Stream Nutrient Criteria for the Protection of Aquatic Life Technical Advisory Committee May 24, 2011

Meeting Objectives

- Review previous TAC meetings & work progress
- Review/discuss nutrient criteria benchmarks
- Discuss remaining issues and work needs

TAC Mission and Objectives

Assist IDNR in developing nutrient criteria for the protection of stream aquatic life designated uses

- Advise on scientific aspects of stream nutrients & nutrient effects
- Develop criteria recommendations
- Identify/describe future technical work needs

(TAC mission & process.doc - 3/22/10)

TAC Meeting - April 7, 2010

- TAC mission, objectives, process
- Background information
 - The nutrient "problem"
 - Water quality standards
 - Inventory of data & literature resources
- Planned work

TAC Meeting – September 29, 2010

- Recap previous TAC meeting
- On-line discussion forum: <u>http://groups.google.com/group/iowa-</u> <u>stream-nutrient-tac/</u>
- Data analysis approach and methods
- Preliminary results & discussion
- Next steps

TAC Internet Resources

- DNR nutrient web site: http://www.iowadnr.gov/water/standards/nutrients.html
 Meeting agendas, notes, handouts
 TAC On-line forum: http://groups.google.com/group/iowa-streamnutrient-tac/
 - Discussion topics and supplemental documents

Work Progress

- Literature review
- Stream monitoring
- Data analysis
- Contraction

Nutrient – Aquatic Life Response Data Analysis

- Context
- Analysis methods
- Results nutrient criteria benchmarks
- Discussion

IA Water Quality Standards

Class B (aquatic life) - basis for sub-classifications:

- Thermal characteristics
 - cold water, warm water
- Stream size and flow
- Ability to support game fish _

B(CW-1), B(CW-2), B(WW-1), B(WW-2), B(WW-3)

Simplified Conceptual Model: Stream Nutrient Enrichment

May 24, 2011

Stream Nutrient TAC meeting

Data

Regional Environmental Monitoring and Assessment Program (REMAP) – Iowa Probabilistic (Random) Stream Survey (2002-2006).

- 228 stream sites sampled statewide; Strahler stream order 2nd 7th; drainage area: 1.4 14,443 sq.mi.
- 2 3 samples/site analyzed for nutrients/chlorophyll collected during baseflow, summer/early fall biological index period
- D.O. / temperature continuous monitoring deployment (typically ~ 6 days)
- 204 valid BMIBI samples; typically 1 sample/site; 10% site repeats

Wadeable stream reference site network (1994-2008)

- 96 sites statewide; 209 valid BMIBI samples:
- Strahler stream order 2nd 5th; drainage area: 2.6 903 sq.mi.

Data metrics (and abbreviations) of the Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) and Fish Index of Biotic Integrity (FIBI)

BMIBI Metrics	FIBI Metrics
MH*-taxa richness (MHTTX)	# native fish species (NTVSP)
SH*-taxa richness (SHTTX)	# sucker species (SCKRSP)
MH-EPT richness (MHEPT)	# sensitive species (SNSTVSP)
SH-EPT richness (SHEPTX)	# benthic invertivore species (BINVSP)
MH-sensitive taxa (MHSEN)	% 3-dominant fish species (PTOP3)
SH-% 3-dominant taxa (SH3DOM)	% benthic invertivores (PBNV)
SH-Mod. Hilsenhoff Biotic index (SHMHBI)	% omnivores (POMV)
SH-% EPT (SHEPT)	% top carnivores (PTOPC)
SH-% Chironomidae (SHCHR)	% simple lithophil spawners (PLTH)
SH-% Ephemeroptera (SHEPH)	fish assmblg. tolerance index (TOLINDX)
SH-% Scrapers (SHSCR)	adjusted catch per unit effort (ACPUE)
SH-% Dom. functional feeding grp, (SHDFFG)	% fish with DELTs (PDELT)

Stressor-Response Data Analysis Variables

Nutrient	Nutrient Response
Nitrogen – Nitrate + Nitrite as N	Un-ionized Ammonia
Nitrogen – Total Ammonia as N	Chlorophyll A – Benthic
Nitrogen – Total (Calculated) as N	Chlorophyll A – Seston
Nitrogen – Total Kjeldahl as N	Dissolved Oxygen – diurnal flux
Phosphorus – Dissolved Orthophosphate as P	Dissolved Oxygen – diurnal minima
Phosphorus – Total as P	рН
Total Nitrogen (Calculated) : Total Phosphorus Ratio	TSS / Turbidity

Nutrient – Biological Response Data Analysis

Methods

- Bivariate plots
- Correlation / simple linear regression
- Conditional probability ~
- Regression tree
- Quantile regression

Breakpoint methods

Methods: Conditional Probability (CP)

Breakpoint Analysis Steps:

- •Select stressor variable (x), response variable (y)
- •Specify response variable cutoff value (e.g., Reference 25th pctle.)
- •Generate plot and examine pattern
- •Calculate forward & backward proportions attaining response cutoff
- Identify stressor 'breakpoint' level at which maximum difference in proportional attainment occurs
- •Perform Chi-square binomial distribution test for significance of change

Stream Nutrient TAC meeting

Methods: Quantile Regression (QR)

Breakpoint Analysis Steps:

•Select stressor variable (x), response variable (y)

•Choose regression quantiles (P95, P90, P85, P80, P75)

•Perform regression and examine regression slope coefficients for significance (p<0.05)

•Average P75-P95 regression intercept and slope coefficient values

•Specify response variable (y) benchmark level (Reference P75) and solve for stressor variable (x) using average intercept and slope coefficient.

Methods: Regression Tree (RT)

Figure 15. Boxplot distributions of shp3domscr representing WCHLA < CART breakpoint (59 ug/L) and WCHLA \geq CART breakpoint.

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Draft Benchmarks

Seston Chlorophyll A – Benthic Macroinvertebrate IBI

	Seston	Seston Chlorophyll A (ug/L)		
Biological Metric / Index	CP*	QR	RT	
MH**-taxa richness (MHTTX)		-	(25.5)***	
SH**-taxa richness (SHTTX)	-	15.1	3.6	
MH-EPT richness (MHEPT)		-	10.6	
SH-EPT richness (SHEPTX)	5.0	-	10.6	
MH-sensitive taxa (MHSEN)	19.9		-	
SH-% 3-dominant taxa (SH3DOM)	46.0	13.8	45.8	
SH-Mod. Hilsenhoff Biotic index (SHMHBI)	-	-	5.2	
SH-% EPT (SHEPT)	-	-		
SH-% Chironomidae (SHCHR)	-	-	-	
SH-% Ephemeroptera (SHEPH)		-		
SH-% Scrapers (SHSCR)	-	15.9	5.2	
SH-% Dom. functional feeding grp, (SHDFFG)	33.5	-	33.4	
Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI)	5.0		5.2	
Range	5.0 - 46.0	13.8 - 15.9	3.6 - 45.8	
Mean	21.9	14.9	14.9	
Median	19.9	15.1	7.9	
* Analysis Method: CP, Conditional Probability; QR, Quantile	Regression; I	RT, Regressio	on Tree	
** MH, Multi-habitat sample; SH, Standard-Habitat sample				
*** () indicates direction of biological response opposite of exp	pected		2215	

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Draft Benchmarks Seston Chlorophyll A – Fish IBI

	Seston	Chlorophyll	A (ug/L)
Biological Metric / Index	CP*	QR	RT
# native fish species (NTVSP)		-	-
# sucker species (SCKRSP)		-	(35.9)**
# sensitive species (SNSTVSP)	-	-	-
# benthic invertivore species (BINVSP)		-	-
% 3-dominant fish species (PTOP3)	-	-	(30.3)
% benthic invertivores (PBNV)		-	(30.3)
% omnivores (POMV)	3.5	12.5	3.6
% top carnivores (PTOPC)	(5.5)	-	(5.6)
% simple lithophil spawners (PLTH)	(3.7)	(322)	(35.9)
fish assemblage tolerance index (TOLINDX)		-	
adjusted catch per unit effort (ACPUE)	-	-	-
Fish Index of Biotic Integrity (FIBI)		-	12
* Analysis Method: CP, Conditional Probability; QR, Qua	antile Regression;	RT, Regre	ssion Tree
** () indicates direction of biological response opposite of	of expected		

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Draft Benchmarks

Diurnal Diss. Oxygen Minima – Benthic Macroinvertebrate IBI

	Diurnal D.O. Minima (mg/L)			
Metric/Index	CP*	QR	RT	
MH**-taxa richness (MHTTX)	-		-	
SH**-taxa richness (SHTTX)	-			
MH-EPT richness (MHEPT)	4.1	-	5.2	
SH-EPT richness (SHEPTX)	4.1		4.2	
MH-sensitive taxa (MHSEN)	4.1	-	5.2	
SH-% 3-dominant taxa (SH3DOM)	4.2		4.8	
SH-Mod. Hilsenhoff Biotic index (SHMHBI)	4.1	6.3	5.3	
SH-% EPT (SHEPT)	4.1	6.8	6.0	
SH-% Chironomidae (SHCHR)	5.3	-	6.0	
SH-% Ephemeroptera (SHEPH)	5.9	-	6.1	
SH-% Scrapers (SHSCR)	4.1		6.0	
SH-% Dom. functional feeding grp, (SHDFFG)	5.9		6.0	
Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI)	4.1	-	6.0	
Range	4.1 - 5.9	6.3 - 6.8	4.2 - 6.1	
Mean	4.5	6.6	5.5	
Median	4.1	6.6	6.0	
* Analysis Method: CP, Conditional Probability; QR, Quantile F	Regression; F	RT, Regressio	on Tree	
** MH, Multi-habitat sample; SH, Standard-Habitat sample			-	

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Draft Benchmarks Diurnal Dissolved Oxygen Minima – Fish IBI

	Diurnal [D.O. Minim	a (mg/L)
Metric/Index	CP*	QR	CART
# native fish species (NTVSP)		12-1-	-
# sucker species (SCKRSP)	5.2	-	-
# sensitive species (SNSTVSP)	-	-	-
# benthic invertivore species (BINVSP)	6.3	-	-
% 3-dominant fish species (PTOP3)		-	
% benthic invertivores (PBNV)	(7.3)**	-	(7.2)
% omnivores (POMV)	- 12	-	
% top carnivores (PTOPC)	5.2	-	5.8
% simple lithophil spawners (PLTH)	6.1	-	
fish assemblage tolerance index (TOLINDX)	(7.4)		5.1
adjusted catch per unit effort (ACPUE)	(7.4)	(4.4)	(7.5)
Fish Index of Biotic Integrity (FIBI)		-	12000
* Analysis Method: CP, Conditional Probability; QR, Quantile Regression; RT,			n Tree
** () indicates direction of biological response opposite of		2002	

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Draft Benchmarks

Diurnal Diss. Oxygen Range – Benthic Macroinvertebrate IBI

Diumal D.O. Range			
Metric/Index	CP*	QR	RT
MH**-taxa richness (MHTTX)	(1.5)***	-	(1.5)
SH**-taxa richness (SHTTX)	(1.6)		-
MH-EPT richness (MHEPT)	5.8	-	5.8
SH-EPT richness (SHEPTX)	2.3	-	5.8
MH-sensitive taxa (MHSEN)	5.8	-	2.8
SH-% 3-dominant taxa (SH3DOM)	2.1	-	2.2
SH-Mod. Hilsenhoff Biotic index (SHMHBI)	1.6	-	2.5
SH-% EPT (SHEPT)	2.6	2.9	2.6
SH-% Chironomidae (SHCHR)	1.6		2.8
SH-% Ephemeroptera (SHEPH)	1.5	-	1.6
SH-% Scrapers (SHSCR)	1.6	4.3	5.9
SH-% Dom. functional feeding grp, (SHDFFG)	2.1	-	2.1
Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI)	2.6		2.6
Range	1.5 - 5.8	2.9 - 4.3	1.6 - 5.9
Mean	2.5	3.6	3.3
Median	2.1	3.6	2.6
* Analysis Method: CP, Conditional Probability; QR, Quantile F	Regression; F	RT, Regressio	on Tree
** MH, Multi-habitat sample; SH, Standard-Habitat sample	1.1.1		2000
*** () indicates direction of biological response was opposite of	fexpected		

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Draft Benchmarks

Diurnal Dissolved Oxygen Range – Fish IBI

	D.O. Rang	e (mg/L)	
Metric/Index	CP*	QR	CART
# native fish species (NTVSP)	(1.4)**	-	-
# sucker species (SCKRSP)	(1.4)	-	(1.3)
# sensitive species (SNSTVSP)	(7.9)	-	(1.5)
# benthic invertivore species (BINVSP)	-	-	
% 3-dominant fish species (PTOP3)	(1.4)	-	-
% benthic invertivores (PBNV)	(7.9)	-	(1.5)
% omnivores (POMV)	6.3	-	-
% top carnivores (PTOPC)	2.2		5.3
% simple lithophil spawners (PLTH)		-	-
fish assemblage tolerance index (TOLINDX)	(2.6)	-	-
adjusted catch per unit effort (ACPUE)	(2.4)	(7.2)	(2.5)
Fish Index of Biotic Integrity (FIBI) -		-	-
* Analysis Method: CP, Conditional Probability; QR, Quanti	Regressio	n Tree	
** () indicates direction of biological response opposite of e			

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Benthic Macroinvertebrate IBI Summary of Draft Benchmarks

Nutrient Response Variable	Benchmark mean, median (range)
Un-ionized Ammonia	
Chlorophyll A – Benthic	
Chlorophyll A – Seston	17.1, 12.2 (3.6 - 46.0)
Dissolved Oxygen – Diurnal Range	3.1, 2.6 (1.5 – 5.9)
Dissolved Oxygen – Diurnal Minima	5.1, 5.3 (4.1 – 6.8)
рН	
TSS / Turbidity	

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Draft Benchmarks Seston Chlorophyll A - Dissolved Oxygen Variables

	Seston Chlorophyll A (ug/L)			
Response Variable	CP*	QR	RT	
Diurnal D.O. Minima (avgmindo)	15.0	21.2	13.4	
Diurnal D.O. Range (avgrngdo)	18.2	1.4	19.6	
Average	16.6	11.3	16.5	
	range (all)	1.4 - 21.2		
	mean (all)	14.8		
	median (all)	16.6		
* Analysis Method: CP, Conditional Probability; QR, Quantile Re	egression; R1	, Regressio	on Tree	

Wadeable B(WW1), B(WW2) Nutrient Stressor–Biological Response Data Analysis Draft Benchmarks Nutrient Variables

(stream nutrient samples typically collected June-October during non-storm runoff conditions)

Total Phosphorus as P	Benchmark (mg/L)	Derivation Method
	0.125	CP - maximum increased probability of D.O. minima < 5 mg/L
	0.105	CP - maximum increased probability of Seston Chlorophyll A > 15 ug/L
	0.080	QR (avg.P95-P75): TP v Seston Chlorophyll A (Chla target = 15 ug/L)
	0.130	WW wadeable stream reference sites - statewide median value (2002-2006)
range	0.080 - 0.130	
mean	0.110	
median	0.115	
Total Kjeldahl Nitrogen as N	Benchmark (mg/L)	Derivation Method
1.64	0.86	CP - maximum increased probability of D.O. minima < 5 mg/L
	1.11	CP - maximum increased probability of Seston Chlorophyll A > 15 ug/L
	0.64	QR (avg.P95-P75): TP v Seston Chlorophyll A (Chla target = 15 ug/L)
	0.69	WW wadeable stream reference sites - statewide median value (2002-2006)
range	0.64-1.11	
mean	0.82	
median	0.77	
Analysis Method: CP, Condit	ional Probability; QF	R, Quantile Regression

Adjacent State Stream Nutrient Benchmarks/Criteria

			Benthic				
		Seston ChIA	Chla	DO (diel)	BOD5	TN	TP
Geographic Area	Water Body Types	(ug/L)	(mg/m2)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
R7 RTAG (IA, KS,	all streams within					1000	1997
MO, NE) (draft)	Region 7	8	40		-	0.9	0.075
	Southern Nutrient	232.03					1
	Region (bordering		-		1000	1000	1000
MN (proposed)	lowa) - all streams	40	150*	5 flux	3.5	3023	0.150
	46 large river						-
	segments (statewide)						1
WI (final)	including UMR						0.100
	all other streams						
WI (final)	(statewide)	22.2				12.3	0.075
	Nutrient Zones 12, 14,					1.00	200
	16, 17 (bordering lowa)	10000000000			1	0.00	
	excluding UMR and	- French A				100	
MO (draft rule)	lower MO					0.9	0.075

WQS Aquatic Life Use Designations Criteria Development Issues

Class	Issues	Criteria Recommendations
B(CW1)	Biological reference framework under development / refinement	Yes
B(CW2)	Currently no designated segments exist	?
B(WW1) non-wadeable	Suboptimal biological data availability; reference condition unavailable	Yes?
B(WW1) wadeable B(WW2) wadeable	Accceptable data & reference condition framework	Yes
B(WW3)	Data availability is poor; reference condition not available; often effluent-dominated flow	?
B(WW3)	Data availability is poor; reference condition not available; often effluent-dominated flow	?

Stream Nutrient Criteria Additional Classification Issues / Considerations

Class	Issue/Consideration	Criteria Recommendations
B(CW1)	Outstanding Iowa Waters – Exceptional Biological Condition; limited data	?
B(WW1) wadeable B(WW2) wadeable	Outstanding Iowa Waters – Exceptional Biological Condition; limited data	?
	Ecoregions	?
General Uses	Intermittant flow/aquatic habitat; narrative, "free from" criteria apply; limited data.	?

Next Steps

- Additional monitoring
 - CW & Non-wadeable WW streams
- Data analysis
 - stressor-response analysis (continued)
 - additional stream classes and parameters
 - nutrient data parameter characterization
 - flow, seasonality, other sources of variation
 - historical data summary
- TAC utilization
 - meetings?
 - communication via e-mail & discussion forum
 - data analysis and other assistance needs?
- Project completion
 - schedule, products, etc.

Questions & Discussion

May 24, 2011