rain, fog, or 

wind in excess of 30 km/hr).  Surveys consisted of an observer walking along the transect at 

a constant pace identifying birds by sight and sound within 35 m on either side of the 

transect.  For each observation, we recorded the bird species and sex (if known).  In addition, 

we used laser rangefinder binoculars to record the distance of the bird(s) from the observer 

and the compass bearing.  Compass bearings, transect bearings, and observation distance 

were used to calculate the perpendicular distance of the birds from the transect line.  

Invertebrate Abundance and Biomass 

 We sampled invertebrates using 12-inch diameter sweep nets in each field on 6 

randomly selected 25 m long sections of the vegetation transects described above.   We 

completed 3 rounds of invertebrate surveys each year (2007-2009), in May, June, and July.  

Sweep net samples were taken only on warm, sunny days between 1000 and 1800 hours.  To 

avoid trampling the vegetation on the transects, we off-set sweep net sampling 5 m to the left 

or right of the transect (randomly determined by a coin flip).  Invertebrate surveys consisted 

of an observer walking at a pace of 1 sweep per meter, sweeping the vegetation within 1 m of 

the ground.  We placed invertebrate samples in 3.8-liter sized zip-top bags at the completion 

of each survey.  Immediately following sampling, we took the invertebrate samples to the lab 

and sorted them from vegetation debris using self-sorting tubes (Fig. 2).  Invertebrate 

samples remained in the tubes for 24 hrs.  During the 24 hr sorting time, invertebrates were 

drawn to the light end of the tubes and were carried down a funnel into labeled whirl-pak 

sample bags filled with 70% ethyl alcohol for preservation.  At the end of the 24 hr sorting 

time, we removed vegetation and debris and inspected for remaining invertebrates.  We 
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identified invertebrate samples to Order and then we counted, dried, and weighed each 

sample to obtain estimates of abundance and biomass. 

Data Analysis 

 To compare vegetation structure and composition among the 4 planting types, we 

used Analysis of Variance (ANOVA) in SAS Version 9.1 (SAS Institute, Cary, NC, USA) 

with PROC MIXED.  We treated year as a repeated measure with a REPEATED statement in 

SAS.  We averaged vegetation measurements taken within each field within each year.  We 

conducted post-hoc pairwise comparisons among planting types using Tukey-Kramer 

adjustments for multiple testing.  To evaluate vegetation diversity, we calculated and 

compared a Shannon Diversity Index value of the vegetation cover classes for each field.  To 

calculate Shannon Diversity we used the formula:  H'=∑-(pi*lnpi), where pi=the proportion of 

each vegetation cover class in each field.  To provide a better visual representation of the 

above differences in vegetation characteristics among the planting types, we used 

Correspondence Analysis (CA).  The differences in vegetation characteristics among the 

fields are represented as the physical distance in two dimensions (CA1 and CA2) of each 

field with respect to the others on the ordination plot.  Fields that are near one another have 

more similar vegetation characteristics than those that are more distant on the plot.    

 We used program DISTANCE to estimate bird density (number of birds per ha) in 

each of the 4 planting types.  We used the Multi-covariate Distance Sampling (MCDS) 

analysis engine in program DISTANCE to evaluate models of the detection functions for 

each species (Table 1).  We considered detection function models that included a null model 

(no covariates) and combinations of 4 covariates in the set of candidate models: survey week 

(1, 2, 3, 4, 5, or 6 corresponding to the week each survey was conducted), planting type 
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(cool-season, warm-season (new), warm-season (old), or high diversity), planting age (in 

years – plantings ≥ 10 years were entered as 10 years), and management activity (0=none, 

1=spot mow or spot herbicide treatment, 2=complete mow or hay, 3=prescribed fire).  We 

tested half-normal and hazard-rate key functions with automatic sequential selection of 

adjustment terms.  We selected the best model of the detection function from the set of 

candidate models by choosing the model with the lowest Akaike’s Information Criterion 

(AIC) value and a chi-square goodness of fit test p-value ≥ 0.10 for each species.  We post-

stratified the data in program DISTANCE to obtain density estimates by field and year.  

 We categorized bird species into obligate grassland species and facultative grassland 

species based on habitat requirements (Vickery et al. 1999).  Obligate species are those that 

will only use grassland habitats and do not use other habitat types (Vickery et al. 1999).  

Facultative species are those that commonly use grassland habitats, but also make use of 

other habitat types (Vickery et al. 1999).   

 We tested for differences in bird density among the 4 different planting types using 

ANOVA with PROC MIXED in SAS.  Because each density estimate obtained from 

program DISTANCE has a sampling variance, we weighted bird density by the inverse of the 

variance using a WEIGHTED statement in SAS.  We tested differences for each year (2007, 

2008, and 2009) separately.  We also combined the data from all 3 years (2007, 2008, and 

2009) by including year as a repeated measure with a REPEATED statement in SAS.  We 

conducted post-hoc pairwise comparisons among planting types using Tukey-Kramer 

adjustments for multiple testing. 

 We developed a set of a priori biological hypotheses of habitat covariates to compare 

models of breeding bird density (Table 2).  For each bird species, we compared a set of 5 
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models using model selection and AIC to determine the best model from each set of 

candidate models (Burnham and Anderson 2002).   The hypotheses evaluated for each bird 

response variable were represented by combinations of vegetation structure, vegetation 

diversity, food resources, native vegetation, grass cover, and management activity (see Table 

2).  We constructed the set of 5 candidate models individually for each bird response variable 

based on information about the species or set of species from the literature. 

 

RESULTS 

Vegetation Composition and Structure 

 Vegetation characteristics differed among the 4 planting types (Table 3, Fig. 3).  

Cool-season fields contained very little native warm-season grass in comparison to the other 

3 planting types, but cool-season fields had 3 times more cover of exotic cool-season grasses 

than warm-season fields and 8 times more cover of exotic cool-season grasses than high 

diversity fields (Table 3).   

 High diversity fields had nearly 5 times higher percent cover of native forbs than 

warm- season fields and 27 times more cover of native forbs than the cool-season fields 

(Table 3).  In addition, high diversity fields contained 5 times more native forb species than 

warm-season fields and nearly 20 times more native forb species than cool-season fields 

(Table 3).   In contrast, cool-season fields contained far fewer exotic forbs than the other 3 

planting types, all of which had about 5 times more cover of exotic forbs than cool-season 

fields (Table 3).  

 Cool-season fields had lower vegetation diversity and lower plant species richness than 

all 3 of the other planting types (Table 3).  High diversity fields had 3 times higher plant 
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species richness than cool-season fields and about 1.5 times higher plant species richness 

than both of the warm-season planting types (Table 3). 

  Visual obstruction was lower in the newly planted warm-season fields than in 2 of the 

other planting types, but the high diversity fields and the newer warm-season fields both had 

more variation in visual obstruction among measurements within a field than the other 2 

planting types (Table 3).  The 2 mature planting types had nearly 6 times more litter depth 

than newly planted warm-season fields and about 2.5 times more litter depth than the high 

diversity fields (Table 3).  The 2 mature planting types also had a much lower percent cover 

of bare ground than newly planted fields (Table 3). 

Bird Density and Species Richness 

 The most common bird species we encountered during our surveys were bobolink, 

common yellowthroat (Geothlypis trichas), red-winged blackbird (Agelaius phoeniceus), and 

sedge wren (Cistothorus platensis).  We detected an average of 32 bird species during our 

annual surveys (38 species in 2007, 28 species in 2008, and 31 species in 2009).  For all 

years combined, bird densities of some species and some groups of species differed among 

the planting types.   Patterns of differences in bird densities in individual years were similar 

to those we found for all years (Appendix A).  Therefore, we only present results of 

differences in bird densities for all years combined (Table 4). 

 Obligate species density was highest in the cool-season fields.  However, this trend is 

primarily driven by one species – the bobolink.  Bobolink density was 12 times greater in the 

cool-season fields than in older warm-season fields, 21 times greater than in newly planted 

warm-season fields, and more than 75 times greater than in high diversity fields (Table 4).  
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Sedge wren density was also higher in cool-season fields than in newly planted warm-season 

fields, but species densities were not different among the other planting types (Table 4). 

 Facultative species density was lower in cool-season and newly planted warm-season 

fields than high diversity fields, however there were no individual species where densities 

were different among the planting types (Table 4).  One additional species that had 

differences among planting types was the song sparrow (Melospiza melodia).  Although it 

had generally low densities in all of the planting types, song sparrow density was higher in 

high diversity fields than in cool-season fields (Table 4). 

 Although there were some differences in bird species richness in the first 2 years of 

the study, there was no evidence of a difference in bird species richness among the planting 

types during 2009 or when all years were combined (Table 5).  In 2007, facultative species 

richness was higher in cool-season fields than in newly planted warm-season fields and, in 

addition, the combined species richness of facultative and obligate species was higher in 

cool-season fields than in newly planted warm-season fields (Table 5).  In 2008, obligate 

species richness was lower in cool-season fields than in newly planted warm-season fields 

and the combined species richness of facultative and obligate species was also lower in cool-

season fields than in newly planted warm-season fields (Table 5).   

Habitat Models  

 We evaluated habitat models for 15 different bird response variables.  The vegetation 

structure model was included in the model set for all 15 bird response variables, and in 6 of 

the analyses, vegetation structure was included in at least one of the best supported models 

(Table 2).  Vegetation structure was included in the best supported models for sedge wrens 

and common yellowthroats, and we found evidence that both visual obstruction (βvis.obs.SEWR= 
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0.024, 95% CI 0.008, 0.04; βvis.obs.COYE= 0.034, 95% CI 0.015, 0.053) and litter depth 

(βl.d.SEWR= 0.01, 95% CI 0.006, 0.014; βl.d.COYE= 0.007, 95% CI 0.002, 0.012) were positively 

associated with density.  In addition, visual obstruction was positively associated with red-

winged blackbird density (βvisual obstruction= 0.029, 95% CI 0.001, 0.057) but was negatively 

associated with the density of all species (βvisual obstruction= -0.381, 95% CI -0.754, -0.008). 

 Vegetation diversity was included in at least one of the best supported models in 5 out 

of 12 analyses (Table 2).  In fact, we found evidence that plant species richness was 

positively associated with grasshopper sparrow density (βplant sp.rich.= 0.073, 95% CI 0.032, 

0.114), obligate bird species richness (βplant sp.rich.= 0.551, 95% CI 0.222, 0.880) and total bird 

species richness (βplant sp.rich.= 0.855, 95% CI 0.161, 1.548). 

 Two other hypotheses, food resources (9 out of 14) and grass cover (4 out of 6), were 

frequently included in at least one of the best models (Table 2).  We found evidence that total 

grass cover was positively associated with bobolink density (βtotal grass= 0.003, 95% CI 0.001, 

0.006).  Finally, we found evidence that native grasses (βnative grass.= 0.022, 95% CI 0.007, 

0.036) and native forbs (βnative forb= 0.099, 95% CI 0.077, 0.122) were positively associated 

with the density of all facultative bird species.  

 

DISCUSSION 

Vegetation Composition and Structure 

 Many of the differences we found in vegetation structure and composition were 

expected based on the characteristics of the plant species used in each planting mix.  Similar 

to our results, previous researchers have found that warm-season CRP plantings had higher 

species richness, more forb cover, and lower percent cover of grasses than cool-season 
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plantings (Henningsen and Best 2005).  Few studies, however, have simultaneously 

examined high diversity fields and cool-season and warm-season fields. 

 Delisle and Savidge (1997) compared bird use and vegetation on cool-season and 

warm-season CRP plantings and found a few differences in vegetation characteristics 

between the 2 planting types during the breeding season, primarily with vegetation density 

and vegetation height.  In contrast, we found many differences in vegetation characteristics 

between our cool-season and warm-season fields (Table 3).   However, we did not find that 

warm-season fields (either planting age) had significantly taller vegetation than cool-season 

fields.  The cover classes presented by Delisle and Savidge (1997) and others were broader 

than those we measured (e.g. their forb cover vs. our native or exotic forb cover) making 

specific comparisons difficult.   

 Native forb cover was 20 times greater in high diversity fields than in cool-season 

fields and 5 times greater in high diversity fields than in warm-season fields.  Some grassland 

bird species, such as the dickcissel, have been associated with increased forb cover (Patterson 

and Best 1996), suggesting that increasing forb cover may provide better habitat for some 

species.  Additionally, grassland invertebrate biomass and diversity have been associated 

with increased forb cover (Burger et al. 1993), suggesting that increased forb cover in CRP 

plantings may provide better food resources for grassland birds.  However, we did not find 

that bird densities were higher in our fields with increased forb cover (high diversity).  

Similarly, neither bird abundance nor invertebrate biomass were correlated with forb 

abundance in Kansas CRP plantings (Hull et al. 1996).  
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Bird Density and Species Richness 

 Bird densities were not consistently different among the 4 planting types.  However, 

bobolink densities were consistently higher on cool-season fields than any of the other 

planting types (Table 4).  Negus et al. (2010) found that although bobolinks were using and 

nesting in managed CRP fields, they were almost 3 times more abundant in undisturbed CRP 

fields that were comparable to the cool-season fields in our study.  Similarly, other 

researchers have found that bobolink densities were higher in cool-season fields as compared 

to warm-season fields (Delisle and Savidge 1997).  Many of the early non-native, cool-

season CRP plantings are being converted to native warm-season or high diversity plantings, 

or are being managed to enhance vegetation diversity (Thompson et al. 2009, Negus et al. 

2010).  We expect that elimination of cool-season plantings may be detrimental to the future 

of bobolink populations in Iowa. 

 For most of the individual grassland bird species we examined, we found no 

differences in density among the 4 planting types (Table 4).  King and Savidge (1995) found 

no differences in bird use (both richness and number of birds) between cool-season and 

warm-season fields during the breeding season in southeast Nebraska.  Similarly, no 

differences in grassland bird abundance and/or species richness were found in comparisons 

between cool-season and warm-season CRP plantings in northern Missouri, eastern South 

Dakota, western Minnesota, or southeast Iowa (McCoy et al. 2001; Bakker et al. 2004; 

Henningsen and Best 2005; Bakker and Higgins 2009).   

Habitat Models  

 Models of the relationships between bird density/bird species richness and habitat 

characteristics showed that different species, even those within a species category, were 
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influenced by different habitat characteristics.  Many previous researchers have found that 

vegetation characteristics are important predictors of bird use of grasslands and that 

responses tend to be species-specific.  We found that the best models of dickcissel density 

included vegetation diversity (Table 2).  In contrast, the best model for bobolink density 

included only grass cover (Table 2).  Our findings confirm what others have found in the 

past; dickcissels are positively associated with forb cover and bobolinks are negatively 

associated with forb cover in grassland habitats (Patterson and Best 1996, Delisle and 

Savidge 1997).   

 Our habitat models revealed that both vegetation characteristics and food resources 

are important in explaining grassland bird densities.  Researchers have recently advocated for 

the inclusion of information about food resources to better predict bird use of grassland 

habitats (Benson 2003; Davros 2005).   In fact, we found that food resource availability was 

associated with density during the breeding season for 60% of the grassland bird species that 

we examined.  Our findings are similar to those of Davros (2005) who found that habitat 

models for total bird abundance, total bird species richness, and common yellowthroat, sedge 

wren and song sparrow abundance were improved by adding information about food 

resources.    

 

MANAGEMENT IMPLICATIONS 

 Management of grassland habitat for grassland birds will not be successful under a 

“one size fits all” approach.  Instead, we conclude that a variety of planting types and 

management strategies may be necessary to conserve grassland birds.  Negus et al. (2010) 

advocated for management practices that would enable the inclusion of a mosaic of 
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vegetation characteristics to provide the variety of habitat types necessary for multiple 

grassland bird species.   Additionally, Ribic et al. (2009) found that no single grassland 

habitat type would be adequate to conserve all grassland birds and that a variety of grassland 

habitat types would be required.  Recommendations about grassland habitat plantings have 

advocated the use of native grass species over non-native grasses (Allen 1993) and avoiding 

single-species plantings of native or non-native grasses (McCoy et al. 2001).  However, 

given the importance of cool-season grass plantings for bobolinks in our study, consideration 

must be given to the impact that elimination of these plantings may have on the future of 

bobolink populations. Future research is needed to assess whether the inclusion of additional 

native cool-season grass species into grassland plantings will provide the necessary 

vegetation structure for bobolinks.   
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Figure 1. Study Sites were located in the Spring Run Complex in Dickinson County, Iowa, 
USA in 2007, 2008, and 2009.  Solid white polygons indicate sites that were planted with 
cool-season grasses ≥10 years ago, solid light grey polygons indicate sites that were planted 
to warm-season grasses between 2005 and 2007, solid black polygons indicate sites that were 
planted to warm-season grasses 
that were planted with a high diversity seed mix between 2005 and 2007.  B
indicate study site blocking. 
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Figure 2.  Invertebrate self-sorting “tubes” used to sort invertebrates collected during sweep 
net sampling from vegetation debris. Invertebrate samples collected during sweep net 
sampling were placed in 1 gallon sized zip
Sample bags were cut open and placed into the back of each tube.  Invertebrate samples 
remained in the tubes for 24 hours.  During the 24 hour sorting time, invertebrates were 
drawn to the light end of the tubes and were carried down a funnel into labele
sample bags filled with 70% ethyl alcohol for preservation.  At the end of the 24 hour sorting 
time, vegetation and debris were removed and inspected for remaining invertebrates.
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sample bags filled with 70% ethyl alcohol for preservation.  At the end of the 24 hour sorting 
time, vegetation and debris were removed and inspected for remaining invertebrates.



35 
 

 

 

Figure 3.   Correspondence Analysis ordination plots of vegetation characteristics measured in 
2007, 2008, and 2009 in the Spring Run Complex, Dickinson County, Iowa, USA.  Cool-season 
fields are indicated with C’s, warm-season fields are indicated with N’s for newly planted and 
O’s for mature fields, and high diversity fields are indicated with H’s.  Vegetation measurements 
taken within each field were averaged for each year.  Selected vegetation characteristic scores 
were plotted (bottom) for reference.    
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Table 1.  Covariates included in models of detection functions for birds surveyed in 2007, 2008, and 2009 in the Spring Run 
Complex, Dickinson County, Iowa, USA.  Models of detection functions were evaluated using the Multi-covariate Distance 
Sampling analysis engine of program DISTANCE.  We tested half-normal and hazard-rate key functions with automatic sequential 
selection of adjustment terms.  We included a null model (no covariates) and combinations of 4 covariates in the set of candidate 
models: Round (survey week), Planting Type, Planting Age, and Management Activity.   The best model from the set of candidate 
models was selected using Akaike’s Information Criterion and Chi-square Goodness of Fit Tests.    

  Covariates Curve Type  
No. of 

Param. 
∆ 

AIC 
χ

2 p-
value 

Obligate Grassland Species:       

  Bobolink♂ Dolichonyx oryzivorus Planting Age Half-normal   2 0.05 0.34 

  Dickcissel♂ Spiza americana Null Model Half-normal  1 0.00 0.38 

  Grasshopper Sparrow♂ Ammodramus savannarum Management Activity Hazard-rate  3 0.00 0.29 

  Sedge Wren♂ Cistothorus platensis Planting Type + Management Activity Hazard-rate  4 1.99 0.18 
        

Facultative Grassland Species:       

  Common Yellowthroat♂ Geothlypis trichas Planting Type + Management Activity Half-normal  3 2.72 0.14 

  Ducks♀*   Management Activity Half-normal Cosine (1) 3 0.00 0.54 

  Killdeer♂♀ Charadrius vociferus Planting Type + Management Activity Half-normal Cosine (2) 5 0.00 0.39 

  Red-winged Blackbird♂  Agelaius phoeniceus Management Activity Half-normal   2 4.40 0.16 

  Ring-necked Pheasant♀ Phasianus colchicus Null Model Hazard-rate Cosine (3) 5 0.00 0.29 
        

Other Species:        

  American Goldfinch♂ Spinus tristis Null Model Hazard-rate  2 1.34 0.23 

  Common Grackle♂ Quiscalus quiscula Management Activity Half-normal  2 0.00 0.69 

  Song Sparrow ♂ Melospiza melodia Null Model Hazard-rate  2 0.00 0.55 

  Swamp Sparrow♂ Melospiza georgiana Planting Type Half-normal   2 0.00 0.30 
  Yellow-headed Blackbird♂ Xanthocephalus 

xanthocephalus 
Round Half-normal 

 
2 0.00 0.37 

♂      Males only included in analysis 

♀        Females only included in analysis 

♂♀    Males and females included in analysis 
*     Includes Blue-winged Teal (Anas discors) and Mallard (A. platyrhynchos) 
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Table 2.  Habitat models for bird density and species richness surveyed in 2007, 2008, and 2009 
on the Spring Run Complex, Dickinson County, Iowa, USA.  We developed a set of a priori 
biological hypotheses of habitat characteristics (see table footnote) to explain bird density and 
species richness.  For each bird response, we developed a set of 5 models using these biological 
hypotheses (model set is indicated by the superscript numbers following each response variable) 
plus an intercept only model for each.  Habitat models were evaluated using Akaike’s 
Information Criterion for small sample sizes (AICc).  The number of parameters in the model 
(including the intercept) is indicated in column k, ∆ AICc = AICc-minimumAICc, and Wi (model 
weight) = exp[-{∆ AICc/2}]/∑exp[-{∆ AICc/2}]. 
 
Species Best Supported Model(s) k ∆ AIC c Wi

*  

Obligate Grassland Species Density         
   Bobolink  1, 3, 1+3, 5, 1+3+5 Grass Cover 2 0.00 0.96 

        Dickcissel  1, 3, 1+3, 2, 1+2+3 Food Resources 3 0.00 0.55 
 Veg. Diversity 3 1.00 0.33 

        Grasshopper Sparrow  1, 2, 3, 1+3, 6  Veg. Diversity 3 0.00 1.00 

        Sedge Wren  1, 2, 3, 1+3, 5  Veg. Structure 4 0.00 0.71 
 Veg. Structure + Food Resources 6 1.79 0.29 

        All Obligate Species  1, 2, 3, 1+2+3, 4 Veg. Diversity 3 0.00 0.39 
 Food Resources 3 0.30 0.34 
     Facultative Grassland Species Density     
   Common Yellowthroat  1, 2, 3, 1+3, 6 Veg. Structure + Food Resources 6 0.00 1.00 

        Ducks  1, 2, 5, 6, 1+5 Grass Cover 2 0.00 0.53 

        Killdeer  1, 3, 1+3, 5, 6 Grass Cover 2 0.00 0.59 

        Ring-necked Pheasant  1, 3, 1+3, 5, 6 Grass Cover 2 0.00 0.48 
 Food Resources 3 1.12 0.28 

        Red-winged Blackbird  1, 2, 3, 1+3, 1+2+3 Veg. Structure + Food Resources  + 
Veg. Diversity 

8 0.00 0.78 

        All Facultative Species  1, 2, 3, 1+2+3, 4 Native Vegetation 3 0.00 1.00 

          All Species Density  1, 2, 3, 1+3, 5 Veg. Structure + Food Resources 6 0.00 0.78 

     Species Richness     
   Obligate Species  1, 2, 3, 1+3, 1+2+3 Veg. Diversity 3 0.00 0.98 

        Facultative Species  1, 2, 3, 1+3, 1+2+3 Food Resources 3 0.00 0.40 
 Veg. Structure 4 0.54 0.31 
 Veg. Diversity 3 1.10 0.23 

        All Species  1, 2, 3, 1+3, 1+2+3 Veg. Structure + Food Resources + 
Veg. Diversity 

8 0.00 0.37 

 Veg. Structure + Food Resources   6 0.31 0.31 
 Veg. Structure 4 0.81 0.24 
          

1 Vegetation Structure Hypothesis (Visual Obstruction + Variation in Visual Obstruction + Litter Depth) 
2 Vegetation Diversity Hypothesis  (Shannon Diversity Index of Cover Classes + Plant Species Richness) 
3 Food Resources Hypothesis (Biomass Preferred Invertebrate Orders + Biomass All Invertebrate Orders) 
4 Native Vegetation Hypothesis (% Cover of Native Grasses + % Cover of Native Forbs) 
5 Grass Cover Hypothesis  (% Cover of Native Grasses + % Cover of Exotic Grasses) 
6 Management Hypothesis  (Planting Age + Management Activity) 
*Akaike weights (Wi) calculated with all 5 models for each response variable. 
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Table 3.  Vegetation composition/structure variables measured in 2007, 2008, and 2009 on the 
Spring Run Complex in Dickinson County, Iowa, USA.  P-values are given for ANOVA tests for 
differences among planting types (df = 3, 20).  Different lettered subscripts following means 
indicate significant differences among treatment types for pairwise comparisons.  
 
 

Cool Season 
Warm Season 

(new) 
Warm Season 

(older) 
High 

Diversity 
Mean S.E. Mean S.E. Mean S.E. Mean S.E. P 

Native Warm-season Grasses: 
   Number of Species 0.01 a 0.12 1.22 b 0.12 1.11 b 0.12 1.24 b 0.12 <0.001 
    % Cover 0.10 a 2.93 19.99 bc 2.93 28.90 b 2.93 17.83 c 2.93 <0.001 
Native Cool-season Grasses: 
   Number of Species 0.00 a 0.03 0.13 b 0.03 0.01 ab 0.03 0.33 c 0.03 <0.001 
    % Cover 0.04 a 0.44 1.43 a 0.44 0.29 a 0.44 4.20 b 0.44 <0.001 

% Cover of All Native Grasses 0.15 a 3.05 21.42 b 3.05 29.19 b 3.05 22.03 b 3.05 <0.001 

Exotic Warm-season Grasses: 
   Number of Species 0.00 a 0.05 0.24 b 0.05 0.01 a 0.05 0.15 ab 0.05 0.002 
    % Cover 0.02 a 1.20 5.12 b 1.20 0.08 a 1.20 2.85 ab 1.20 0.009 
Exotic Cool-season Grasses: 
   Number of Species 1.65 a 0.09 0.86 b 0.09 0.76 b 0.09 0.35 c 0.09 <0.001 
    % Cover 60.15 a 2.44 16.24 bc 2.44 20.28 b 2.44 7.26 c 2.44 <0.001 

% Cover of All Grasses 60.31 a 2.88 42.79 b 2.88 49.55 b 2.88 32.13 c 2.88 <0.001 

Native Forbs: 
   Number of Species 0.12 a 0.11 0.45 a 0.11 0.44 a 0.11 2.34 b 0.11 <0.001 
    % Cover 0.87 a 1.24 4.75 a 1.24 4.96 a 1.24 23.58 b 1.24 <0.001 
Exotic Forbs: 
   Number of Species 0.20 a 0.09 0.86 b 0.09 0.79 b 0.09 0.91 b 0.09 <0.001 
    % Cover 1.82 a 1.31 10.22 b 1.31 8.36 b 1.31 9.86 b 1.31 <0.001 

Diversity of Cover Classes 1 0.99 a 0.05 1.62 bc 0.05 1.48 b 0.05 1.71 c 0.05 <0.001 

Plant Species Richness 1.98 a 0.18 3.77 b 0.18 3.12 b 0.18 5.32 c 0.18 <0.001 

Visual Obstruction 2  3.49 ab 0.37 2.20 a 0.37 4.43 b 0.37 4.27 b 0.37 <0.001 

Variation Visual Obstruction 3 1.18 a 0.13 1.14 a 0.13 1.85 b 0.13 1.96 b 0.13 <0.001 

Litter Depth  4 21.64 a 2.20 3.88 b 2.20 24.00 a 2.20 9.56 b 2.20 <0.001 

% Cover Standing Dead 3.55 0.61 1.86 0.61 2.95 0.61 1.97 0.61 0.160 

% Cover Woody Veg. 0.03   0.06 0.00 0.06 0.21 0.06 0.09 0.06 0.057 

% Cover Bare Ground 2.73 a 2.71 24.56 b 2.71 5.49 a 2.71 18.53 b 2.71 <0.001 

% Cover Litter 30.28 a 1.63 15.89 b 1.63 28.34 a 1.63 13.76 b 1.63 <0.001 

% Cover Other 0.48  0.11 0.14 0.11 0.19 0.11 0.07 0.11 0.059 

1Shannon Diversity Index of vegetation cover classes 
2Measured in decimeters 
3Standard deviation of visual obstruction 
4Measured in millimeters 
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Table 4.  Bird density (number of birds per hectare) measured in 2007, 2008, and 2009 on the 
Spring Run Complex in Dickinson County, Iowa, USA.  P-values are given for ANOVA 
tests for differences among planting types (df=3, 20) for all 3 years combined.  Different 
lettered subscripts following means indicate significant differences among treatment types 
for pairwise comparisons. 
 

Cool Season 
Warm Season 

(new) 
Warm Season 

(older) 
High 

Diversity 
Density S.E. Density S.E. Density S.E. Density S.E. P 

Obligate Species 
   Bobolink♂ 1.280 a 0.09 0.060 b 0.07 0.104 b 0.07 0.017 b 0.07 <0.001 
   Dickcissel♂ 0.006 0.01 0.013 0.01 0.005 0.01 0.020 0.01 0.695 
   Grasshopper Sparrow♂ 0.003 0.12 0.353 0.13 0.019 0.12 0.074 0.12 0.215 
   Sedge Wren♂ 0.369 a 0.08 0.035 b 0.08 0.167 ab 0.08 0.269 ab 0.08 0.046 

All Obligate Species 2.020 a 0.19 0.971 b 0.19 0.797 b 0.19 0.816 b 0.19 0.001 

Facultative Species 
   Common Yellowthroat♂ 0.056 0.28 0.025 0.28 0.857 0.28 0.696 0.28 0.111 
   Ducks♀ 0.075 0.02 0.035 0.02 0.031 0.02 0.024 0.02 0.450 
   Killdeer♂♀ 0.020 0.01 0.027 0.02 0.000 0.01 0.017 0.01 0.597 
   Red-winged Blackbird♂ 0.270 0.15 0.393 0.15 0.393 0.15 0.788 0.15 0.133 
   Ring-necked Pheasant♀ 0.100 0.04 0.138 0.04 0.109 0.04 0.098 0.04 0.888 

All Facultative Species 0.729 a 0.35 1.226 a 0.35 2.070 ab 0.35 2.904 b 0.35 0.003 

Other Species 
   American Goldfinch♂ 0.003 0.01 0.020 0.01 0.034 0.01 0.034 0.02 0.371 
   Common Grackle♂ 0.065 0.02 0.000 0.02 0.000 0.02 0.000 0.02 0.098 
   Song Sparrow♂ 0.008 a 0.03 0.040 ab 0.03 0.053 ab 0.03 0.126 b 0.03 0.051 
   Swamp Sparrow♂ 0.043 0.01 0.009 0.01 0.039 0.01 0.044 0.02 0.224 
   Yellow-headed 
Blackbird♂ 0.016 0.01 0.027 0.01 0.018 0.01 0.014 0.01 0.901 

Facultative and Obligate 2.749 0.45 2.120 0.45 2.867 0.45 3.721 0.45 0.169 
Total Density 2.917 0.49 2.472 0.49 3.342 0.49 4.294 0.49 0.099 

♂      Males only included in analysis 

♀        Females only included in analysis 

♂♀    Males and females included in analysis 
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Table 5.  Bird species richness (R.) measured in 2007, 2008, and 2009 on the Spring Run 
Complex in Dickinson County, Iowa, USA.  P-values are given for ANOVA tests for 
differences among planting types (df=3, 20).  Different lettered subscripts following means 
indicate significant differences among treatment types for pairwise comparisons. 
  

Cool Season 
Warm Season 

(new) 
Warm Season 

(older) 
High Diversity 

  Year R. S.E. R. S.E. R. S.E. R. S.E. P 
Obligate  2007 2.50 0.42   1.50 0.42   2.00 0.42   2.17 0.42 0.420 
Facultative  2007 5.17 a 0.34   3.17 b 0.34   4.00 ab 0.34   4.17 ab 0.34 0.008 
Facultative & Obligate 2007 7.67 a 0.60   4.67 b 0.60   6.00 ab 0.60   6.33 ab 0.60 0.232 

Total (All Species) 2007 13.67 1.18 10.33 1.18 12.17 1.18 12.00 1.18 0.299 

Obligate Grassland  2008 2.33 a 0.31   3.67 b 0.31   2.50 ab 0.31   2.67 ab 0.31 0.037 
Facultative Grassland  2008 3.83 0.44   5.00 0.44   3.50 0.44   3.50 0.44 0.086 
Facultative & Obligate  2008 6.17 a 0.53   8.67 b 0.53   6.00 a 0.53   6.17 a 0.53 0.008 

Total (All Species) 2008 8.33 0.88 11.50 0.88   8.83 0.88 10.50 0.88 0.080 

Obligate  2009 2.67 0.51   4.00 0.51   3.17 0.51   3.17 0.51 0.345 
Facultative   2009 3.67 0.44   3.83 0.44   4.33 0.44   4.83 0.44 0.274 
Facultative & Obligate  2009 6.33 0.59   7.83 0.59   7.50 0.59   8.00 0.59 0.232 

Total (All Species) 2009 9.67 1.07   9.00 1.07 10.83 1.07 12.17 1.07 0.214 

Obligate  All 2.50 0.27   3.06 0.27   2.56 0.27   2.67 0.27 0.481 
Facultative  All 4.22 0.28   4.00 0.28   3.94 0.28   4.17 0.28 0.878 
Facultative & Obligate All 6.72 0.41   7.06 0.41   6.50 0.41   6.83 0.41 0.813 

Total (All Species) All 10.56 0.66 10.28 0.66 10.61 0.66 11.56 0.66 0.558 
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Appendix A.  Bird density (D) measured in 2007, 2008, and 2009 on the Spring Run 
Complex in Dickinson County, Iowa, USA.  P-values are for ANOVA tests for differences 
among planting types.  Different lettered subscripts following means indicate significant 
differences among treatment types for pairwise comparisons. 

Cool Season 
Warm Season 

(new) 
Warm Season 

(older) 
High 

Diversity 
  Year D S.E. D S.E. D S.E. D S.E. P 
Obligate Species 
   Bobolink 2007 1.27 a 0.12 0.04 b 0.02 0.03 b 0.02 0.00 b 0.02 <0.001 
   Dickcissel 2007 0.05 0.02 0.06 0.02 0.06 0.02 0.13 0.03 0.151 
   Grasshopper Sparrow 2007 0.00 0.18 0.38 0.18 0.00 0.18 0.03 0.18 0.385 
   Sedge Wren 2007 0.55 0.16 0.00 0.15 0.56 0.16 0.32 0.15 0.066 

All Obligate Species 2007 2.08 a 0.24 0.67 b 0.24 0.75 b 0.24 0.93 b 0.24 0.003 

Facultative Species 
   Common Yellowthroat 2007 0.09 a 0.35 0.00 a 0.35 1.95 b 0.37 1.55 b 0.36 0.002 
   Ducks 2007 0.10 0.05 0.02 0.04 0.03 0.04 0.02 0.04 0.638 
   Killdeer 2007 0.03 0.02 0.03 0.03 0.00 0.02 0.05 0.03 0.515 
   Red-winged Blackbird 2007 0.32 0.23 0.40 0.24 0.42 0.23 1.22 0.25 0.065 
   Ring-necked Pheasant 2007 0.13 0.07 0.17 0.08 0.15 0.07 0.07 0.06 0.697 

All Facultative Species 2007 0.80 a 0.38 1.26 ab 0.38 2.67 bc 0.38 3.43 c 0.38 <0.001 

Other Species 
   American Goldfinch 2007 0.01 0.02 0.03 0.02 0.06 0.03 0.04 0.03 0.503 
   Common Grackle 2007 0.20 0.04 0.12 0.04 0.16 0.04 0.09 0.03 0.167 
   Song Sparrow 2007 0.00 0.02 0.04 0.02 0.04 0.02 0.05 0.02 0.212 
   Swamp Sparrow 2007 0.07 0.12 0.02 0.12 0.34 0.13 0.13 0.13 0.361 
   Yellow-headed Blackbird 2007 0.06 0.02 0.09 0.03 0.07 0.03 0.04 0.02 0.510 
Facultative and Obligate  2007 2.88 a 0.52 1.93 ab 0.52 3.43 ab 0.52 4.36 b 0.52 0.031 
Total Density 2007 3.23 a 0.60 2.43 ab 0.60 4.37 ab 0.60 4.98 b 0.60 0.037 

Obligate Species 
   Bobolink 2008 1.38 a 0.13 0.21 b 0.08 0.24 b 0.08 0.03 b 0.06 <0.001 
   Dickcissel 2008 0.00 0.02 0.01 0.02 0.00 0.02 0.01 0.02 0.930 
   Grasshopper Sparrow 2008 0.00 a 0.13 0.55 b 0.15 0.01 a 0.14 0.15 ab 0.14 0.049 
   Sedge Wren 2008 0.35 0.21 0.06 0.21 0.73 0.22 0.50 0.21 0.195 

All Obligate Species 2008 1.94 a 0.28 1.03 ab 0.28 1.02 ab 0.28 0.81 b 0.28 0.054 

Facultative Species 
   Common Yellowthroat 2008 0.08 0.52 0.28 0.52 1.49 0.53 2.03 0.54 0.054 
   Ducks 2008 0.07 0.04 0.06 0.05 0.03 0.04 0.01 0.03 0.675 
   Killdeer 2008 0.00 0.07 0.11 0.07 0.00 0.07 0.00 0.07 0.638 
   Red-winged Blackbird 2008 0.29 0.05 0.45 0.16 0.37 0.15 0.66 0.16 0.379 
   Ring-necked Pheasant 2008 0.01 0.06 0.18 0.07 0.09 0.06 0.25 0.08 0.395 

All Facultative Species 2008 0.61 a 0.56 1.41 ab 0.56 2.05 ab 0.56 3.26 b 0.56 0.027 

Other Species 
   American Goldfinch 2008 0.00 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.938 
   Common Grackle 2008 0.01 0.03 0.01 0.04 0.00 0.04 0.00 0.04 0.990 
   Song Sparrow 2008 0.02 a 0.04 0.07 ab 0.04 0.14 ab 0.04 0.19 b 0.05 0.046 
   Swamp Sparrow 2008 0.03 0.02 0.01 0.02 0.04 0.03 0.08 0.03 0.328 
   Yellow-headed Blackbird 2008 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.980 
Facultative and Obligate  2008 2.55 0.68 2.45 0.68 3.07 0.68 4.07 0.68 0.338 
Total Density 2008 2.61 0.77 2.58 0.77 3.39 0.77 4.78 0.77 0.189 

 



42 
 

Appendix A. Continued. 
 

Cool Season 
Warm Season 

(new) 
Warm Season 

(older) 
High 

Diversity 
Year D S.E. D S.E. D S.E. D S.E. P 

Obligate Species 
   Bobolink 2009 1.26 a 0.14 0.28 b 0.10 0.26 b 0.10 0.02b 0.10 <0.001 
   Dickcissel 2009 0.00 0.02 0.01 0.02 0.00 0.02 0.01 0.02  0.919 
   Grasshopper Sparrow 2009 0.01 a 0.08 0.45b 0.10 0.12 b 0.09 0.27 b 0.09 0.022 
   Sedge Wren 2009 0.62 0.12 0.28 0.11 0.18 0.11 0.29 0.11 0.087 

All Obligate Species 2009 2.03 a 0.26 1.21 ab 0.26 0.62 b 0.26 0.70b 0.26 0.005 

Facultative Species 
   Common Yellowthroat 2009 0.13 0.18 0.08 0.18 0.38 0.19 0.62 0.19 0.185 
   Ducks 2009 0.07 0.04 0.03 0.04 0.05 0.04 0.05 0.04 0.908 
   Killdeer 2009 0.02 0.02 0.03 0.02 0.00 0.02 0.01 0.02 0.811 
   Red-winged Blackbird 2009 0.38 0.16 0.51 0.17 0.59 0.17 1.02 0.18 0.095 
   Ring-necked Pheasant 2009 0.09 0.07 0.11 0.08 0.16 0.09 0.09 0.07 0.934 

All Facultative Species 2009 0.79 0.42 1.00 0.42 1.49 0.42 2.02 0.42 0.207 

Other Species 
   American Goldfinch 2009 0.00 0.03 0.01 0.03 0.03 0.03 0.08 0.03 0.309 
   Common Grackle 2009 0.07 0.08 0.00 0.08 0.00 0.07 0.00 0.07 0.901 
   Song Sparrow 2009 0.00 a 0.01 0.02 ab 0.02 0.02 ab 0.02 0.09 b 0.02 0.053 
   Swamp Sparrow 2009 0.05 0.02 0.01 0.02 0.03 0.02 0.03 0.02 0.628 
   Yellow-headed Blackbird 2009 0.00 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.993 

Facultative and Obligate 2009 2.82 0.53 2.22 0.53 2.11 0.53 2.73 0.53 0.718 
Total Density  2009 2.92 0.57 2.41 0.57 2.28 0.57 3.12 0.57 0.686 
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ABSTRACT Measuring reproductive success is a key element in assessing the value of 

habitat restoration to grassland birds. Our objective was to examine the effects of grassland 

restoration planting type and invertebrate food resource availability on the reproductive 

success of a grassland specialist, the Red-winged Blackbird (Agelaius phoeniceus).  We 

modeled daily nest survival using the nest survival model in program MARK.  Red-winged 

Blackbird nest survival was influenced by year, visual obstruction, and variation in the 

availability of invertebrate food resources throughout the nesting season.  We found some 

evidence for a difference in daily nest survival among planting types (p=0.06).  Specifically, 

estimated nest survival was more than twice as high in mature warm-season fields (36%) 

than in cool-season fields (14%).   

 

KEY WORDS: food resources, grassland birds, grassland invertebrates, nest survival, 

vegetation diversity, vegetation structure  

 

 



44 
 

INTRODUCTION 

 Population declines of North American grassland birds over the last several decades 

have been attributed to the widespread conversion of native grasslands to agricultural uses 

(Herkert 1995; Fletcher & Koford 2003; Herkert et al. 2003).  Restoration efforts have 

focused on increasing the amount of grassland habitat in the landscape, but, it is unknown to 

what extent the ecological functions of these plantings have been restored.   

Although comparative studies of grassland bird use of restored vs. remnant grasslands 

have assessed the potential for restored grassland plantings to provide suitable habitat for 

breeding songbirds (Fletcher & Koford 2003; Chapman et al. 2004), little attention has been 

given to assessing the relative value of the different types of grassland restoration plantings 

in maintaining bird populations. 

 Grassland vegetation structure is a key habitat component for grassland songbirds 

(McCoy et al. 2001; Chapman et al. 2004).  Seed mixtures used for grassland plantings in the 

Midwest vary widely.  Thus, the resulting vegetation structure and composition vary 

significantly among different types of restored grassland plantings (McCoy et al. 2001).  The 

costs associated with planting and maintaining these different types of plantings also varies.  

Seed costs range from approximately $50/ha for cool-season, non-native plantings, to an 

intermediate cost of $285/ha for native warm-season grasses, to $2840/ha for a diverse mix 

of native grasses and forbs (Prairie Seed Farms 2008).  In addition, the cost of maintaining a 

more diverse planting type is higher than the cost of maintaining a less diverse (grass only) 

planting type.  The plant species diversity in seed mixes used for grassland restoration 

plantings may have lasting effects on the resulting grassland bird community.   
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  Although many studies have reported bird use of grassland habitats in terms of 

abundance, species richness, or density, these metrics may not provide an accurate 

assessment of habitat quality (Van Horne 1983).  Reproductive success may be a more 

meaningful index of habitat quality for grassland birds.  For avian populations, reproductive 

success is often measured in terms of nest survival. 

Reproductive success in grassland birds is affected by factors that may be related to 

the structure and composition of the surrounding vegetation.  Nest predation has been cited 

as the primary reason for nest failure in grassland birds in many studies (Camp & Best 1994; 

Martin 1995; Winter 1999; Hall 2005; Galligan et al. 2006; Perkins & Vickery 2007; Utnup 

& Davis 2007; Giocomo et al. 2008).  The ability of potential predators to locate and access 

nests may be affected by the vegetation in which the nest is situated.  A nest located in tall, 

dense vegetation may be better hidden from or less accessible to potential predators, leading 

to higher nest success (Johnson & Temple 1990; Howard et al. 2001; Frey et al. 2008).  For 

example, successful Dickcissel (Spiza americana) nests are associated with taller and more 

dense vegetation than unsuccessful nests (Winter 1999; Conover et al. 2011).  In addition, 

more diverse vegetation may promote higher nest success for some species (Dion et al. 2000; 

Lloyd & Martin 2005).  Other studies have found no relationship between nest site vegetation 

characteristics and nest success (Vickery et al. 1992; Newton & Heske 2001).  The effects of 

vegetation characteristics on nest success may differ depending on the type of nest predator 

and species of bird (Dion et al. 2000).   

Brood parasitism by Brown-headed Cowbirds (Molothrus ater) may also affect the 

reproductive success of grassland birds (Johnson & Temple 1990; Dearborn et al. 1998; 

Winter 1999).  Parasitized nests tend to fledge fewer host young (Johnson & Temple 1990) 
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and host young that successfully fledge may be in worse body condition as a result of nest 

parasitism (Dearborn et al. 1998).  In spite of the negative consequences to host species, 

recent evidence has shown that once a nest has been parasitized, a host’s best option may be 

to raise the brood even with the added burden of the parasite chick (Hoover & Robinson 

2007).  Densely vegetated nest locations may help camouflage grassland bird nests (Johnson 

& Temple 1990).  However, Winter (1999) found no differences in vegetation characteristics 

between parasitized and un-parasitized Dickcissel nests.   

 Because grassland bird food resources in the form of arthropods vary with plant 

diversity (Jamison et al. 2002; Benson 2003; Leathers 2003; Harveson et al. 2004; Sutter & 

Ritchison 2005), the choice of planting mix for a grassland restoration may have important 

implications for the reproductive success of grassland birds.  The availability of food 

resources near the nest location may contribute to the success or failure of grassland bird 

nests.  Birds spend more time foraging and fly longer distances to forage when their nests are 

located in areas with reduced food availability (Adams et al. 1994).  Sparling et al. (2007) 

found that, for Red-winged Blackbirds (Agelaius phoeniceus), habitat types with the lowest 

invertebrate diversity had the lowest levels of nest success.  Birds that locate their nests in 

areas with high food availability may need to spend less time off the nest foraging for food.  

Less time spent away from the nest may translate into lower nest predation and brood 

parasitism.  Food supplementation of Song Sparrows (Melospiza melodia) lowered nest 

predation rates through its influence on adult antipredator behavior (Rastogi et al. 2006).  In 

addition, Dearborn et al. (1998) found that parental nest attendance is an important 

component of nest defense, and therefore, an important component of nest success.  
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 Red-winged Blackbirds are one of the most common bird species in North America 

(Beletsky 1996).  They nest in a variety of habitat types including marshes and uplands 

(Beletsky 1996; Swain et al. 2003; Sparling et al. 2007).  Because of their adaptability to 

different habitats, they provide an excellent opportunity to evaluate differences in nest 

survival among different habitat types.  The objective of our study was to examine the factors 

affecting nest survival of Red-winged Blackbirds in restored grasslands including vegetation 

characteristics, food resource availability, management activity, field area, planting age, 

brood parasitism, and restoration planting type.  

 

METHODS  

Study Area 

 The Spring Run Wetland Complex is a mix of more than 1,600 ha of wetlands and 

reconstructed grasslands located in Dickinson County in northwest Iowa, USA.  This area is 

managed by the Iowa Department of Natural Resources and is one of the largest prairie 

pothole remnants in the state. 

 We selected four restoration/planting types for our study to encompass the range of 

planting mixtures typically available to land managers.  The habitat types we selected were 

(1) cool-season - plantings of non-native, cool-season grasses (e.g. smooth brome (Bromus 

inermis), timothy (Phleum pratense), reed-canary grass (Phalaris arundinacea)) planted > 10 

years ago, (2) warm-season - a five species mix of native warm-season grasses (e.g. switch 

grass (Panicum virgatum), Indian grass (Sorghastrum nutans), big bluestem (Andropogon 

gerardii), little bluestem (Schizachyrium scoparium), and side-oats grama (Bouteloua 

curtipendula)) divided into two groups by age of planting (mature fields planted > 10 years 
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ago and new fields planted between 2005 and 2007), and (3) high diversity - a mixture of 

over 40 species of native grasses and forbs planted between 2005 and 2007.  Within the study 

area, restored fields were selected and/or planted in a block design, with each of the field 

types occurring in each block (Fig. 1).  We surveyed a total of six complete blocks. 

Nest Survival 

 Red-winged Blackbird nests in upland vegetation within each field were located in 

2007-2009 using systematic searches and behavioral observations.  Nest searches consisted 

of observers walking systematically through the fields watching for birds flushed from nests.  

Once a bird flushed, the observer carefully searched through the vegetation near the flush 

location to find the nest.  The Universal Transverse Mercator coordinates of nests were 

recorded using a Global Positioning System handheld unit.  In addition, we tied flagging tape 

to a piece of vegetation at least 5m directly north and south of the nest location.  At the time 

of nest location, we recorded information on the status of the nest, including nest contents 

(number of eggs and/or nestlings), nest condition, and ultimately the nest fate.  Nests were 

visited approximately every three days.   

 We evaluated all nests in the nestling stage for evidence of nestling starvation and 

brood parasitism by Brown-headed Cowbirds.  We defined nestling starvation as cases where 

an individual nestling disappeared from the nest or was found dead in the nest while the rest 

of the nest contents remained normal, resulting in partial brood loss (Robertson 1973; 

Caccamise 1976; Caccamise 1978).  Brood parasistism occurred when either an egg or 

nestling (for nests found in the nestling stage) cowbird was present in the nest. 
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Vegetation Composition and Structure 

 We surveyed upland vegetation in 2007-2009 at 25m intervals along randomly 

located transects in each field during twice each summer.  The two vegetation surveys 

coincided with peak height of cool-season and warm-season grasses.  Vegetation transects 

were established in the fields independently of the bird survey transects.  The shape and size 

of the fields determined the number of transects and therefore the number of vegetation 

survey locations ranged from 24-30 survey locations.  At each survey point along the 

vegetation transect, we estimated the percent cover of warm-season native grasses, cool-

season native grasses, warm-season exotic grasses, cool-season exotic grasses, native forbs, 

exotic forbs, standing dead vegetation, woody vegetation, bare ground, and litter in 0.5 m x 

0.5 m Daubenmire frames (Daubenmire 1959).  We measured visual obstruction using a 

Robel pole in each cardinal direction at each survey location (Robel et al. 1970).   

Invertebrate Abundance and Biomass 

 We sampled invertebrates using 30.5 cm diameter sweep nets in each field on 6 

randomly selected 25m long sections of the vegetation transects described above.   We 

completed three rounds of invertebrate surveys each summer in 2007-2009, one in mid-May, 

one in mid-June and one in mid-July.  These sampling periods coincided with important 

times for food resource availability for grassland birds.  Sweep net samples were taken only 

on warm, sunny days between 10:00 and 18:00 hours.  To avoid trampling the vegetation on 

the transects, sweep net sampling was offset 5m to the left or right of the transect.  One 

observer walked at a pace of one sweep per meter, sweeping the vegetation within one meter 

of the ground.  Invertebrate samples were placed in 3.8 L sized zip-top bags at the 

completion of each survey.  Immediately following sampling, invertebrate samples were 
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taken to the lab and sorted from vegetation debris using an apparatus made from polyvinyl 

chloride tubes.  The zip-top bags containing the invertebrate samples were opened with 

scissors and placed into the back portion of the sorting tubes.  Invertebrate samples remained 

in the tubes for 24 hours.  During the 24 hour sorting time, invertebrates were drawn to the 

light end of the tubes and were carried down a funnel into labeled whirl-pak sample bags 

filled with 70% ethyl alcohol for preservation.  Invertebrate samples were identified to Order, 

counted, dried, and weighed to obtain estimates of biomass. 

Data Analysis 

To evaluate nest success of Red-winged Blackbirds, we modeled daily nest survival 

using the nest survival model in program MARK (White & Burnham 1999; Dinsmore et al. 

2002).  We used Akaike’s information criterion (AIC) to select the best model based on a set 

of a priori candidate models (Dinsmore & Dinsmore 2007; Cooch & White 2005).  We 

developed models to represent different hypotheses about factors (year, nest stage, vegetation 

structure/composition, invertebrate abundance/biomass, field type, clutch size, brood 

parasitism) that accounted for variation in Red-winged Blackbird nest survival (Dinsmore & 

Dinsmore 2007).   

We adopted a hierarchical approach to model selection.  We first examined time 

trends in nest survival by comparing models of constant survival, a linear trend, and a 

quadratic trend during the nesting season, as well as annual variation.  Next, we looked for 

stage-specific temporal trends in nest survival, by dividing the nesting period into incubation 

and nestling stages and we compared the same temporal trends (constant, linear, and 

quadratic) within each nest stage.  We modeled observer effects on nest survival with day-

specific covariates (Dinsmore & Dinsmore 2007). 
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We used the best temporal trend models (∆ AIC < 2) from the analyses above to then 

investigate the effects of habitat and nest covariates on Red-winged Blackbird nest survival.  

We added each of the individual covariates separately.  First, we wanted to see if vegetation 

characteristics had an effect on nest survival.  We included visual obstruction (in dm, 

averaged from all measurements taken in each field for each year) and vegetation diversity 

(Shannon Diversity Index of vegetation cover classes for each field for each year).  Second, 

we included invertebrate food resource availability as a possible factor affecting nest 

survival.  To represent food resource availability, we included invertebrate biomass (average 

biomass of all invertebrate samples in each field for each year) and the variation in 

invertebrate biomass (standard deviation of all invertebrate samples in each field for each 

year).  Third, we investigated the effects of management activity (0=none, 1=spot mow or 

spot herbicide treatment, 2=complete mow or hay, 3=prescribed fire), planting age (in years 

– plantings ≥ 10 years were entered as 10 years), and field area on nest survival.  Lastly, we 

looked to see if brood parasitism (the presence of Brown-headed Cowbird eggs or nestlings) 

had an effect on nest survival.  We report model averaged beta values from the set of best 

supported models (∆ AIC < 2). 

To further investigate potential differences in nest survival among the planting types, 

we tested for differences in daily nest survival among the four different field types 

incorporating our block study design using ANOVA with PROC MIXED in SAS.  We used 

program MARK to obtain estimates of average daily nest survival for each field, combining 

the data from all three years (2007, 2008, and 2009).  Because of low numbers of nests in the 

newly planted warm-season fields, we excluded this field type from the analysis.  In addition, 

two mature warm-season fields and one cool-season field were excluded from the data set 



52 
 

due to inadequate numbers of nests.  We conducted pairwise comparisons among planting 

types using Tukey-Kramer adjustments for multiple testing.  We calculated overall nest 

survival for each field type by raising daily survival rates to the exponent of the number of 

days in the nesting cycle (incubation time of 11 days and nestling period of 10 days). 

 

RESULTS 

 We monitored a total of 185 Red-winged Blackbird nests from 25 May through 5 

August over the 3-year study period (2007-2009) encompassing 1995 total exposure days.  

Clutch size ranged from 1 to 5 with an average clutch size of 3.4 ± 0.86.  Nests fledged an 

average of 2.4 ± 0.98 young.  We found evidence of nestling starvation in 48% of successful 

nests and in 36% of all nests containing nestlings.  Brood parasitism by Brown-headed 

Cowbirds occurred in 11% of all nests and in 5% of successful nests (Table 1).  Thirty 

percent of all nests we monitored fledged young and predation was the most common cause 

of nest failure (Fig. 2).  

 Our ANOVA results provided some evidence for a difference in daily nest survival 

among planting types (p=0.06).  Specifically, daily nest survival was higher in mature warm-

season fields than in cool-season fields, but did not differ among the other planting types 

(Table 2).  Overall nest survival was lowest in cool-season fields (14%), highest in mature 

warm-season fields (36%) and intermediate in high diversity fields (22%). 

 We found evidence of year effects in daily nest survival, with 2007 having higher 

nest survival compared to 2009 (β2007=0.59 on logit scale, 95% CI 0.02, 1.15; Table 3).  

Visual obstruction had a positive effect on nest survival (β= 0.15 on logit scale, 95% CI -

0.03, 0.28; Fig. 3).  We also found weak evidence that food resources had an effect on nest 
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survival through variation in invertebrate biomass (βvar.invert.bio.= -1.73 on logit scale 95% CI -

3.58, 0.11) suggesting that fields with more variation in invertebrate biomass over the nesting 

season may have lower nest survival (Fig. 4).  We found no evidence for observer effects on 

nest survival.   

 

DISCUSSION 

 Our daily nest survival estimates are similar to previously reported values.  For 

example, in roadside ditches in a North Dakota study, daily nest survival for Red-winged 

Blackbirds was 0.931 (Clark et al. 2004).   Our overall nest survival estimates are also similar 

to what others have found regionally.  For example, the average seasonal estimate of nest 

success in a study in the Rainwater Basin region of Nebraska was 37% (Post van der Burg et 

al. 2010).  We found overall nest survival in mature warm-season fields was more than twice 

as high than in cool-season fields, suggesting that there may be factors affecting nest survival 

that are a result of grassland planting type.  While overall nest survival in our high diversity 

planting type was not significantly different from the other two planting types, this may be in 

part because of the recent planting age of these fields (≤ 4years).  Although our results 

suggested that daily nest survival differed among planting types, a concurrent study of 

grassland bird density found that Red-winged Blackbird density was not different across the 

same four planting types (Vogel 2011).   

 We found within our 3-year study, Red-winged Blackbird nest survival varied by 

year.  In fact, others have reported that Red-wing Blackbird reproductive success can be 

highly variable among years (Orians 1980; Beletsky 1996; Dinsmore & Dinsmore 2007).  
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Year to year variation in reproductive success may be a result of factors such as food 

availability and precipitation (Fletcher & Koford 2004). 

 We found evidence of a relationship between Red-winged Blackbird nest survival and 

visual obstruction, suggesting that nests had higher survival in fields with taller vegetation.  

Nests in taller vegetation may be less susceptible to predation by mammals (Pribil 1998).  In 

contrast, Pribil (1998) discovered that although Red-winged Blackbirds preferred taller 

vegetation, preferences for vegetation features did not translate into higher reproductive 

success.  In addition, Caccamise (1977) found that vegetation height at the nest was 

negatively correlated with hatching success of Red-winged Blackbirds in New Jersey 

marshes, but that there was no relationship between nest height and fledging success.  One 

possible explanation for these differences may be that our vegetation measurements represent 

the vegetation of the entire field in which the nests were located, whereas others have 

measured vegetation specific to each nest.  

 Our results suggest that Red-winged Blackbird nests located in fields with more 

variation in invertebrate biomass over the nesting season may have lower nest survival than 

those with less variation in invertebrate food availability over the nesting season.  Red-

winged Blackbirds feed their nestlings almost an entirely invertebrate diet during the nestling 

period (Voigts 1973; Sparling et al. 2007).  Researchers have reported that the most common 

food items collected by Red-winged Blackbirds were from the Orders Lepidoptera, 

Orthoptera, and Odonata (Robertson 1973; Sparling et al. 2007).  Red-winged Blackbirds 

nesting in uplands tend to forage in terrestrial areas near their nesting location (Orians 1980).  

Our data suggest that terrestrial invertebrate food availability, and particularly consistency in 

invertebrate food availability over the nestling period, is potentially important in nest 
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survival.  In a concurrent study of grassland bird habitat use and density on the Spring Run 

Complex, visual obstruction and food resources were also important predictors of adult Red-

winged Blackbird density (Vogel 2011).    

 We found evidence of nestling starvation in both successful and unsuccessful nests in 

our study area.  Nestling starvation is a major factor in partial brood loss in Red-winged 

Blackbirds (Beletsky 1996). Starvation was the second most common source of mortality in a 

study of Red-winged Blackbirds in New Jersey marshes and approximately 24% of nestling 

deaths were attributed to starvation over 2 years (Caccamise 1976; Caccamise 1978).  In 

addition, nestling starvation was more common in areas that had higher nest density 

(Caccamise 1977).  Red-winged Blackbirds tend to start out with clutch sizes of three to five 

eggs, but only tend to fledge an average of 2.7 young; much of this difference has been 

attributed to nestling starvation (Beletsky 1996).  Similarly, we found an average clutch size 

of 3.4, but only an average of 2.4 young fledged.  Due to competition for nest sites and food 

resources, starvation of nestlings may be more common when Red-winged Blackbirds co-

occur with Yellow-headed Blackbirds (Robertson 1973) as was the case on our study sites.   

 Predation is commonly cited as the most important source of nest failure in Red-

winged Blackbirds (Beletsky 1996).  For example, in a study of Red-winged Blackbirds in 

New Jersey marshes, predation was the cause of mortality in 42% of nest failures (Caccamise 

1976).  Predation rates tend to be greater in uplands than in marsh habitats (Robertson 1973; 

Picman et al. 1993).  Consistent with what others have reported, we found that predation was 

our most common cause of nest failure.  Additionally, Red-winged Blackbird nests located in 

uplands are exposed to a greater variety of predators than those in marshes (Picman et al. 
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1993).  Raccoons (Procyon lotor) are a common predator of Red-winged Blackbird nests and 

of nesting females (Blakley 1976; Picman et al. 1993).   

 Brown-headed Cowbirds are common brood parasites of Red-winged Blackbirds and 

parasitism rates vary from 0% to over 50% (Beletsky 1996).  Brood parasitism rates are 

highly variable even among years at the same location (Beletsky 1996).  Although 11% of 

our nests were parasitized, we did not find brood parasitism by Brown-headed Cowbirds to 

have an effect on Red-winged Blackbird daily nest survival.  Red-winged Blackbird nestlings 

are larger than Brown-headed Cowbird nestlings and therefore can potentially out-compete 

them for food (Beletsky 1996).  The main effect that parasitism by Brown-headed Cowbirds 

may have on Red-winged Blackbird nest success is the loss of one of the host eggs (Beletsky 

1996; Clotfelter & Yasukawa 1999). 

 

 IMPLICATIONS FOR PRACTICE  

• Measuring reproductive success is a key element in assessing the value of 

habitat restoration to grassland birds. Although adult Red-winged Blackbird 

densities were not different among the different planting types, nest survival 

was twice as high in warm-season grass plantings than in cool-season grass 

plantings, suggesting that adult density may not be a good indicator of 

reproductive success.     
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Figure 1. Study sites were located in the Spring Run Complex in Dickinson County, Iowa, 
USA in 2007, 2008, and 2009.  Solid white polygons indicate sites that were planted with 
cool-season grasses ≥10 years ago, solid light grey polygons indicate sites that were planted 
to warm-season grasses between 2005 and 2007, solid black polygons indicate sites that were 
planted to warm-season grasses 
that were planted with a high diversity seed mix between 2005 and 2007.  Black rectangles 
indicate study site blocking. 
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Figure 2.   Fate of Red-winged Blackbirds nests monitored in 2007, 2008, and 2009 on the 
Spring Run Complex, Dickinson County, Iowa, USA.  Successful nests fledged at least one 
young.  Failed nests were categorized into losses from predation, abandonment, management 
activity (e.g. mowing), weather, or other/unknown causes. 
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Figure 3.  Predicted daily nest survival of Red-winged Blackbird nests monitored in 2007, 
2008, and 2009 on the Spring Run Complex, Dickinson County, Iowa, USA.  Daily nest 
survival was estimated for the range of visual obstruction readings we recorded in the study 
area.  Estimates of daily survival were produced with the assumption of constant survival 
over the nesting season. 
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Figure 4.  Predicted daily nest survival of Red-winged Blackbird nests monitored in 2007, 
2008, and 2009 on the Spring Run Complex, Dickinson County, Iowa, USA.  Daily nest 
survival was estimated for the range of values for invertebrate biomass (a) and variation in 
invertebrate biomass (b) we recorded in the study area.  Estimates of daily survival were 
produced with the assumption of constant survival over the nesting season.  

a 

b 
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Table 1.  Means and standard deviation of covariates by planting type included in models of 
daily nest survival for Red-winged Blackbird nests in 2007, 2008, and 2009 on the Spring 
Run Complex in Dickinson County, Iowa, USA.  The covariates included were field area (in 
hectares), planting age (in years – plantings ≥ 10 years were entered as 10 years), 
management activity (0=none, 1=spot mow or spot herbicide treatment, 2=complete mow or 
hay, 3=prescribed fire), vegetation diversity (Shannon Diversity Index of vegetation cover 
classes for each field for each year), visual obstruction (in dm) invertebrate biomass (in 
grams),variation in invertebrate biomass (standard deviation of invertebrate biomass), and 
brood parasitism (percent of nests with Brown-headed Cowbird eggs or nestlings. 
 

Cool Season 
 

Warm Season 
(new)  

Warm Season 
(mature)  

High 
Diversity 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Field Area 14.42 4.12 10.96 2.07 14.56 5.39 13.13 4.31 

Planting Age 10.00 0.00 1.50 0.99 10.00 0.00 2.33 1.28 

Management Activity 0.00 0.00 1.50 1.15 0.44 1.04 0.72 1.23 

Vegetation Diversity 0.99 0.17 1.62 0.26 1.48 0.25 1.71 0.15 

Visual Obstruction 3.49 0.97 2.20 1.42 4.43 1.49 4.27 2.29 

Invertebrate Biomass 0.35 0.25 0.24 0.12 0.29 0.16 0.26 0.14 

Var. Invert. Biomass 0.19 0.21 0.08 0.13 0.14 0.19 0.11 0.17 

Brood Parasitism 13% - 0 - 7% - 22% - 
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Table 2.  Daily nest survival rates for Red-winged Blackbird nests in 2007, 2008, and 2009 
on the Spring Run Complex in Dickinson County, Iowa, USA.  Adjusted p-values are given 
for pair-wise comparison among planting types.  
 

  Cool Season Warm Season (mature) High Diversity 

  
Daily 
Survival SE   

Daily 
Survival SE   

Daily 
Survival SE 

0.9110 0.010 0.9527 0.012 0.9305 0.009 

Pair-wise 
Comparisons 
Cool Season -     p=0.057     p=0.370   
Warm Season 
(mature) p=0.057 - p=0.339 
High Diversity p=0.370 p=0.339 - 
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Table 3.  Nest survival model selection results for Red-winged Blackbirds in 2007, 2008, and 
2009 on the Spring Run Complex, Dickinson County, Iowa, USA. 

Model AICc ∆ AICc wi K Deviance 

Year 672.54 0.00 0.26 3 666.52 
Constant Survival (Intercept Only) 673.24 0.70 0.19 1 671.24 
Linear by Stage 673.57 1.03 0.16 4 665.55 
Nest Stage 673.85 1.31 0.14 2 669.84 
Quadratic Survival 674.90 2.37 0.08 3 668.89 
Linear Survival 674.93 2.39 0.08 2 670.92 
Observer Effect 675.14 2.60 0.07 2 671.13 

Quadratic by Stage 677.22 4.68 0.03 6 665.17 

            

Constant Survival + Visual Obstruction 668.74 0.00 0.17 2 664.73 
Nest Stage + Visual Obstruction 669.09 0.36 0.14 3 663.08 
Linear by Stage + Visual Obstruction 669.45 0.71 0.12 5 659.41 
Linear by Stage + Visual Obstruction + Food Resources 669.83 1.09 0.10 7 655.77 
Constant Survival +Vis. Obstruction + Food Resources 669.90 1.16 0.09 4 661.88 
Nest Stage + Visual Obstruction + Food Resources 669.91 1.17 0.09 5 659.87 
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ABSTRACT Nestling growth rates in altricial birds are influenced by many external factors 

related to the availability of food resources.  Grassland bird food resources in the form of 

arthropods vary with plant diversity.  As a result, the choice of planting mix for a grassland 

restoration may affect food resource availability for grassland birds.  Our objectives were to 

determine whether nestling growth rates and nestling size at fledging differed among 

grassland restoration plantings with varying plant species diversity and to examine how the 

availability of invertebrate food resources affected the growth rates of grassland songbirds.  

We selected three planting types to encompass the range of planting mixtures typically 

available to land managers.  The planting types were (1) cool-season - plantings of non-

native, cool-season grasses, (2) warm-season - a five species mix of native warm-season 

grasses, and (3) high diversity - a mixture of over 40 species of native grasses and forbs.  We 

measured 79 red-winged blackbird (Agelaius phoeniceus) nestlings in 2008 and 2009.  
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Nestling size at fledging differed among grassland planting type with warm-season fields 

having smaller nestlings.  Male nestlings were larger than females at fledging with regard to 

mass, wing, and tarsus measurements.  Nestling growth rates did not differ either among 

grassland restoration planting types or between sexes.   

 

KEY WORDS nestling growth, grassland birds, grassland invertebrates, food resources 

  

INTRODUCTION 
 
 Habitat loss is one of the primary factors affecting population declines of grassland 

birds over the last several decades (Herkert 1995; Fletcher and Koford 2003; Herkert et al. 

2003).  Recovery efforts for grassland bird populations have focused on increasing the 

amount of grassland habitat in the landscape.  However, it is unknown to what extent the 

ecological functions of these grassland plantings have been restored.  For example, although 

the densities of common bird species were similar in restored and remnant grasslands, 

Fletcher and Koford (2003) found that habitat structure differed between the two vegetation 

types.   

Grassland bird food resources in the form of arthropods vary with plant diversity 

(Jamison et al. 2002; Benson 2003; Leathers 2003; Harveson et al. 2004; Sutter and 

Ritchison 2005).  As a result, the choice of planting mix for a grassland restoration may 

affect food resource availability for grassland birds.  Few studies have evaluated the response 

of invertebrate food resources to grassland habitat plantings.  McIntyre and Thompson 

(2003) found that, in addition to differences in vegetation structure and composition between 

restored and remnant grasslands, arthropod abundance and diversity were higher on remnant 
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sites.  In a study of planted exotic grasslands in Montana, chestnut-collared longspurs 

(Calcarius ornatus) had slower nestling growth and smaller mass at fledging than in native 

grasslands (Lloyd and Martin 2005).  Although restored sites may not be functionally similar 

to remnant sites, restored grasslands can support invertebrate populations that are important 

food resources for grassland birds (McIntyre and Thompson 2003).  Evaluating the 

availability of food resources in restored grasslands and how these resources relate to the 

growth rate of grassland songbirds warrants further investigation.   

 Nestling growth rates in altricial birds are influenced by many external factors related 

to the availability of food resources (O’Connor 1984).  Both the quality and quantity of food 

delivered to young in the nest are potentially important in determining growth and 

reproductive success (Boag 1987; Reynolds et al. 2003; Granbom and Smith 2006).  

Laboratory studies have shown that zebra finch (Poephila guttata) nestling growth rates are 

significantly affected by diet quality (Boag 1987).  However, studies on food 

supplementation and reduction in the field have not consistently demonstrated strong effects 

of food availability on avian growth rates.  Increased parental foraging effort may 

compensate for limited food resources (Adams et al. 1994; Tremblay et al. 2005; Zalik and 

Strong 2008).  For example, Adams et al. (1994) found that reducing invertebrate food 

resources did not produce adverse effects on growth and survival of vesper sparrow 

(Pooecetes gramineus) nestlings.  Similarly, diet supplementation of Florida scrub-jays 

(Aphelocoma coerulescens) produced minimal improvement in nestling growth rates 

(Reynolds et al. 2003).    

 Estimates of food resource availability for insectivorous birds have been used as 

response variables in the study of avian systems.  Many of these studies have found that food 
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availability is associated with bird abundance in both grassland and forested systems (Brush 

and Stiles 1986; Davros 2005; Benson et al. 2007; Vogel 2011).  Food resources may affect 

nestling growth rates differently in different systems (Granbom and Smith 2006).  

Differences among habitats in the influence of food resources on growth rates may be related 

to food resource variability and may depend on whether food resources are a limiting factor 

in those systems.   

 A relationship between nestling weight and juvenile survival has been demonstrated 

for some bird species (Magrath 1991; Ragusa-Netto 1996).  For other species, no such trend 

has been demonstrated; however, there is no evidence of a negative relationship between 

nestling mass and juvenile survival (see Table 5 in Magrath 1991).  For blackbirds (Turdus 

merula), nestlings that were heavier at 8 days had higher survival than lighter nestlings and 

were more likely to return to breed than lighter nestlings (Magrath 1991).  A similar 

relationship has been reported for black-capped donacobius (Donacobius articapillus) where 

nestling mass at 15 days was also correlated with juvenile survival (Ragusa-Netto 1996). 

 Red-winged blackbirds (Agelaius phoeniceus) are one of the most common bird 

species in North America (Beletsky 1996).  They nest in a variety of habitat types including 

marshes and uplands (Beletsky 1996; Swain et al. 2003; Sparling et al. 2007).  Red-winged 

blackbirds regularly forage for invertebrate food in upland habitats during the breeding 

season (Orians 1980).  Because of their abundance and adaptability to different habitats, they 

provided an excellent opportunity to evaluate differences in nestling growth rates and size at 

fledging among different habitat types.  The objectives of our study were to determine 

whether nestling growth rates and nestling size at fledging differs among grassland 

restoration plantings with varying plant species diversity.  We also examined the relationship 
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between invertebrate food resources and growth rates of grassland songbirds and how 

vegetation characteristics and weather (temperature and precipitation) affected both 

invertebrate food resource availability and nestling growth rates in restored grasslands. 

 

METHODS 

Study Area 

 The Spring Run Wetland Complex is a mix of more than 1600 ha of wetlands and 

reconstructed grasslands located in Dickinson County in northwest Iowa, USA.  The area is 

managed by the Iowa Department of Natural Resources and is one of the largest prairie 

pothole remnants in the state. 

 We selected three planting types for our study to encompass the range of planting 

mixtures typically available to land managers.  The planting types we selected were (1) cool-

season - plantings of non-native, cool-season grasses (e.g. smooth brome (Bromus inermis), 

timothy (Phleum pratense), reed-canary grass (Phalaris arundinacea)) planted > 10 years 

ago, (2) warm-season - a five species mix of native warm-season grasses (e.g. switch grass 

(Panicum virgatum), Indian grass (Sorghastrum nutans), big bluestem (Andropogon 

gerardii), little bluestem (Schizachyrium scoparium), and side-oats grama (Bouteloua 

curtipendula))and (3) high diversity - a mixture of over 40 species of native grasses and 

forbs.  Within the study area, reconstructed fields were selected or planted in a block design, 

with each of the field types occurring in each block (Fig. 1).  We surveyed a total of 6 

complete blocks. 
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Nestling Growth 

 We located nests in uplands from May through August in 2008-2009 using systematic 

searches and behavioral observations.  Systematic nest searches consisted of observers 

walking in a systematic pattern through the fields watching for birds to flush from nests.  

After a bird flushed, an observer carefully searched through the vegetation near the flush 

location to find the nest.  To aid in the relocation of nests, we recorded the Universal 

Transverse Mercator coordinates of nests using a Global Positioning System handheld unit.  

In addition, we tied flagging tape to a piece of vegetation 5m directly north and south of the 

nest location.  At the time of nest location, we recorded the status of the nest including the 

nest contents (number of eggs and/or nestlings, presence of brood parasitism), nest condition, 

and ultimately the nest fate (whether a nest successfully fledged young or failed).  Nests were 

monitored approximately every 3 days.   

 We assessed nestling growth rates.  We individually marked nestlings by dying the 

down on the top of their heads with a non-toxic felt tipped pen.  Once the nestlings were 

large enough (approximately 4 days old), we banded them with a unique combination of 

color and numbered aluminum bands.  At each visit, we determined the mass of nestlings to 

the nearest 0.01g using a portable electronic balance, and we measured tarsus length and the 

length of the outermost primaries to the nearest 0.1mm using dial calipers. 

DNA Sexing 

 We determined the sex of each nestling that reached fledging age with DNA sexing.  

We collected blood from nestlings just prior to fledging (9-10 days).  Blood samples were 

collected in accordance with the Ornithological Council’s Guidelines to the Use of Wild 

Birds in Research (Gaunt et al. 1999) and Iowa State University’s Institutional Animal Care 
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and Use Committee (permit # 8-06-6203-A).  We sent blood samples on Permacode sample 

cards to Animal Genetics, Inc., Tallahassee, FL for processing.  Samples were assayed using 

a Polymerase chain reaction (PCR) to amplify the DNA in each sample which contains the 

different sized W and Z bird sex chromosomes.  This PCR-based method has been used to 

sex many different species of birds in many different life stages (Santamaria 2010). 

Vegetation Composition and Structure 

 We surveyed upland vegetation at 25 m intervals along randomly located transects in 

each field during May and July each summer in 2008 and 2009.  The 2 rounds of vegetation 

surveys coincided with peak height of cool-season and warm-season grasses.  The shape and 

size of the fields determined the number of vegetation transects and therefore the number of 

survey locations (ranged from 24-30 survey locations per field).  At each survey point along 

the vegetation transect, we estimated the percent cover of warm-season native grasses, cool-

season native grasses, warm-season exotic grasses, cool-season exotic grasses, native forbs, 

exotic forbs, standing dead vegetation, woody vegetation, bare ground, and litter in 0.5 m x 

0.5 m Daubenmire frames (Daubenmire 1959).  We measured visual obstruction using a 

Robel pole in each cardinal direction at each survey location (Robel et al. 1970).  We 

averaged vegetation measurements taken within each field within each year.  To evaluate 

vegetation diversity, we calculated a Shannon Diversity Index value of the vegetation cover 

classes for each field.  To calculate Shannon Diversity we used the formula:  H'=∑-(pi*lnpi), 

where pi=the proportion of each vegetation cover class in each field. 

 We recorded the management activity that occurred in each field during each nesting 

season.  Fields in our study either had no management or they were managed with prescribed 
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fire.  We also recorded the planting age of each field at the start of each nesting season.  

Fields that were planted more than 10 years ago were listed as 10 years. 

Invertebrate Biomass 

 We sampled invertebrates using 30.5 cm diameter sweep nets in each field on 6 

randomly selected 25 m long sections of the vegetation transects described above.   We 

completed three rounds of invertebrate surveys, one in mid-May, one in mid-June and one in 

mid-July in 2008 and 2009.  We sampled invertebrates only on warm, sunny days between 

1000 and 1800 hours.  In order to avoid trampling the vegetation on the transects, we off-set 

sweep net sampling 5m to the left or right of the transect.  During the surveys, one observer 

walked at a pace of one sweep per meter, sweeping the vegetation within one meter of the 

ground.  Invertebrate samples were placed in 3.8 L sized zip-top bags at the completion of 

each survey.  Immediately following sampling, invertebrate samples were sorted from 

vegetation debris using insect self-sorting tubes.  Invertebrate samples remained in the tubes 

for 24 hours.  During the 24 hour sorting time, invertebrates were drawn to the end of the 

tubes and were carried down a funnel into labeled whirl-pak sample bags filled with 70% 

ethyl alcohol for preservation.  We identified invertebrate samples to Order, counted, dried, 

and weighed them to obtain estimates of biomass.  We calculated a Shannon Diversity Index 

of invertebrate Orders using biomass.   

Weather Data 

 We obtained daily weather data from the nearest National Oceanic and Atmospheric 

Administration’s National Climatic Data Center weather station (number 14972).  For each 

nestling in our dataset, we compiled the daily precipitation and temperature data for the 10 
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days corresponding to the days in the nest.  We averaged daily temperature and total 

precipitation for each 10-day period. 

Data Analysis 

We estimated nestling growth rates using PROC NLIN in SAS Version 9.1 (SAS 

Institute, Cary, NC, USA) with the following logistic growth curve equation for altricial birds 

(Ricklefs 1968; Ricklefs 1983; McCarty 2001) in the model statement:   

���� � ����

1 � 	���� 
  ����
���� 
 ����

 

 

���� is the nestling mass at age �, ����is the predicted asymptotic mass of the nestling, 

����is the mass of the nestling at age 0, and �is the growth rate (Ricklefs 1983, McCarty 

2001).  We entered initial values for each parameter based on information from Beletsky 

(1996).  We produced three growth curves for each nestling (mass, wing, and tarsus).  

Because we were not able to measure all of the nestlings more than 4 times during the 

nestling period, we were unable to obtain variances for all growth rate estimates, and 

therefore were unable to include the variance of our estimates in our subsequent analyses. 

 We tested for differences in nestling growth rates (K) for mass, wing, and tarsus and 

for differences in mass, wing, and tarsus measurements at fledging among the different 

planting types using Analysis of Variance (ANOVA) with PROC MIXED in SAS.  We 

included Nest in a RANDOM statement to account for the non-independence of nestlings 

within a nest.  We included Block, Year, Sex, and Planting Type in the model statement.  We 

also tested for differences in invertebrate biomass and diversity among the different planting 

types using ANOVA with PROC MIXED in SAS. We included Year, Block, and Planting 
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Type in the model statement.  We conducted post-hoc pairwise comparisons among planting 

types using Tukey-Kramer adjustments for multiple testing.  

 We examined the effects of habitat, weather, and nest characteristics on avian growth 

rates and size at fledging using a model selection procedure.  We developed a set of habitat, 

weather, and nest covariates (Table 1) that we predicted would affect growth rates in nestling 

red-winged blackbirds.  We used PROC MIXED in SAS and included Nest in a random 

statement to account for the non-independence of nestlings within a nest.  We used Akaike’s 

Information Criterion (AIC) to evaluate the support for each model and determine which 

models were best supported (∆ AIC < 2) by the data (Burnham and Anderson 2002).  We 

report beta values where the 95% confidence interval does not include zero for covariates in 

the best supported models (∆ AIC < 2).  We also examined the effects of vegetation 

characteristics (Table 2) on invertebrate diversity and biomass using the same model 

selection procedure described above with a separate set of vegetation covariates.    

 

RESULTS 

 We measured 79 nestlings from 30 red-winged blackbird nests.  Of the 79 nestlings, 

we were able to determine the sex of 71 individuals.  The sex ratio of the nestlings was 36 

males and 35 females.  Brood size ranged from 1 to 4, with an average brood size of 2.8 

nestlings.  Only 2 out of the 30 nests (7%) were parasitized by brown-headed cowbirds 

(Molothrus ater). 

  Male nestlings were larger than females at fledging with regard to mass, wing, and 

tarsus measurements (Table 3).  Nestlings were smaller at fledging in the warm-season 

planting type than in either high diversity or cool-season plantings (Table 4).  We found no 
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evidence of differences in nestling growth rates among the three planting types (Table 4).  In 

addition, we found no evidence of differences in nestling growth rates between males and 

females (Fig. 2-4, Table 3). There was no evidence of differences among years for growth 

rates or nestling size at fledging. 

 We found evidence that vegetation structure (visual obstruction) had a negative effect 

nestling mass at fledging (βvisual obstruction= -1.279, 95% CI -2.458, -0.010) suggesting that 

fields with taller, dense vegetation may produce smaller nestlings (Table 5, Fig.5).  

Vegetation structure also had a negative effect on nestling tarsus growth rates (βvisual obstruction= 

-0.032, 95% CI -0.061, -0.002; Table 5, Fig.5).  Nestling wing growth rate was negatively 

related to food resource availability (βinvert. biomass= -0.285, 95% CI -0.430, -0.139) and 

positively related to management activity βmanagement= 0.039, 95% CI 0.018, 0.059; Table 5, 

Fig. 6).    

 Invertebrate diversity did not differ among the planting types (Table 6).  Aranae 

biomass was highest in cool-season fields than in either warm-season fields or high diversity 

fields (Table 6).  Four additional invertebrate Orders had higher biomass in cool-season 

fields, but these differences were not statistically significant (Table 6).  Overall invertebrate 

biomass was also higher in cool-season fields, but this difference was not statistically 

significant (Table 6).  We found that the amount of native vegetation in a grassland 

restoration was negatively related to Araneae biomass (βnative grasses= -0.0002, 95% CI -0.0004, 

-0.00003; βnative forbs = -0.0003, 95% CI -0.0005, -0.0001; Table 8).  Additionally, we found 

that planting age had a negative effect on Diptera (true flies) biomass (βplanting age= -0.0034, 

95% CI -0.0061, -0.0006; Table 7) while vegetation diversity had a positive effect on Diptera 

biomass (βvegetation diversity= 0.0301, 95% CI 0.0011, 0.06; Table 8). 
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DISCUSSION 

 Although male red-winged blackbird fledglings are larger than females, we found that 

growth rates did not differ between the sexes.  This result was consistent with previous work 

that suggested growth rates for male and female red-winged blackbird nestlings were similar 

(Holcomb and Twiest 1970).  Male and female red-winged blackbird nestlings appear to be 

growing at the same rate, but female nestlings stop growing sooner than male nestlings.  

Holcomb and Twiest (1970) found that female red-winged blackbird nestlings had earlier 

feather tract development, achieved their adult size earlier, and fledged earlier than male 

nestlings.  The average secondary sex ratio for red-winged blackbirds is 53:47 in favor of 

females (Beletsky 1996).  The sex ratio for nestlings in our study was slightly in favor of 

males at 49:51 females to males.  

 Red-winged blackbird nestlings were smaller at fledging in warm-season fields than in 

either of the other two planting types.  In addition, we found that vegetation structure (visual 

obstruction) was negatively associated with nestling mass at fledging, yet warm-season fields 

in the Spring Run Complex did not have higher visual obstruction readings than either cool-

season or high diversity fields (Vogel 2011).  Although vegetation structure was not 

associated with invertebrate biomass; taller, dense vegetation may make invertebrate prey 

more difficult to find, resulting in conditions that may be less favorable for foraging.   

 We did not find that temperature had an influence on red-winged blackbird nestling 

growth rates.  A negative relationship between maximum daily temperature and nestling 

growth has been reported for sage sparrows (Amphispiza belli) in Idaho and both skylarks 

(Alauda arvensis) and yellowhammers (Emberiza citronella) in the United Kingdom 

(Petersen et al. 1986; Bradbury et al. 2003).  Although warmer temperatures may increase 
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invertebrate activity and therefore lead to increased food availability, warmer temperatures 

may also lead to increased costs to both nestlings and adults (Bradbury et al. 2003).  Adult 

costs associated with higher temperatures may include spending more time shading nestlings 

on the nest, leaving less time for foraging, while nestlings may have increased costs in hotter 

conditions due to heat dissipation requirements (Bradbury et al. 2003).   

 We found no evidence in our models that brood size had a significant effect on red-

winged blackbird nestling growth or nestling size at fledging.  Many studies have 

investigated the effects of experimentally manipulating brood size on nestling growth and 

nestling condition and have generally concluded that larger brood sizes produce smaller, 

slower growing nestlings (Diijkstra et al. 1990; Robinson and Rotenberry 1991; DeKogel 

1997).  Studies of naturally occurring brood sizes on nestling growth and condition have not 

come to such consistent conclusions.  For example, brood size had no effect on nestling 

growth rates of tree swallows (Tachycineta bicolor), but had significant negative effects on 

nestling mass (Parsons 2009) and for Bachman’s sparrows (Aimophila aestivalis) in 

Arkansas, brood size did not have an effect on nestling mass or tarsus growth (Haggerty 

1994).   

 Brown-headed Cowbirds commonly parasitize the nests of red-winged blackbirds. 

Parasitism rates vary from 0% to more than 50% and are highly variable even among years at 

the same location (Beletsky 1996).  We found that brood parasitism by brown-headed 

cowbirds may have an effect on red-winged blackbird nestling primary length at fledging; 

however, only 7% of our nests were parasitized.  Others have found that red-winged 

blackbird nestlings were of similar size (mass and tarsus) in nests parasitized by brown-

headed cowbirds and in unparasitized nests (Clotfelter and Yasukawa 1999).  Red-winged 
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blackbird nestlings are larger than brown-headed cowbird nestlings and therefore can 

potentially out-compete them for food (Beletsky 1996).   

 Food resource availability was negatively related to nestling wing growth rates.  

However, we found no evidence of differences in overall food resource availability 

(invertebrate biomass) among the planting types.  Red-winged blackbirds regularly forage for 

invertebrates in upland areas during the breeding season (Orians 1980).  Previous work has 

suggested deficits in food resource availability may be compensated for by increased 

foraging time and/or foraging distance in adults (Adams et al. 1994; Tremblay et al. 2005; 

Zalik and Strong 2008).    

 Interestingly, we found that Araneae biomass was highest in cool-season fields.  

Because our cool-season fields contained non-native, cool-season grasses, it was not 

surprising that we also found a negative relationship between Araneae biomass and the 

percent cover of native vegetation.  It is unclear why spiders in the Order Araneae would 

prefer exotic cool-season fields to the other planting types.  Cool-season fields in the Spring 

Run Complex have significantly lower variation in visual obstruction readings than warm-

season or high diversity fields, resulting in more homogenous cover (Vogel 2011).  Perhaps 

the more homogenous nature of cool-season fields results in better web construction 

locations, less web obstruction due to vegetation variation, and therefore increased prey 

capture. 

 

MANAGEMENT IMPLICATIONS 

 Although we selected a broad range of planting types, we did not find that planting 

type was an important factor affecting the growth rates of red-winged blackbird nestlings.  
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We selected red-winged blackbirds for this study because they were abundant in all of our 

planting types.  Future research may need to focus on whether the results we found for red-

winged blackbirds translate to more grassland-dependent species such as dickcissels or 

bobolinks.  From a human perspective, the qualitative differences we observe between 

monotypic grassland plantings and diverse grass/forb plantings are significant.  However, 

these qualitative differences do not appear to translate into large quantitative differences in 

invertebrate food resource availability (biomass).   
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Figure 1. Study sites were located in the Spring Run Complex in Dickinson County, Iowa,
USA in 2008, and 2009.  Solid white polygons indicate sites that were planted with 
season grasses ≥10 years ago, solid black polygons indicate sites that were planted to 
season grasses ≥10 years ago, and solid light grey polygons indicate sites 
with a high diversity seed mix between 2005 and 2007.  Black rectangles indicate study site 
blocking. 
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Figure 2. Predicted growth curves for male (top) and female (bottom) red-winged blackbird 
nestling mass measured in 2008 and 2009 on the Spring Run Complex in Dickinson County, 
Iowa, USA.    
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Figure 3. Predicted growth curves for male (top) and female (bottom) red-winged blackbird 
nestling primary length measured in 2008 and 2009 on the Spring Run Complex in Dickinson 
County, Iowa, USA.    
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Figure 4. Predicted growth curves for male (top) and female (bottom) red-winged blackbird 
nestling tarsus length measured in 2008 and 2009 on the Spring Run Complex in Dickinson 
County, Iowa, USA.    
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Figure 5. Relationship between vegetation structure (visual obstruction) versus a) red-winged 
blackbird mass at fledging and b) red-winged blackbird tarsus growth rate measured in 2008 
and 2009 on the Spring Run Complex in Dickinson County, Iowa, USA.   
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Figure 6.  Relationship between red-winged blackbird nestling wing growth rate versus a) 
food resource availability (invertebrate biomass) and b) management activity measured in 
2008 and 2009 on the Spring Run Complex in Dickinson County, Iowa, USA.   
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Table 1.  Mean and standard deviation of vegetation, food resources, weather, and nest 
covariates included in models of nestling growth rates and measurements (mass, wing, 
tarsus) for red-winged blackbird nestlings in 2008 and 2009 on the Spring Run Complex in 
Dickinson County, Iowa, USA.  The covariates included were vegetation structure (visual 
obstruction in dm), Food Resources (total invertebrate biomass in grams), brood size (the 
number of nestlings in a nest), brood parasitism (presence of a Brown-headed Cowbird egg 
or nestling in a nest), temperature (average temperature during the 10 day nestling period), 
precipitation (total precipitation during the 10 day nestling period), management activity 
(0=no management, 1=managed by prescribed fire), and planting age (in years).  Data for 
fields were only included if they contained at least one nest that survived to fledging. 

Covariates Mean Std. Dev. Min.  Max. 
Vegetation Structure (dm) 3.87 1.14 0.80 6.98 
Food Resources (g) 1.83 0.16 1.31 2.01 
Brood Size 2.83 0.78 1.00 4.00 
Brood Parasitism 7% - - - 
Temperature (degrees F) 67.88 4.04 57.45 74.09 
Precipitation (cm) 0.39 0.34 0.00 1.02 
Management Activity 0.16 0.37 0.00 1.00 
Planting Age (years) 6.90 3.69 1.00 10.00 
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Table 2.  Mean and standard deviation of habitat covariates included in models of 
invertebrate diversity and biomass in 2008 and 2009 on the Spring Run Complex in 
Dickinson County, Iowa, USA.  The covariates included were vegetation structure (visual 
obstruction in dm), vegetation diversity (Shannon Diversity Index of vegetation cover 
classes), native vegetation (percent cover of native grasses and native forbs), grass cover 
(percent cover of all grasses both native and exotic), planting age (in years; plantings ≥ 10 
years were entered as 10 years), and management activity (0=none, 1=prescribed fire).   

Covariates Mean Std. Dev. Min.  Max. 

Vegetation Structure 4.03 1.51 0.80 7.81 

Vegetation Diversity 1.42 0.34 0.89 1.90 

Native Vegetation  
      % Cover Native Grasses 17.25 16.23 0.00 54.10 
      % Cover Native Forbs 9.95 11.45 0.00 35.00 

Total Grass Cover 46.88 13.50 19.07 66.83 

Planting Age 7.61 3.48 1.00 10.00 

Management Activity 0.14 0.35 0.00 1.00 
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Table 3.  Red-winged blackbird nestling growth rates and fledgling mass, wing, and tarsus in 
2008 and 2009 on the Spring Run Complex in Dickinson County, Iowa, USA.  P-values are 
given for tests of differences between sexes.   
 

  Males   Females     

  Mean S.E.   Mean S.E.   P-value 

Growth Rate (K) Mass 0.549 0.032 0.546 0.032 0.877 
Fledge Mass (g) 34.477 0.707 25.077 0.784 <0.001 

Growth Rate (K) Wing 0.427 0.020 0.442 0.020 0.268 

Fledge Wing (mm) 54.904 1.046 50.752 1.157 0.001 

Growth Rate (K) Tarsus 0.377 0.031 0.419 0.030 0.107 
Fledge Tarsus (mm) 28.345 0.349 25.188 0.391 <0.001 
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Table 4.  Red-winged blackbird nestling growth rates and measurements (mass, wing, tarsus) 
measured in 2008 and 2009 on the Spring Run Complex in Dickinson County, Iowa, USA.  
P-values are given for ANOVA tests for differences among planting types.  Different lettered 
subscripts following means indicate significant differences among treatment types for 
pairwise comparisons. 
 

  Cool Season Warm Season High Diversity   

  Mean S.E. Mean S.E. Mean S.E. P-value 

Growth Rate (K) Mass   0.669    0.117   0.724     0.087   0.581 0.071 0.399 

Fledge Mass (g) 31.501a 1.483     26.773b 1.277 31.056a 0.912 0.042 

   
Growth Rate (K) Wing   0.466 0.043   0.372 0.030   0.466      0.024 0.090 

Fledge Wing (mm) 57.683a 2.205 48.304b 1.895 52.498ab 1.358 0.021 

   
Growth Rate (K) Tarsus   0.417 0.060   0.373 0.052   0.402 0.033 0.858 

Fledge Tarsus (mm) 27.693 0.724 25.381 0.627 27.225 0.442 0.066 
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Table 5.  Models of Red-winged blackbird nestling growth rates and measurements (mass, 
wing, tarsus) taken in 2008 and 2009 on the Spring Run Complex in Dickinson County, 
Iowa, USA.  Models were evaluated using Akaike’s Information Criterion for small sample 
sizes (AICc).  The number of parameters in the model (including the intercept) is indicated in 
column K, ∆ AICc = AICc-minimumAICc, and wi (model weight) = exp[-{∆ AICc/2}]/∑exp[-
{∆ AICc/2}]. 
 

  Best Supported Model(s) K ∆ AIC c wi 

Growth Rate (K) Mass Planting Age 2 0.00 0.19 
Brood Parasitism 2 0.20 0.17 
Vegetation Structure 2 0.80 0.13 
Temperature 2 1.00 0.11 
Brood Size 2 1.10 0.11 
Management Activity 2 1.20 0.10 
Precipitation 2 1.20 0.10 
Food Resources 2 1.40 0.09 

Fledge Mass (g) Vegetation Structure 2 0.00 0.48 

Growth Rate (K) Wing Food Resources 2 0.00 0.60 
Management Activity 2 1.10 0.35 

Fledge Wing (mm) Brood Parasitism 2 0.00 0.55 

Growth Rate (K) Tarsus Vegetation Structure 2 0.00 0.42 

Fledge Tarsus (mm) Planting Age 2 0.00 0.20 
Precipitation 2 0.80 0.13 
Vegetation Structure 2 0.90 0.13 
Brood Size 2 0.90 0.13 
Food Resources 2 1.00 0.12 
Brood Parasitism 2 1.20 0.11 
Management Activity 2 1.50 0.09 

  Temperature 2 1.50 0.09 
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Table 6.  Invertebrate biomass (in grams) and diversity (Shannon Diversity Index) sampled in 
2008 and 2009 on the Spring Run Complex in Dickinson County, Iowa, USA.  P-values are 
given for ANOVA tests for differences among planting types.  Different lettered subscripts 
following means indicate significant differences among treatment types for pairwise 
comparisons. 
  

  Cool Season Warm Season High Diversity   

  Mean S.E. Mean S.E. Mean S.E. P-value 

Invertebrate Diversity 1.762 0.074 1.828 0.074 1.768 0.074 0.791 

Total Invertebrate Biomass 0.358 0.052 0.259 0.052 0.219 0.052 0.197 

Acari Biomass <0.001 0.000 <0.001 0.000 <0.001 0.000 0.410 

Araneae Biomass  0.022a 0.002 0.014b 0.002 0.011b 0.002 0.011 

Coleoptera Biomass 0.072 0.026 0.050 0.026 0.040 0.026 0.679 

Diptera Biomass 0.041 0.010 0.048 0.010 0.062 0.010 0.321 

Ephemeroptera Biomass 0.001 0.001 0.002 0.001 0.001 0.001 0.619 

Hemiptera Biomass 0.089 0.016 0.062 0.016 0.040 0.016 0.148 

Hymenoptera Biomass 0.015 0.004 0.027 0.004 0.017 0.004 0.170 

Lepidoptera Biomass 0.072 0.029 0.028 0.029 0.014 0.029 0.363 

Neuroptera Biomass 0.001 0.000 <0.001 0.000 <0.001 0.000 0.886 

Odonata Biomass 0.010 0.004 0.013 0.004 0.009 0.004 0.723 

Orthoptera Biomass 0.036 0.007 0.013 0.007 0.021 0.007 0.095 
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Table 7.  Models of invertebrate diversity (Shannon Diversity Index) and biomass (in grams) 
sampled in 2008 and 2009 on the Spring Run Complex in Dickinson County, Iowa, USA.  
Models were evaluated using Akaike’s Information Criterion for small sample sizes (AICc).  
The number of parameters in the model (including the intercept) is indicated in column K, ∆ 

AICc = AICc-minimumAICc, and wi (model weight) = exp[-{∆ AICc/2}]/∑exp[-{∆ AICc/2}]. 

  
Best Supported Model(s) K ∆ AIC c wi 

Invertebrate Diversity Management Activity 2 0.00 0.43 
Vegetation Structure 2 1.00 0.26 

Total Invertebrate Biomass Native Vegetation 3 0.00 0.51 

Araneae Biomass Native Vegetation 3 0.00 0.78 

Coleoptera Biomass Management Activity 2 0.00 0.28 
Vegetation Structure 2 0.80 0.19 
Grass Cover 2 1.20 0.15 
Planting Age 2 1.30 0.15 
Vegetation Diversity 2 1.40 0.14 

Diptera Biomass Planting Age 2 0.00 0.44 
Vegetation Diversity 2 1.40 0.22 
Grass Cover 2 1.90 0.17 

Lepidoptera Biomass Grass Cover 2 0.00 0.36 
Vegetation Diversity 2 0.50 0.28 

Odonata Biomass Vegetation Structure 2 0.00 0.59 

Orthoptera Biomass Vegetation Diversity 2 0.00 0.38 
Grass Cover 2 1.20 0.21 
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ABSTRACT  Baseline levels of corticosterone in developing birds are good indicators of 

physiological condition, are associated with food resource availability, and have been used as 

indicators of habitat quality in birds.  The objective of our study was to examine how 

restored grassland habitat type affects the physiological condition of nestling red-winged 

blackbirds (Agelaius phoeniceus) in grasslands.  We collected blood samples from nestling 

red-winged blackbirds  just prior to fledging and we measured whole blood glucose and 

assayed concentrations of plasma corticosterone.  Baseline corticosterone levels were lower 

in the warm-season planting type than in either cool-season or high diversity plantings.  We 

found no differences in baseline corticosterone levels or blood glucose levels between males 

and females.  We found no relationship between baseline corticosterone levels and body 

mass or between baseline corticosterone levels and blood glucose for male or female 

nestlings.  Blood glucose levels in male nestlings had a significant positive relationship with 

nestling mass, but not in female nestlings.  Management activity and brood size had positive 
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relationships with baseline corticosterone, suggesting that more intensive management 

activity and larger brood sizes were related to increased stress levels.  Nestling age and 

temperature during the nestling period were positively related to blood glucose levels. 

 

KEY WORDS  baseline corticosterone, grassland birds, food resource availability, red-

winged blackbirds 

 

INTRODUCTION 

 Corticosterone is a steroid hormone that is released by the adrenal complex in 

response to stress in vertebrate animals (Siegel 1980).   Elevated levels of corticosterone in 

the blood plasma of adult birds produce a variety of responses, both behavioral and physical, 

which allow individuals to survive the short term conditions that initiated the stress response 

(Siegel 1980; Sapolsky et al. 2000).  However, long-term elevated corticosterone levels in 

adult individuals may have negative consequences, including reduced physical condition 

(Harvey et al. 1984) or reproductive success through reduced adult territory defense and food 

provisioning to young (Silverin 1986; Wingfield and Silverin 1986).  In developing birds, the 

effects of elevated corticosterone levels may also have serious negative consequences.  For 

example, zebra finches (Taenopigia guttata) that were exposed to elevated corticosterone 

levels during their nestling period had reduced growth and poor competitive abilities 

(Spencer and Verhulst 2007) and poor song quality (Spencer et al. 2003) as compared to 

control birds.     

 Baseline corticosterone levels in blood plasma are associated with food resource 

availability in birds (Kitaysky et al. 1999; Saino et al. 2003; Schoech et al. 2004; Pravosudov 
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and Kittaysky 2006; Jenni-Eiermann et al. 2008).  Increased baseline corticosterone levels in 

adult and developing birds have been associated with poor feeding conditions (Saino et al. 

2003; Pravosudov and Kitaysky 2006; Kempster et al. 2007; Jenni-Eiermann et al. 2008).  In 

addition, plentiful food resource availability has been linked to lower baseline corticosterone 

levels.  For example, experimental food supplementation of adult Florida scrub-jays 

(Aphelocoma coerulescens) resulted in decreased baseline corticosterone levels (Schoech et 

al. 2004).  Further evidence for the relationship between baseline corticosterone levels and 

feeding conditions comes from a study of western scrub-jays (Aphelocoma californica), 

where experimentally induced food restrictions increased baseline corticosterone levels in 

nestlings (Pravosudov and Kitaysky 2006).   

Baseline levels of corticosterone in developing birds are good indicators of their 

physiological condition (Pravosudov and Kitaysky 2006) and adult body condition.  Muller 

et al. (2007) found that decreased body condition of adult blue tits (Parus caeruleus), was 

associated with elevated baseline corticosterone levels.  The same negative relationship 

between body mass and baseline corticosterone level has been reported for black-legged 

kittiwakes (Rissa tridactyla) in Alaska (Kitaysky et al. 1999). 

Baseline corticosterone levels have also been used as indicators of habitat quality in 

birds.  In a study of American redstarts (Setophaga ruticilla), individuals in lower quality 

habitat had higher baseline corticosterone levels than those in higher quality habitat (Marra 

and Holberton 1998).  Baseline corticosterone levels in black-legged kittiwakes were 

elevated in sub-optimal habitats when compared to those in higher quality habiats (Kitaysky 

et al. 1999).   
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In addition to baseline corticosterone levels in the blood plasma, blood glucose levels 

may provide an additional indicator of an individual’s physiological condition.  Blood 

glucose levels in birds are higher and more variable than in other vertebrates (Braun and 

Sweazea 2008; Lobban et al. 2010).  It is unknown how birds can tolerate these higher and 

more variable blood glucose levels without experiencing the negative effects, such as tissue 

damage and death that can occur in other animals (Beuchat and Chong 1998).  Blood glucose 

levels are a reflection of the diet and the recent level of food ingestion by birds (Davey et al. 

2002) and blood glucose levels in birds have been shown to be affected by experimental food 

restrictions (Altan et al. 2005; Kempster 2007).   

 Habitat loss is one of the primary factors affecting population declines of grassland 

birds over the last several decades (Herkert 1995; Fletcher and Koford 2003; Herkert et al. 

2003).  Recovery efforts for grassland bird populations have focused on increasing the 

amount of grassland habitat in the landscape.  However, it is unknown to what extent the 

ecological functions of these grassland plantings have been restored.  Grassland bird food 

resources in the form of arthropods vary with plant diversity (Jamison et al. 2002; Benson 

2003; Leathers 2003; Harveson et al. 2004; Sutter and Ritchison 2005).  As a result, the 

choice of planting mix for a grassland restoration may affect food resource availability for 

grassland birds.  In grassland restoration projects, plantings with higher plant species 

diversity are generally considered to be higher quality habitat than plantings of lower plant 

species diversity (McCoy et al. 2001). 

 Red-winged blackbirds (Agelaius phoeniceus) are one of the most common bird 

species in North America (Beletsky 1996).  They nest in a variety of habitat types including 

marshes and uplands (Beletsky 1996; Swain et al. 2003; Sparling et al. 2007).  Red-winged 
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blackbirds regularly forage for invertebrate food in upland habitats during the breeding 

season (Orians 1980).  Because of their adaptability to different habitats, they provided an 

excellent opportunity to evaluate differences in baseline corticosterone and blood glucose 

levels among different habitat types.  The objective of our study was to compare the 

physiological condition of nestling red-winged blackbirds among restored grassland habitat 

types.  We also wanted to examine if habitat characteristics such as vegetation structure and 

food resource availability were related to nestling baseline corticosterone and blood glucose 

levels in restored grasslands. 

 

METHODS 

Study Area 

 The Spring Run Wetland Complex is a mix of more than 1600 ha of wetlands and 

reconstructed grasslands located in Dickinson County in northwest Iowa, USA.  This area is 

managed by the Iowa Department of Natural Resources and is one of the largest prairie 

pothole remnants in the state. 

 We selected three planting types for our study to encompass the range of planting 

mixtures typically available to land managers.  The habitat types we selected are (1) cool-

season - plantings of non-native, cool-season grasses (e.g. smooth brome (Bromus inermis), 

timothy (Phleum pratense), reed canary grass (Phalaris arundinacea), and Kentucky 

bluegrass (Poa pratensis)) planted  >10 years ago, (2) warm-season - a five species mix of 

native warm-season grasses (e.g. switch grass (Panicum virgatum), Indian grass 

(Sorghastrum nutans), big bluestem (Andropogon gerardii), little bluestem (Schizachyrium 

scoparium), and side-oats grama (Bouteloua curtipendula)) planted  >10 years ago and (3) 
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high diversity - a mixture of over 40 species of native grasses and forbs planted between 

2005 and 2007.  Within the study area, reconstructed fields were selected and/or planted in a 

block design, with each of the field types occurring in each block (Fig. 1).  We will survey a 

total of 6 complete blocks. 

Nest Monitoring and Blood Collection 

 We located red-winged blackbird nests in upland vegetation from May through 

August in 2008-2009 using systematic searches and behavioral observations.  Systematic nest 

searches consisted of observers walking systematically through the fields watching for birds 

to flush from nests.  Once a bird flushed, we carefully searched through the vegetation near 

the flush location to find the nest.  To aid in the relocation of nests, we recorded the 

Universal Transverse Mercator coordinates of nests using a Global Positioning System 

handheld unit.  In addition, we tied flagging tape to a piece of vegetation 5m directly north 

and south of the nest location.  At the time of nest location, we recorded information about 

the status of the nest including nest contents (number of eggs and/or nestlings, evidence of 

brood parasitism), nest condition, and ultimately the nest fate.  We monitored nests 

approximately every 3 days.   

We collected all blood samples in accordance with the Ornithological Council’s 

Guidelines to the Use of Wild Birds in Research (Gaunt et al. 1999) and Iowa State 

University’s Institutional Animal Care and Use Committee (permit # 8-06-6203-A).  Starting 

on the first day after hatching; we individually marked nestlings by dying the down on the 

top of their heads with a non-toxic felt tipped pen.  Once the nestlings were large enough, we 

banded them with a unique combination of color and numbered aluminum bands.  We 

collected blood from nestlings just prior to fledging (8-10 days) using a 27 gauge needle.  We 
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collected all blood samples just after sunrise within 3 minutes of approaching the nest.  We 

collected blood into heparinized capillary tubes, with a maximum of 2 capillary tubes 

collected for each bird.   Immediately after collection, we took blood glucose readings in the 

field using a portable blood glucose meter.  After collection, we transferred the samples from 

the capillary tubes into labeled micro-centrifuge tubes and placed them into a cooler.  Within 

2 hours after collection, we centrifuged the samples and collected the plasma using a 

Hamilton syringe.  

Baseline Corticosterone Assay 

 We assayed concentrations of plasma corticosterone with a double antibody I125 

radioimmunoassy kit (MP Biomedical, Orangeburg, NY, Catalog #07-120103).  Although 

the kit was developed for measuring corticosterone levels in rats and mice, Washburn et al. 

(2002) validated this kit for use in measuring the plasma concentrations of corticosterone in 

birds.  Following the protocols of Parsons (2009), plasma samples were diluted to 1:40 using 

the steroid diluent provided in the kit and all samples were analyzed in triplicate.  In addition 

to the standards provided in the kit (25 ng/ml, 50 ng/ml, 100 ng/ml, 250 ng/ml, 500 ng/ml, 

and 1000 ng/ml), we diluted the 25 ng/ml standard with the steroid diluent to produce a 6 

ng/ml standard and 12.5 ng/ml standard.  We included control samples (provided with the 

kit) in every set of samples processed in the assay.   

DNA Sexing 

 We determined the sex of each nestling that reached fledgling age with DNA sexing.  

We sent blood samples on Pemacode sample cards to Animal Genetics, Inc., Tallahassee, FL 

for processing.  Samples were assayed using Polymerase chain reaction (PCR) assays to 

amplify the DNA in each sample which contains the different sized W and Z bird sex 
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chromosomes.  This PCR-based method has been used to sex many different species of birds 

in many different life stages (Santamaria 2010). 

Habitat Characteristics – Vegetation Surveys 

 We surveyed upland vegetation at 25m intervals along randomly located transects in 

each field twice each year in 2008 and 2009.  The two vegetation surveys coincided with 

peak height of cool-season and warm-season grasses.  The shape and size of the fields 

determined the number of transects and therefore the number of vegetation survey locations 

ranged from 24-30 survey locations.  At each survey point along the vegetation transect, we 

estimated the percent cover of warm-season native grasses, cool-season native grasses, 

warm-season exotic grasses, cool-season exotic grasses, native forbs, exotic forbs, standing 

dead vegetation, woody vegetation, bare ground, and litter in 0.5m x 0.5m Daubenmire 

frames (Daubenmire 1959).  We measured visual obstruction using a Robel pole in each 

cardinal direction at each survey location (Robel et al. 1970).   

 We recorded the management activity that occurred in each field during each nesting 

season.  Fields in our study either had no management (0) or they were managed with 

mowing (2) or prescribed fire (3).  We also recorded the planting age of each field at the start 

of each nesting season.  Fields that were planted more than 10 years ago were listed as 10 

years. 

Weather Data 

 We obtained daily weather data from the nearest National Oceanic and Atmospheric 

Administration’s National Climatic Data Center weather station (number 14972).  For each 

nestling in our dataset, we compiled the daily precipitation and temperature data for the 10 
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days corresponding to the days in the nest.  We used the average daily temperature and total 

precipitation for each 10 day period. 

Food Resource Availability - Invertebrate Biomass 

 We sampled invertebrates using twelve inch diameter sweep nets in each field on 6 

randomly selected 25m long sections of the vegetation transects described above.   We 

conducted three rounds of invertebrate surveys, one in mid May, one in mid June and one in 

mid July in 2008 and 2009.  These sampling periods coincided with important times for food 

resource availability for grassland birds.  We conducted sweep net samples only on warm, 

sunny days between 1000 and 1800 hours.  In order to avoid trampling the vegetation on the 

transects, sweep net sampling was off-set 5m to the left or right of the transect.  During 

sweep net sampling, one observer walked at a pace of one sweep per meter, sweeping the 

vegetation within one meter of the ground.  We placed invertebrate samples in 3.8 L sized 

zip-top bags at the completion of each survey.  Immediately following sampling, invertebrate 

samples were sorted from vegetation debris using insect self-sorting tubes.  Invertebrate 

samples remained in the tubes for 24 hours.  During the 24 hour sorting time, invertebrates 

were drawn to the ends of the tubes and carried down a funnel into labeled whirl-pak sample 

bags filled with 70% ethyl alcohol for preservation.  Invertebrate samples were identified to 

Order, counted, dried, and weighed to obtain estimates of biomass. 

Data Analysis 

 We tested for differences in baseline corticosterone and blood glucose levels among 

the different planting types using Analysis of Variance (ANOVA) with PROC MIXED in 

SAS (SAS Institute, Cary, NC, USA).  We included Nest in a RANDOM statement to 

account for the non-independence of nestlings within a nest.  We included Block, Year, Sex, 
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and Planting Type in the model statement. We conducted post-hoc pairwise comparisons 

among planting types using Tukey-Kramer adjustments for multiple testing.  In addition, we 

wanted to examine the relationships between body mass, baseline corticosterone, and blood 

glucose levels.  Because red-wing blackbird nestling mass at fledging is sexually dimorphic, 

with males having greater mass than females (Vogel 2011) we evaluated these relationships 

separately for males and females using PROC MIXED in SAS.  Again, we included Nest in a 

RANDOM statement to account for the non-independence of nestlings within a nest.   

 We examined the effects of habitat, weather, and nest characteristics on baseline 

corticosterone blood glucose levels using a model selection procedure.  We developed a set 

of covariates to compare models of factors affecting growth rates in nestling Red-winged 

Blackbirds (Table 1).   We used Akaike’s Information Criterion (AIC) to evaluate the support 

for each model and determine which models were best supported (∆ AIC < 2) by the data 

(Burnham and Anderson 2002).  We report  beta values where the 95% confidence interval 

does not include zero for covariates in the best supported models (∆ AIC < 2).   

 

RESULTS 

 We collected blood samples from 86 Red-winged Blackbird nestlings from 35 nests.  

There were 38 females and 48 males.  Brood size ranged from 1 to 4, with an average brood 

size of 2.8 nestlings.  Only 3 out of the 35 nests (9%) were parasitized by brown-headed 

cowbirds (Molothrus ater). 

 Baseline corticosterone levels were lower in the warm-season planting type than in 

either cool-season or high diversity plantings (Table 2).  We found no evidence of 

differences in baseline corticosterone levels between males and females (F1,41=0.88, 
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P=0.354).  In addition, baseline corticosterone levels did not differ between years 

(F1,41=0.06, P=0.807).  We found no relationship between baseline corticosterone levels and 

body mass or between baseline corticosterone levels and blood glucose for male or female 

nestling red-winged blackbirds (Figs. 2 and 4).   

 We found no evidence of differences in nestling blood glucose levels among the three 

planting types (Table 2).   Additionally, we found no evidence of differences in blood 

glucose levels between males and females (F1,46=1.49, P=0.229).  However, we did find 

differences in blood glucose levels between years, with 2008 having higher levels than 2009 

(F1,46=7.14, P=0.010).  Blood glucose levels in male nestlings had a significant positive 

relationship with nestling mass, but not in female nestlings (Figure 3). 

 Red-winged blackbird nestling baseline corticosterone levels were most associated 

with different management activity in our models (Table 3).  We found strong evidence that 

management activity had a positive relationship with baseline corticosterone (βmanagement= 

1.208, 95% CI 0.220, 2.196), suggesting that management activity was related to increased 

stress levels (Fig. 5).  We also found that brood size had positive relationship with nestling 

baseline corticosterone levels (βbrood size= 1.695, 95% CI 0.181, 3.208), suggesting that larger 

brood sizes were related to increased stress levels (Fig. 6).  Finally, we found that planting 

age was negatively related to baseline corticosterone levels (βplanting age= -0.338, 95% CI -

0.662, -0.014), suggesting that more recently planted fields were associated with higher stress 

levels (Fig. 7). 

 Red-winged blackbird nestling blood glucose levels were most affected by nestling 

age at the time of blood collection in our models (Table 4).  In fact, we found strong evidence 

that nestling age was positively related to blood glucose levels (βnestling age= 14.542, 95% CI 
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5.845, 23.238), suggesting that older nestlings had higher blood glucose readings (Fig. 8).  

We also found evidence that temperature during the nestling period was positively related to 

blood glucose levels (βtemperature= 2.469, 95% CI 0.554, 4.384; Fig. 9). 

 

DISCUSSION 

 Nestling baseline corticosterone was lower in warm-season plantings than in either of 

the other two planting types.  Both planting age and management activity of the high 

diversity fields (recently planted, managed) versus the warm-season fields (planted >10 years 

ago, no management) may have been factors in the differences we observed (Fig. 10).  

Within the high diversity fields, only fields that were at least 4 years old were managed with 

prescribed fire.  Because newly planted fields require time to accumulate litter, fields were 

not burned until they were at least 4 years old.  In addition, newly planted high diversity 

fields were mowed to control weeds during year one.   Because of increased management 

activity in the early years of restoration plantings, the effects of planting age and 

management activity on nestling baseline corticosterone levels may be linked.  As a result, 

the differences we observed in nestling baseline corticosterone levels between high diversity 

and warm-season fields may be reduced or even reversed as the high diversity fields mature.

 We found that larger brood sizes were related to increased stress levels in nestling 

Red-winged blackbirds.  A similar relationship between brood size and nestling stress levels 

was reported in barn swallows (Hirundo rustica) in northern Italy (Saino et al. 2003).  Larger 

brood sizes may induce stress in nestlings by reducing the amount of food available per 

nesting (Saino et al. 1997).  Large brood sizes may also be associated with reduced nestling 

size (Parsons 2009) and increased ectoparasite loads (Saino et al. 2002).  In contrast, no 
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relationship between brood size and baseline corticosterone was found in nestling tree 

swallows (Tachycineta bicolor) in central Iowa (Parsons 2009).  We did not find a 

relationship between brood parasitism and either baseline corticosterone or blood glucose 

levels, however, only 7% of nests in our study were parasitized and this may not have been 

enough to allow us to detect an effect of brood parasitism. 

 Surprisingly, we found no apparent effect of food resource availability on red-winged 

blackbird nestling baseline corticosterone levels; this is different from what others have 

reported.  In adult barn swallows, corticosterone levels increased with reduced aerial insect 

food availability (Jenni-Eirmann 2008).  The same effects of food resource availability on 

corticosterone levels appear to occur with food supplementation.  For example, Florida 

scrub-jays provided with supplemental food had lower baseline corticosterone levels when 

compared with birds that did not receive food supplementation (Schoech et al. 2004).  Our 

findings were likely due to two factors 1) there were no differences in overall food resource 

availability (invertebrate biomass) among the planting types we studied (Vogel 2011) and 2) 

because our study fields are relatively close together geographically, adults may have the 

opportunity to forage in other fields beyond where their nests are located.  In fact, previous 

work has suggested deficits in food resource availability may be compensated for by 

increased foraging time and/or foraging distance in adults (Adams et al. 1994; Tremblay et 

al. 2005; Zalik and Strong 2008).    

 While others have reported a negative relationship between body mass and baseline 

corticosterone for birds (Marra and Holberton 1998; Kitaysky et al. 1999; Pravosudov and 

Kitaysky 2006; Muller et al. 2007), we did not find this relationship in our study.  Similarly, 

while a relationship between corticosterone and blood glucose levels has been reported by 
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others (Remage-Healy and Romero 2000, 2002), we found no relationship between baseline 

corticosterone and blood glucose for either male or female red-winged blackbird nestlings.  

The differences between our results and those reported by others could be because we 

sampled nestlings rather than sampling adult birds. 

 We found no differences in blood glucose levels between male and female nestling 

red-winged blackbirds.  Similarly, others have found that blood glucose levels do not differ 

between the sexes.  For example, no differences in blood glucose were found between males 

and females in captive adult European starlings (Sturnus vulgaris) and in adult short-tailed 

shearwaters (Puffinus tenuirostris) (Remage-Healy and Romero 2000; Davey et al. 2002).   

 There is evidence that the  relationship between blood glucose levels and body mass 

among bird species is negative, meaning that bird species with larger body masses tend to 

have lower blood glucose levels (Braun and Sweasea 2008).   However, within a species, the 

relationship between blood glucose levels and body mass is less clear.  In our study, we 

found a relationship between blood glucose levels and body mass, but only for male 

nestlings.  Others have found inconsistencies in the body mass/blood glucose relationship as 

well.  For example, Davey et al. (2002) found that for adults, blood glucose levels were not 

related to body mass for Short-tailed Shearwaters.  However, when they examined both 

adults and immature birds together, they found that blood glucose did vary as a function of 

body mass.  Additionally, in a study of four bird species in southeast Australia, in only two of 

the four species was there an association between blood glucose levels and adult body mass 

(Lill 2011).   

 Red-winged blackbird nestling blood glucose levels appeared to increase with 

nestling age in our study.  In fact, two other Australian bird species, welcome swallows 
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(Hirundo neoxena) and spotted doves (Streptopelia chinensis), had nestling blood glucose 

levels increased with nestling age (Lill 2011).  A possible explanation offered for this trend 

was increased metabolic rates as nestlings grew larger (gained mass) and were more active in 

the nest (Lill 2011).   

 Higher temperatures during the nestling period were associated with higher blood 

glucose levels in our study.  Reductions in ambient temperature have been shown to reduce 

the availability of insect food resources for birds (Jenni-Eiermann et al. 2008).  Warmer 

temperatures may increase invertebrate activity and therefore lead to increased food 

availability.  However, we did not find an effect of food resource availability on blood 

glucose levels in our study.  In spite of this, invertebrates may be more active during warmer 

temperatures making them more available to foraging birds.   
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Figure 1. Study sites were located in the Spring Run Complex in Dickinson County, Iowa, 
USA in 2008, and 2009.  Solid white polygons indicate sites that were planted with 
season grasses ≥10 years ago, solid black polygons indicate sites that were planted to 
season grasses ≥10 years ago, and solid light grey polygons indicate sites that
with a high diversity seed mix between 2005 and 2007.  Black rectangles indicate study site 
blocking. 
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Figure 2.  Relationship between baseline corticosterone and nestling mass for female (top) 
and for male (bottom) red-winged blackbird nestlings sampled in 2008 and 2009 on the 
Spring Run Complex in Dickinson County, Iowa, USA.  
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Figure 3.  Relationship between blood glucose and nestling mass for female (top) and for 
male (bottom) red-winged blackbird nestlings sampled in 2008 and 2009 on the Spring Run 
Complex in Dickinson County, Iowa, USA.  
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Figure 4.  Relationship between baseline corticosterone and blood glucose for females(top) 
and for male (bottom) red-winged blackbird nestlings sampled in 2008 and 2009 on the 
Spring Run Complex in Dickinson County, Iowa, USA.   
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Figure 5.  Relationship between baseline corticosterone and management activity for red-
winged blackbird nestlings sampled in 2008 and 2009 on the Spring Run Complex in 
Dickinson County, Iowa, USA.  
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Figure 6.  Relationship between baseline corticosterone and brood size for red-winged 
blackbird nestlings sampled in 2008 and 2009 on the Spring Run Complex in Dickinson 
County, Iowa, USA.  
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Figure 7.  Relationship between baseline corticosterone and planting age for red-winged 
blackbird nestlings sampled in 2008 and 2009 on the Spring Run Complex in Dickinson 
County, Iowa, USA.  
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Figure 8.  Relationship between blood glucose and nestling age for red-winged blackbird 
nestlings sampled in 2008 and 2009 on the Spring Run Complex in Dickinson County, Iowa, 
USA.  

  

Nestling Age (days)

7 8 9 10

B
lo

o
d

 G
lu

co
se

 (
m

g
/d

L
)

140

160

180

200

220

240

260

280



133 
 

 

 

Figure 9.  Relationship between blood glucose and temperature for red-winged blackbird 
nestlings sampled in 2008 and 2009 on the Spring Run Complex in Dickinson County, Iowa, 
USA.  
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Figure 10.  Relationship between baseline corticosterone and planting age (with management 
activity) for red-winged blackbird nestlings sampled in 2008 and 2009 on the Spring Run 
Complex in Dickinson County, Iowa, USA.  Management activity is indicated by the shape 
of the symbol, circles indicate no management, triangles indicate mowing, and squares 
indicate prescribed fire. 
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Table 1.  Mean and standard deviation of habitat, weather, and nest covariates included in 
models of baseline corticosterone and blood glucose levels for red-winged blackbird 
nestlings in 2008 and 2009 on the Spring Run Complex in Dickinson County, Iowa, USA.  
The covariates included were vegetation structure (visual obstruction in dm), Food Resources 
(invertebrate biomass in grams), Management Activity (0=none, 2=complete mow, 
3=prescribed fire), planting age (in years – plantings ≥ 10 years were entered as 10 years), 
brood size (the number of nestlings in a nest), temperature (average temperature during the 
10 day nestling period), precipitation (total precipitation during the 10 day nestling period), 
brood parasitism (presence of a brown-headed cowbird egg or nestling in a nest), and 
nestling age (age of nestling at the time of blood collection). 

Covariates Mean Std. Dev. Min. Max. 

Vegetation Structure (dm) 3.81 1.14 0.80 6.98 

Food Resources (g) 1.82 0.16 1.31 2.00 
Management Activity 0.71 1.20 0.00 3.00 
Planting Age (years) 6.70 3.72 1.00 10.00 

Brood Size 2.80 0.79 1.00 4.00 

Temperature (degrees F) 68.18 3.74 58.18 74.09 

Precipitation (cm) 0.15 0.14 0.00 0.40 

Brood Parasitism 9% - - - 
Nestling Age (days) 8.62 0.70 7.00 10.00 
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Table 2.  Red-winged blackbird nestling baseline corticosterone (ng/ml) and blood glucose 
levels (mg/dL) measured in 2008 and 2009 on the Spring Run Complex in Dickinson 
County, Iowa, USA.  P-values are given for ANOVA tests for differences among planting 
types.  Different lettered subscripts following means indicate significant differences among 
treatment types for pairwise comparisons. 
 

  Cool Season Warm Season High Diversity   

  Mean S.E. Mean S.E. Mean S.E. P-value 
Baseline 
Corticosterone 10.14a 1.73 3.37b 1.50 10.47a 1.24 0.004 

Blood Glucose 207.73 11.30 214.75 9.53 211.39 7.03 0.915 
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Table 3.  Models of red-winged blackbird baseline corticosterone levels taken in 2008 and 
2009 on the Spring Run Complex in Dickinson County, Iowa, USA.  Models were evaluated 
using Akaike’s Information Criterion for small sample sizes (AICc).  The number of 
parameters in the model (including the intercept) is indicated in column K, ∆ AICc = AICc-
minimumAICc, and wi (model weight) = exp[-{∆ AICc/2}]/∑exp[-{∆ AICc/2}]. 
 

Model K ∆ AIC c wi 

Management Activity 2 0.00 0.37 

  Brood Size 2 0.80 0.25 

  Planting Age 2 1.50 0.18 

  Precipitation 2 4.00 0.05 

  Brood Parasitism 2 4.60 0.04 

  Nestling Age 2 4.70 0.04 

  Temperature 2 5.20 0.03 

  Vegetation Structure  2 5.40 0.03 

  Food Resources  2 5.40 0.03 
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Table 4.  Models of red-winged blackbird blood glucose levels taken in 2008 and 2009 on the 
Spring Run Complex in Dickinson County, Iowa, USA.  Models were evaluated using 
Akaike’s Information Criterion for small sample sizes (AICc).  The number of parameters in 
the model (including the intercept) is indicated in column K, ∆ AICc = AICc-minimumAICc, 
and wi (model weight) = exp[-{∆ AICc/2}]/∑exp[-{∆ AICc/2}]. 
 

 

 
 

Model K ∆ AIC c wi 

Nestling Age 2 0.00 0.83 

Temperature 2 3.90 0.12 

Precipitation 2 8.30 0.01 

Vegetation Structure 2 9.70 0.01 

Food Resources 2 9.90 0.01 

Brood Size 2 9.90 0.01 

Brood Parasitism 2 10.00 0.01 

Management Activity 2 10.20 0.01 

Planting Age 2 10.20 0.01 
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CHAPTER SIX: ASSESSING THE ROLE OF CONSPECIFIC ATTRACTION  IN 

HABITAT RESTORATION FOR HENSLOW’S SPARROWS IN IOWA 
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ABSTRACT The presence of conspecific individuals may provide important cues about 

habitat quality for territorial songbirds. We tested the ability of a conspecific song playback 

system to attract Henslow’s sparrows to previously unoccupied restored habitat.  We 

successfully attracted Heslow’s sparrows to three out of seven treatment plots using 

conspecific song playbacks and we found no Henslow’s sparrows in control plots.  The 

addition of social cues using playback systems in restored grassland habitats may aid 

conservation efforts of Henslow’s sparrows to available habitat. 

 

KEYWORDS Ammodramus henslowii, conspecific attraction, Henslow’s sparrow, Iowa.  
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INTRODUCTION 

 Many grassland-bird populations have declined over the past several decades (Knopf 

1994, Herkert 1995).  The primary factor thought to be associated with declining grassland-

bird populations is habitat fragmentation and destruction (Herkert 1995, Fletcher and Koford 

2003, Herkert et al. 2003).  The tallgrass-prairie region of North America is one of the most 

endangered ecosystems on Earth (Smith 1981; Noss et al. 1995) and in Iowa, less than 0.01% 

of the original 12 million hectares of prairie remains (Sampson and Knopf 1994).  Loss of 

habitat over the past century restricted grassland-dependent species to small isolated 

remnants.   

 Recent habitat restoration efforts focused on mitigating external environmental 

threats alone, such as habitat destruction, may not be enough to conserve imperiled songbird 

species (Ward and Schlossberg 2004, Ahlering and Faaborg 2006).  Animal behavior has 

recently been recognized as playing an important role in species conservation (Ward and 

Schlossberg 2004, Ahlering and Faaborg 2006).  Social information and conspecific 

attraction may be important for many species.  In fact, a recent review found that in 20 out of 

24 studies examining conspecific attraction in songbirds, birds were successfully attracted 

using social cue manipulation (Ahlering et al. 2010). 

 In territorial songbirds, the presence of conspecific individuals may provide important 

cues about habitat use.  For some bird species, research has demonstrated that settlement 

decisions are likely influenced by the presence of conspecifics (e.g. Danchin et al. 1998, 

Ward and Schlossberg 2004, Fletcher 2007).  Most of these studies have focused on forest 

species (e.g. Ward and Schlossberg 2004, Fletcher 2007) or colonial nesting species (e.g. 

Danchin et al. 1998).  Past research on the effects of conspecific attraction in grassland 
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species has focused on the establishment of new lek sites for re-introduced or translocated 

gallinaceous birds (Rodgers 1992).  More recently, however, the role of conspecific 

attraction in the settlement decisions of grassland songbird species has been explored 

(Ahlering et al. 2006, Nocera et al. 2006).  For example, successful attraction of Baird’s 

sparrows (Ammodramus bairdii) by use of song playbacks in previously unoccupied sites has 

been demonstrated (Ahlering et al. 2006).     

 The Henslow’s sparrow (Ammodramus henslowii) has been recognized as a species of 

particular conservation concern by the U.S. Fish and Wildlife Service (U.S. Fish and Wildlife 

Service 2002) and is listed as threatened in the state of Iowa (Iowa Department of Natural 

Resources 2005).  We were interested in evaluating the efficacy of using social cues to aid in 

the recovery of Henslow’s sparrow populations.  Specifically, our objective was to test the 

ability of a conspecific song playback system to attract Henslow’s sparrows to previously 

unoccupied restored habitat. 

 

STUDY AREA   

 The Spring Run Wetland Complex is a mix of over 1600 hectares of wetlands and 

reconstructed grasslands located in Dickinson County in northwest Iowa, USA (Figure 1).  

The area is managed by the Iowa Department of Natural Resources and is one of the largest 

prairie pothole complexes in the state.  Historically, the region was characterized by a mix of 

mesic to dry tallgrass prairies.  The vegetation community of the area was dominated by 

several species of grasses such as big bluestem (Andropogon grardii), Indian grass 

(Sorghastrum nutans), little bluestem (Schizachyrium scoparium), and side-oats grama 

(Bouteloua curtipendula).   Forbs included lead plant (Amorpha canescens), compass plant 
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(Silphium laciniatum), rattlesnake master (Eryngium yuccifolium), pale purple coneflower 

(Echinacea pallida), and gray-headed coneflower (Ratibida pinnata) (Thompson 1992, Ladd 

1995, Christiansen and Muller 1999).  Land use in Iowa is currently 94% agricultural, with 

corn (Zea mays) and soybeans (Glycine max) as the primary crop types (Jackson et al. 1996).  

Iowa’s climate consists of warm, humid summers and cold winters.  The average annual 

precipitation of Iowa is approximately 81cm and the average growing season length is 158 

days (Iowa Department of Natural Resources 2005).  The average annual temperature in 

Iowa is approximately 9.4° C (Thompson 1992) with an average summer temperature of 

approximately 22° C (Iowa Department of Natural Resources 2005). 

 

METHODS 

 Within the Spring Run Complex, we located seven fields with available habitat for 

Henslow’s sparrows (Figure 1).  All of the fields contained mature grassland vegetation (age 

of planting > 10 years).  Four of the fields were planted to a cool-season grass mixture of 

smooth brome (Bromus inermis), timothy (Phleum pratense), reed canary grass (Phalaris 

arundinacea), and Kentucky bluegrass (Poa pratensis), with scattered forbs of Canada thistle 

(Cirsium arvense), common milkweed (Asclepias syriaca), and alfalfa (Medicago sativa).  

The other three fields were planted to a warm-season grass mixture of switch grass (Panicum 

virgatum), Indian grass (Sorghastrum nutans), big bluestem (Andropogon gerardii), little 

bluestem (Schizachyrium scoparium), and side-oats grama (Bouteloua curtipendula), with 

several forb species of Canada thistle (Cirsium arvense), common milkweed (Asclepias 

syriaca), and goldenrod (Solidago sp.).  Recent records of Henslow’s sparrows in Iowa are 

rare, although it was once a common species in the state (Jackson et al. 1996, Melde and 
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Koford 1996).  Habitat for Henslow’s sparrows in Iowa consists of fields with moderate 

vegetation height (45cm-85cm), a small forb component (5% -20%), and dense litter 

comprised of previous years’ growth (Melde and Koford 1996).  All of the proposed fields 

met these criteria.  Extensive line transect surveys of the proposed study sites conducted 

weekly from 4 June to 12 July 2007 revealed that Henslow’s sparrows were not present 

(J.Vogel, unpublished data), however, a single male was heard singing within a few (0.75 to 

6.2) kilometers before 2007 (R. Koford, unpublished data).   

 We divided each of the seven study fields into two plots (plots were equal in size to 

one-half of the overall size of the field or approximately four hectares).  Henslow’s sparrows 

tend to have relatively small territories of less than one hectare (Herkert 1998, O’Leary and 

Nyberg 2000, Monroe and Ritchison 2005).  We randomly assigned one plot on each field to 

the treatment and the other as a control plot.  On the treatment plots, we established a 

playback station using pre-recorded songs (Elliot et al. 1997) of Henslow’s sparrows only.  

Observations of Henslow’s sparrows have indicated that individuals are responsive to song 

playbacks (Zimmerman 1988, Melde and Koford 1996), making it a good candidate for this 

experiment.   

We constructed playback stations after Ahlering et al. (2006).  Each station consisted 

of a portable compact disc player connected to a programmable (Borg General Controls 

TA0005) timer (Figure 2).  The timers were connected to rechargeable 12 volt batteries and 

solar panels. We mounted playback stations in aluminum boxes for protection from the 

elements.  Large holes approximately the same size as the speaker diameter were drilled in 

front of the speakers to allow for sound transmission.  The drilled holes were covered by a 

thin screen (to keep insects, etc. out of the boxes) and the speakers were placed right up 
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against the openings so that sound transmission was directly from the speakers through the 

openings.  Boxes were mounted to posts at approximately one meter high, the typical 

perching/singing height for Henslow’s sparrows in each field (Hanson 1994). We located 

each playback station (one playback station per plot) at the far edge of each plot (away from 

the control plot) and broadcast toward the interior of the experimental plot.  Song playbacks 

could not be heard from the control plots. 

In mid-May 2008, we constructed and erected playback stations on each of the seven 

sites to test their operation and reliability (Figure 1).  Playback stations remained on the study 

sites during the equipment test period until the beginning of August 2008.  We modified the 

design of the playback stations slightly for the 2009 field season to increase the song volume 

by using computer software to digitally amplify the songs.  In addition, we enlarged the holes 

to allow for greater sound transmission.  We placed playback stations in each of the treatment 

plots during the first week of April 2009 to coincide with the arrival time of the first 

Henslow’s sparrow individuals (Herkert 1998).    Playback stations were programmed to 

broadcast songs starting one hour before sunrise and ending at 0930 CST and again in the 

evening just before sunset.  Broadcasts were played for one hour at a time, with 30 min 

intervals in between for a total of four hours in the morning and two hours in the evening.  

Playbacks were continued through the beginning of August 2009.  We checked and 

maintained the playback stations weekly and parts were replaced as necessary for continuous 

operation throughout the study period.   

 We monitored study plots weekly by walking 100m long transects placed throughout 

each field to record observations of Henslow’s sparrows on each plot from 2 June – 18 July 

2008 (equipment test period) and from 1 June – 10 July 2009.  We chose locations for bird 
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survey transects to maximize the number of transects in each field.   We placed transects only 

in upland vegetation, and we did not locate transects near field edges or wetlands. 

 We conducted six rounds of bird surveys in 2008 and 2009.  We repeated bird 

surveys once each week along the same transects within each field during each round of 

surveys.  We conducted bird surveys between sunrise and 10:00am.  We did not conduct bird 

surveys on days where weather conditions could have impeded visibility or audibility (rain, 

fog, or wind in excess of 30km/hr).  Surveys consisted of one observer walking along the 

transect at a constant pace identifying birds by sight and sound within 35m on either side of 

the transect.  The distance of the bird(s) from the observer and the compass bearing was 

recorded using laser rangefinder binoculars.   

Data Analysis 

The recommended minimum sample size is 60-80 individuals for using line transect 

methods to adjust for imperfect detectability and estimate density (Buckland et al. 1993).  

Unfortunately, we recorded a total of only 10 Henslow’s sparrows during our surveys, and 

therefore we chose a presence/absence response for our statistical analysis.  Using 

McNemar’s Test (McNemar 1947) for paired data, we tested the null hypothesis that the 

number of control/treatment pairs where birds were present in the treatment but absent in the 

control was equal to or less than the number of control/treatment pairs where birds were 

present in the control but absent in the treatment (SAS Version 8.2, SAS Institute, Cary, NC, 

USA).  McNemar’s Test is a non-parametric test based on a Chi-square distribution with one 

degree of freedom (Park 2002).  McNemar’s Test is used to test for marginal homogeneity in 

2x2 contingency tables (McNemar 1947, Park 2002).  We used the asymptotic test (Park 

2002) because of our small sample size and considered the one-tailed p-value to evaluate the 
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significance of the test.  A 2x2 contingency table containing zeros is problematic because 

calculations produce an undefined test statistic (Park 2002).  To deal with zeros in our 

contingency table, we added a small constant (0.00001) to each cell containing a zero (Park 

2002).  Given our small sample size, the resulting low power of the test increases the chance 

of a Type II error; therefore we chose an alpha level of 0.1 instead of 0.05 to decrease the 

possibility of a Type II error. 

 

RESULTS 

Henslow’s sparrows were not detected in any surveys during the 2008 equipment test 

period.   We successfully attracted Henslow’s sparrows to some treatment plots in 2009 using 

conspecific song playbacks.  Henslow’s sparrows were more likely to be found in treatment 

plots than in control plots (χ1
2=3.0, P=0.08).  Specifically, we found Henslow’s sparrows in 

three out of the seven treatment plots during our 2009 surveys and in none of the control 

plots in 2009.  Two of the treatment plots where we found Henslow’s sparrows were cool-

season grass fields and one was a warm-season grass field (Figure 1).  In two fields (one 

cool-season and one warm-season) we found only males in the treatment plots, but in one 

field (cool-season) we found both males and females.  We did not observe Henslow’s 

sparrows perching on the playback structures at any time during the study. 

 

DISCUSSION  

 Although our sample size was small, we successfully attracted Henslow’s sparrows to 

previously unoccupied habitat using conspecific song playbacks.  Our results are similar to 

those reported by Ahlering et al. (2006) for another grassland songbird, the Baird’s sparrow, 
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and by Harrison et al. (2009) for a shrub-steppe obligate, the Brewer’s sparrow (Spizella 

breweri).   For Baird’s sparrows, half of the experimental playback plots (three out of six) in 

their study were successful in attracting Baird’s sparrows, whereas none of the control plots 

were (Ahlering et al 2006).  Similarly, more Brewer’s sparrows were attracted to the 

playbacks plots than the control plots (Harrison et al. 2009).  In contrast, an examination of 

conspecific attraction in the Nelson’s sharp-tailed sparrow (Ammodramus nelsoni) had 

opposite results and no evidence of a treatment response to song playbacks was reported 

(Nocera et al. 2006). 

 The influence of social cue manipulation may have unintended effects on both target 

and non-target species (Betts et al. 2008, Fletcher 2008, Betts et al. 2010).  For target species, 

the addition of song playbacks may attract individuals to poor quality habitat (Betts et al. 

2008, Fletcher 2008).  In fact, it is possible to mislead individuals of some species into 

settling in poor quality habitat simply by broadcasting their songs in sink areas (Betts et al. 

2008).  In addition, manipulation of social cues can affect non-target species through both 

attraction and avoidance of heterospecifics (Fletcher 2008).  Avoidance behavior in 

heterospecifics has been demonstrated as a response to social cue manipulation and in one 

case, resulted in a reduction of non-target species richness of 30% (Fletcher 2008). 

 Henslow’s sparrows have very specific habitat and nesting requirements with regard 

to vegetation height, vegetation density, and litter depth (Zimmerman 1988, Herkert 1994, 

Melde and Koford 1996, Skipper 1998, Cully and Michaels 2000).  As a result, Henslow’s 

sparrows may have low site fidelity caused by changing grassland habitat conditions due to 

regular management activities, such as prescribed burning and mowing (Hands et al. 1989).  

For managers, this presents a difficult problem of maintaining Henlow’s sparrow populations 
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under constantly changing grassland conditions (Mills et al. 2006).  Future studies should 

include collection of vegetation conditions in association with social behavior. 

 Social information has been included resource selection models for Bobolinks 

(Dolichonyx oryzivorus) and Savannah sparrows (Passerculus sandwichensis) (Nocera and 

Forbes 2010).   For some species, social information can be more influential than habitat 

cues, such as vegetation structure, in settlement decisions (Betts et al. 2008).  Traditional 

habitat models that do not consider social factors may not be adequate for informing 

conservation strategies for some species (Harrison et al. 2009), including Henslow’s 

sparrows.   

 

ACKNOWLEDGMENTS 

 Funding for this project was provided by a grant from the U.S. Fish and Wildlife 

Service Upper Midwest Migratory Bird Conservation Program and by the Iowa Department 

of Natural Resources and U.S. Fish and Wildlife Service through the State Wildlife Grants 

Program.  We would like to thank B. Wilsey, S. Dinsmore, and P. Dixon from Iowa State 

University; S. Shepherd, M. McInroy, T. Bogenschutz, K. Kinkead, R. Howing, and C. 

LaRue from the Iowa Department of Natural Resources; project assistants: J. Vaughn, E. 

Kilburg, N. Behl, H. VanWaus, T. Paulsen, H. Reinhard, C. Hammond, and E. Briggs.  

Mention of trade names does not imply endorsement by the U. S. Government. 

 

 

 

 



149 
 

LITERATURE CITED  

Ahlering, M. A., D. Arlt , M. G. Betts , R. J. Fletcher, J. J. Nocera, and M. P. Ward. 2010. 

 Research needs and recommendations for the use of conspecific-attraction methods in 

 the conservation of migratory songbirds. Condor 112: 252–264. 

Ahlering, M. A., and J. Faaborg. 2006. Avian habitat management meets conspecific 

 attraction: if you build it, will they come? The Auk 123: 301-312. 

Ahlering, M. A., D. H. Johnson, and J. Faaborg. 2006. Conspecific attraction in a grassland 

 bird, the Baird’s Sparrow. Journal of Field Ornithology 77: 365-371. 

Betts, M. G., A. S. Hadley, N. Rodenhouse, and J. J. Nocera. 2008. Social information 

 trumps vegetation structure in breeding-site selection by a migrant songbird. 

 Proceedings of the Royal Society B-Biological Sciences 275: 2257-2263. 

Betts, M. G., J. J. Nocera, and A. S. Hadley. 2010. Settlement in novel habitats induced by 

 social information may disrupt community structure. Condor 112: 265–273. 

Buckland, S. T., D. R. Anderson, K. P. Burnham, and J.L. Laake.1993. Distance sampling: 

 estimating abundance of biological populations.  Chapman and Hall, London, U.K. 

Christiansen, P., and M. Müller. 1999. An illustrated guide to Iowa prairie plants.  University 

 of Iowa Press, Iowa City, Iowa, USA. 

Cully, J. F., Jr., and H. L. Michaels. 2000. Henslow’s sparrow habitat associations on Kansas 

 tallgrass prairie. Wilson Bulletin 112: 115-123. 

Danchin, E., T. Boulinier, and M. Massot. 1998. Conspecific reproductive success and 

 breeding habitat selection: implications for the study of coloniality. Ecology 79: 

 2415-2428. 



150 
 

Elloit, L., D. Stokes, and L. Stokes. 1997. Stokes field guide to bird songs. Time Warner, 

 New York, New York, USA. 

Fletcher, R. J. 2007. Species interactions and population density mediate the use of social 

cues for habitat selection.  Journal of Animal Ecology 76: 598-606. 

Fletcher, R. J. 2008. Social information and community dynamics: nontarget effects form 

 simulating social cues for management. Ecological Applications 18: 1764-1773. 

Fletcher, R. J., and R. R. Koford. 2003. Changes in breeding bird populations with habitat 

 restoration in northern Iowa. American Midland Naturalist 150: 83-94. 

Hands, H. M., R. D. Drobney, and M. R. Ryan. 1989. Status of the Henslow’s sparrow in the 

 northcentral United States. Missouri Cooperative Fish and Wildlife Research Unit, 

 Colombia, Missouri, USA. 

Hanson, L. G. 1994. The Henslow's sparrow (Ammodramus henslowii) of Minnesota: 

 population status and breeding habitat analysis. M.S. Thesis. Central Michigan 

 University, Mount Pleasant, USA. 

Harrison, M. L., D. J. Green, and P. G. Krannitz. 2009. Conspecifics influence the settlement 

 decisions of male Brewer’s Sparrows at the northern edge of their range. Condor 111: 

 722-729. 

Herkert, J. R. 1994. Status and habitat selection of the Henslow’s sparrow in Illinois. Wilson 

 Bulletin 106: 35-45. 

Herkert, J. R.1995. An analysis of Midwestern breeding bird population trends: 1966-1993.  

  American Midland Naturalist 134: 41-50. 

Herkert, J. R. 1998. Effects of management practices on grassland birds: Henslow’s sparrow. 

 Northern Prairie Wildlife Research Center, Jamestown, North Dakota, USA. 



151 
 

Herkert, J. R., D. L. Reinking, D. A. Wiedenfeld, M. Winter, J. L. Zimmerman, W. E. 

Jensen, E. J. Fink, R. R. Koford, D. H. Wolfe, S. K. Sherrod, M. A. Jenkins, J. 

Faaborg, and S. K. Robinson. 2003. Effects of prairie fragmentation on the nest 

success of breeding birds in the midcontinental United States. Conservation Biology 

17: 587-594. 

Iowa Department of Natural Resources. 2005. The Iowa Comprehensive Wildlife 

Conservation Plan: Securing a Future for Fish and Wildlife: A Conservation Legacy 

for Iowans.  <http://www.iowadnr.gov/wildlife/diversity/plan.html >.  Accessed 10 

November 2007.  

Jackson, L. S, C. A. Thompson, and J. J. Dinsmore. 1996. The Iowa Breeding Bird Atlas. 

 University of Iowa Press, Iowa City, Iowa, USA. 

Knopf, F. L. 1994. Avian assemblages on altered grasslands. Studies in Avian Biology 15: 

 247-257. 

Ladd, D. 1995. Tallgrass Prairie Wildflowers a Field Guide. Falcon Publishing, Inc., Helena, 

 Montana, USA. 

McNemar, Q. 1947. Note on the sampling error of the difference between correlated 

 proportions or percentages. Psychometrika 12: 153–157. 

Melde, P. B., and R. Koford. 1996. Henslow’s sparrow nesting observations, habitat 

 associations and history in Iowa. Iowa Bird Life 66: 117-122. 

Mills, A. M., J. D. Rising, and D. A. Jackson. 2006. Conspecific attraction during 

 establishment  of Least Flycatcher clusters. Journal of Field Ornithology 77: 34-38. 



152 
 

Monroe, M. S., and G. Ritchison. 2005. Breeding biology of Henslow’s sparrows on 

 reclaimed coal mine grasslands in Kentucky. Journal of Field Ornithology 76: 143-

 149. 

Nocera, J. J., and G. J. Forbes. 2010. Incorporating social information to improve the 

 precision of models of avian habitat use. The Condor 112: 235-244. 

Nocera, J.J., G.J. Forbes, and L.A. Giraldeau. 2006. Inadvertent social information in 

 breeding site selection of natal dispersing birds. Proceedings of the Royal Society B 

 273:349-355. 

Noss, R. F., E. T. LaRoe III, and J. M. Scott. 1995. Endangered ecosystems of the United 

 States:  a preliminary assessment of loss and degradation. U.S. Department of the 

 Interior, National Biological Service. Biological Report 28, Washington, D.C., USA. 

O’leary, C. H., and D. W. Nyberg. 2000. Treelines between fields reduce the density of 

 grassland birds. Natural Areas Journal 20: 243-249. 

Park, T. 2002. Is the exact test better than the asymptotic test for testing marginal 

 homogeneity in 2 x 2 tables? Biometrical Journal 44: 571-583. 

Rodgers, R. D. 1992. A technique for establishing sharp-tailed grouse in unoccupied range. 

 Wildlife Society Bulletin 20: 101-106. 

Sampson, F., and F. Knopf. 1994. Prairie conservation in North America. Bioscience 44: 

 418-421. 

Skipper, C. S. 1998. Henslow’s sparrows return to previous nest site in Western Maryland. 

 North American Bird Bander 23: 36-41. 

Smith, D. 1981.  Iowa prairie – an endangered ecosystem.  Proceedings of the Iowa Academy 

 of Science 88: 7-10. 



153 
 

Thompson, J. R. 1992. Prairies, forests, and Wetlands: The restoration of natural landscape 

 communities in Iowa. University of Iowa Press, Iowa City, Iowa, USA. 

U.S. Fish and Wildlife Service. 2002. Birds of conservation concern 2002. Division of 

 Migratory Bird Management, Arlington, Virginia, USA.   

Ward, M. P, and S. Schlossberg. 2004. Consepecific attraction and the conservation of 

 territorial songbirds.  Conservation Biology 18: 519-525. 

Zimmerman, J. L. 1988. Breeding season habitat selection by the Henslow’s sparrow 

 Ammodramus henslowii in Kansas. Wilson Bulletin 100: 17-24. 

 

 
  



Figure 1.  Field locations of Henslow’s sparrow playback stations during the 2008 and 2009 

seasons on the Spring Run Complex, Dickinson County, Iowa, USA.  Black polygons 

indicate fields planted to warm

to cool-season grasses.  Stars indicate the locations where Henslow’s sparrows were 

observed during 2009 surveys.
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Figure 2.  Henslow’s sparrow playback stations established on the Spring Run Complex

2008 and 2009.  Playback stations consisted of a portable compact disc player connected to a 

programmable timer.  Timers were connected to rechargeable 12 volt batteries and solar 

panels. Playback stations were mounted in aluminum boxes for protection 

The aluminum boxes were drilled out in front of the player speakers to allow for sound 

transmission.  Boxes were mounted to 4 x 4 posts at the typical perching/singing height for 

Henslow’s sparrows in each field.
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CHAPTER SEVEN: GENERAL CONCLUSIONS 

 The most common bird species we encountered on the Spring Run Complex were 

Bobolink (Dolichonyx oryzivorus), Common Yellowthroat (Geothlypis trichas), Red-winged 

Blackbird (Agelaius phoeniceus), and Sedge Wren (Cistothorus platensis).  We saw an 

average of 32 bird species during our annual surveys (38 species in 2007, 28 species in 2008, 

and 31 species in 2009).  We did not find bird densities were consistently higher or lower in 

any one of the 4 planting types.  Both vegetation characteristics and food resources were 

important in explaining grassland bird densities and that different species, even those within 

a species category, were influenced by different habitat characteristics.  Therefore, 

management of grassland habitat for grassland birds will not be successful under a “one size 

fits all” approach.  Instead, we conclude a variety of planting types and management 

strategies may be necessary to conserve grassland birds.  Negus et al. (2010) advocated for 

management practices that would enable the inclusion of a mosaic of vegetation 

characteristics to provide the variety of habitat types necessary for multiple grassland bird 

species.   Additionally, Ribic et al. (2009) found that no single grassland habitat type would 

be adequate to conserve all grassland birds and that a variety of grassland habitat types would 

be required.  We found that obligate species densities, and in particular, Bobolink densities 

were higher in cool-season fields than in any of the other field types.  Recommendations 

about grassland habitat plantings have advocated the use of native grass species over non-

native grasses (Allen 1993) and avoiding single-species plantings of native or non-native 

grasses (McCoy et al. 2001).  However, given the importance of cool-season, non-native 

grass plantings for Bobolinks in our study, consideration must be given to the impact that 

elimination of these plantings may have on the future of Bobolink populations.  
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 Measuring reproductive success is a key element in assessing the value of habitat 

restoration to grassland birds. We found overall nest survival for Red-winged Blackbirds in 

mature warm-season fields was more than twice as high than in cool-season fields.  While 

overall nest survival in our high diversity planting type was not significantly different from 

the other two planting types, this may be in part because of the recent planting age of these 

fields (≤ 4years).  Although our results suggested that daily nest survival differed among 

planting types, adult Red-winged Blackbird density was not different across the same four 

planting types.   

 Red-winged Blackbird clutch size ranged from 1 to 5 with an average clutch size of 

3.4.  Nests fledged an average of 2.4 ± 0.98 young.  We found evidence of nestling starvation 

in 48% of successful nests and in 36% of all nests containing nestlings.  Brood parasitism by 

Brown-headed Cowbirds occurred in 11% of all nests and in 5% of successful nests.  Thirty 

percent of all nests we monitored fledged young and predation was the most common cause 

of nest failure.  

 We found a relationship between Red-winged Blackbird nest survival and visual 

obstruction suggesting that nests had higher survival in fields with taller vegetation.   

We also found that Red-winged Blackbird nests located in fields with more variation in 

invertebrate biomass over the nesting season may have lower nest survival than those with 

less variation in invertebrate food availability over the nesting season. Our data suggest that 

terrestrial invertebrate food availability, and particularly consistency in invertebrate food 

availability over the nestling period, is potentially important in nest survival.  

 Male Red-winged Blackbird nestlings were larger than females at fledging with regard 

to mass, wing, and tarsus measurements.  Although male Red-winged Blackbird nestlings are 
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larger than females, we found that growth rates did not differ between the sexes.  Nestling 

growth rates did not differ among grassland restoration planting types.  There were also no 

differences among years for growth rates or nestling measurements.  The sex ratio of the 

nestlings was 36 males and 35 females.   

 Red-winged Blackbird nestlings were smaller in the warm-season planting type than 

in either high diversity or cool-season plantings.  In addition, we found that vegetation 

structure (visual obstruction) was negatively associated with nestling mass at fledging, yet 

warm-season fields in the Spring Run Complex did not have higher visual obstruction 

readings than either cool-season or high diversity fields. 

 We found that brood parasitism by Brown-headed Cowbirds may have an effect on 

red-winged blackbird nestling primary length at fledging, however, only 7% of our nests 

were parasitized.  Others have found that Red-winged Blackbird nestlings were of similar 

size (mass and tarsus) in nests parasitized by Brown-headed Cowbirds and in unparasitized 

nests (Clotfelter and Yasukawa 1999).  Red-winged Blackbird nestlings are larger than 

Brown-headed Cowbird nestlings and therefore can potentially out-compete them for food 

(Beletsky 1996).   

 Food resource availability was negatively related to nestling wing growth rates, 

however, invertebrate diversity did not differ among the planting types.  Only the Order 

Aranae (spiders) had differences in biomass among the planting types.  Aranae biomass was 

highest in cool-season fields than in either warm-season fields or high diversity fields.  We 

found that the amount of native vegetation in a grassland restoration was negatively related to 

Araneae biomass.  It is unclear why spiders in the Order Araneae would prefer exotic cool-

season fields to the other planting types.  Cool-season fields in the Spring Run Complex have 
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significantly lower variation in visual obstruction readings than warm-season or high 

diversity fields, resulting in more homogenous cover.  Perhaps the more homogenous nature 

of cool-season fields results in better web construction locations, less web obstruction due to 

vegetation variation, and therefore increased prey capture. 

 Red-winged Blackbird nestling baseline corticosterone levels were lower in the 

warm-season planting type than in either cool-season or high diversity plantings.  Planting 

age of the high diversity fields (recently planted) versus the warm-season fields (planted >10 

years ago) was likely a factor in the differences we observed.  Management activity and 

brood size had positive relationships with baseline corticosterone, suggesting that more 

intensive management activity and larger brood sizes were related to increased stress levels.  

Partially related to their recent planting age, high diversity fields received more management 

than warm-season fields which likely contributed to the higher corticosterone levels in 

nestlings from high diversity fields.  

 Blood glucose levels in male nestlings had a significant positive relationship with 

nestling mass, but not in female nestlings.  A possible explanation offered for this trend is 

increased metabolic rates as nestlings grow larger (gained mass) and are more active in the 

nest (Lill 2011).  However, in our study, increasing nestling mass was only related to 

increased blood glucose levels in male nestlings.  Nestling age and temperature during the 

nestling period were also positively related to blood glucose levels.  Reductions in ambient 

temperature have been shown to reduce the availability of insect food resources for birds 

(Jenni-Eiermann et al. 2008).  However, we did not find an effect of food resource 

availability on blood glucose levels in our study.  In spite of this, invertebrates may be more 

active during warmer temperatures making them more available to foraging birds. 
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 Although our sample size was small, we successfully attracted Henslow’s Sparrows 

to previously unoccupied habitat using conspecific song playbacks.  For some species, social 

information can be more influential than habitat cues, such as vegetation structure, in 

settlement decisions (Betts et al. 2008).  Traditional habitat models that do not consider 

social factors may not be adequate for informing conservation strategies for some species 

(Harrison et al. 2009), including Henslow’s Sparrows.  The addition of social cues using 

playback systems in restored grassland habitats may aid conservation efforts of Henslow’s 

Sparrows to available habitat. 
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